Nutritional Properties of Innovatively Prepared Plant-Based Vegan Snack
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ingredients
2.2. Manufacturing of Broccoli-Based Healthy Snacks
2.3. Sensory Evaluation
2.4. Proximate Chemical Composition and Minerals Content in PVS2
2.5. Phytochemicals Analysis of PVS2
2.6. Antioxidant Activity of PVS2
2.7. Quantification of Phenolic Compounds in PVS2 by HPLC-DAD
2.8. GC-MS Quantification of Volatile Components in PVS2
2.9. Determination of the Amino Acid Profile in PVS2
2.10. Determination of the Fatty Acids Profile in PVS2
2.11. In Vitro Glycemic Index (GI) and Hydrolysis Index (HI) Analysis
2.12. Statistical Analysis
3. Results and Discussion
3.1. Sensory Evaluation of PVS Formulations
3.2. Proximate Composition and Minerals of Plant-Based Vegan Snack (PVS2)
3.3. Phytochemicals and Antioxidant Activities
3.4. Quantification of Phenolic Compounds in PVS2 by HPLC
3.5. Quantification of Volatiles in PVS2 by GC-MS
3.6. Amino Acids Profile in PVS2
3.7. Fatty Acid Composition of PVS2 by GC-MS
3.8. In Vitro Digestion of PVS2
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clarke, N.; Pechey, E.; Mantzari, E.; Blackwell, A.K.; De-Loyde, K.; Morris, R.W.; Munafò, M.R.; Marteau, T.M.; Hollands, G.J. Impact of Health Warning Labels on Snack Selection: An Online Experimental Study. Appetite 2020, 154, 104744. [Google Scholar] [CrossRef] [PubMed]
- Ciurzyńska, A.; Cieśluk, P.; Barwińska, M.; Marczak, W.; Ordyniak, A.; Lenart, A.; Janowicz, M. Eating Habits and Sustainable Food Production in the Development of Innovative “Healthy” Snacks. Sustainability 2019, 11, 2800. [Google Scholar] [CrossRef]
- Duncan, K.H.; Bacon, J.A.; Weinsier, R.L. The Effects of High and Low Energy Density Diets on Satiety, Energy Intake, and Eating Time of Obese and Nonobese Subjects. Am. J. Clin. Nutr. 1983, 37, 763–767. [Google Scholar] [CrossRef]
- Mitsopoulou, A.V.; Magriplis, E.; Dimakopoulos, I.; Karageorgou, D.; Bakogianni, I.; Micha, R.; Michas, G.; Chourdakis, M.; Ntouroupi, T.; Tsaniklidou, S.M. Association of Meal and Snack Patterns with Micronutrient Intakes among Greek Children and Adolescents: Data from the Hellenic National Nutrition and Health Survey. J. Hum. Nutr. Diet. 2019, 32, 455–467. [Google Scholar] [CrossRef] [PubMed]
- Boeing, H.; Bechthold, A.; Bub, A.; Ellinger, S.; Haller, D.; Kroke, A.; Leschik-Bonnet, E.; Müller, M.J.; Oberritter, H.; Schulze, M. Critical Review: Vegetables and Fruit in the Prevention of Chronic Diseases. Eur. J. Nutr. 2012, 51, 637–663. [Google Scholar] [CrossRef] [PubMed]
- Slavin, J.L.; Lloyd, B. Health Benefits of Fruits and Vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef] [PubMed]
- Adi, A.C.; Rachmah, Q.; Arimbi, A.N. The Acceptance and Nutritional Value of Crispy Noodles Supplemented with Moringa Oleifera as a Functional Snack for Children in a Food Insecure Area. Prev. Nutr. Food Sci. 2019, 24, 387. [Google Scholar] [CrossRef]
- Ganesh, K.S.; Sridhar, A.; Vishali, S. Utilization of Fruit and Vegetable Waste to Produce Value-Added Products: Conventional Utilization and Emerging Opportunities-a Review. Chemosphere 2022, 287, 132221. [Google Scholar] [CrossRef]
- Talalay, P.; Fahey, J.W. Phytochemicals from Cruciferous Plants Protect against Cancer by Modulating Carcinogen Metabolism. J. Nutri. 2001, 131, 3027S–3033S. [Google Scholar] [CrossRef]
- Soengas Fernández, M.d.P.; Sotelo Pérez, T.; Velasco Pazos, P.; Cartea González, M.E. Antioxidant Properties of Brassica Vegetables; Global Science Books: Bexhill-On-Sea, UK, 2011. [Google Scholar]
- Shubha, K.; Reetu, S.A.; Mukherjee, A. Broccoli: A potential functional food. Food Sci. Rep. 2020, 1, 26–28. [Google Scholar]
- Latté, K.P.; Appel, K.-E.; Lampen, A. Health Benefits and Possible Risks of Broccoli—An Overview. Food Chem. Toxicol. 2011, 49, 3287–3309. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Prasad, K. Technological, Processing and Nutritional Aspects of Chickpea (Cicer Arietinum)—A Review. Trends Food Sci. Technol. 2021, 109, 448–463. [Google Scholar] [CrossRef]
- Vélez, M.A.L.; Caroca-Cáceres, R.; Peña, M.A. Health Benefits of Chickpea and Cowpea. In Chickpea and Cowpea; CRC Press: Boca Raton, FL, USA, 2023; pp. 301–331. [Google Scholar]
- Begum, N.; Khan, Q.U.; Liu, L.G.; Li, W.; Liu, D.; Haq, I.U. Nutritional Composition, Health Benefits and Bio-Active Compounds of Chickpea (Cicer arietinum L.). Front. Nutr. 2023, 10, 1218468. [Google Scholar] [CrossRef]
- Santanatoglia, A.; Nzekoue, F.K.; Sagratini, G.; Ricciutelli, M.; Vittori, S.; Caprioli, G. Development and Application of a Novel Analytical Method for the Determination of 8 Plant Sterols/Stanols in 22 Legumes Samples. J. Food Compos. Anal. 2023, 118, 105195. [Google Scholar] [CrossRef]
- Jukanti, A.K.; Gaur, P.M.; Gowda, C.; Chibbar, R.N. Nutritional Quality and Health Benefits of Chickpea (Cicer arietinum L.): A Review. Br. J. Nutr. 2012, 108, S11–S26. [Google Scholar] [CrossRef]
- Ju, Q.; Wu, X.; Li, B.; Peng, H.; Lippke, S.; Gan, Y. Regulation of Craving Training to Support Healthy Food Choices under Stress: A Randomized Control Trial Employing the Hierarchical Drift-Diffusion Model. Appl. Psychol. Health Well-Being 2024, 16, 1159–1177. [Google Scholar] [CrossRef] [PubMed]
- Barakat, H.; Rohn, S. Effect of Different Cooking Methods on Bioactive Compounds in Vegetarian, Broccoli-Based Bars. J. Funct. Foods 2014, 11, 407–416. [Google Scholar] [CrossRef]
- Barakat, H. Effect of Frying-Cooking on Nutritional and Bioactive Compounds of Innovative Ovo-Vegetarian Diets. Food Nutr. Sci. 2014, 2014, 49234. [Google Scholar] [CrossRef]
- Barakat, H. Fate of Nutritional and Bioactive Compounds of Innovative Chickpeas-Based Vegan Diets Incorporating Different Vegetables. J. Nutr. Food Sci. 2014, 4, 1. [Google Scholar] [CrossRef]
- Barakat, H.; Reim, V.; Rohn, S. Stability of Saponins from Chickpea, Soy and Faba Beans in Vegetarian, Broccoli-Based Bars Subjected to Different Cooking Techniques. Food Res. Int. 2015, 76, 142–149. [Google Scholar] [CrossRef]
- Atik, H.; Elvan, M.; Harsa, Ş. Enhancing a Vegan Snack Bar: Edible Coating Infused with Lentil Protein and Pomegranate Peel. ACS Food Sci. Technol. 2024, 4, 2374–2383. [Google Scholar] [CrossRef]
- Bayindir Gümüş, A.; Keser, A.; Gökgöz, M.; Güngüneş, A. Glycaemic Index and Glycaemic Load of Selected Packaged Vegan Foods. Nutr. Bull. 2024, 49, 372–382. [Google Scholar] [CrossRef] [PubMed]
- Borkent, J.W.; Grootswagers, P.; Linschooten, J.; Roodenburg, A.J.C.; Ocké, M.; de van der Schueren, M.A.E. A Vegan Dietary Pattern Is Associated with High Prevalence of Inadequate Protein Intake in Older Adults; A Simulation Study. J. Nutr. Health Aging 2024, 28, 100361. [Google Scholar] [CrossRef] [PubMed]
- Bustos, A.Y.; Font, G.; Taranto, M.P. Fruit and Vegetable Snacks as Carriers of Probiotics and Bioactive Compounds: A Review. Int. J. Food Sci. Technol. 2023, 58, 3211–3223. [Google Scholar] [CrossRef]
- Granato, D.; Barba, F.J.; Bursać Kovačević, D.; Lorenzo, J.M.; Cruz, A.G.; Putnik, P. Functional Foods: Product Development, Technological Trends, Efficacy Testing, and Safety. Annu. Rev. Food Sci. Technol. 2020, 11, 93–118. [Google Scholar] [CrossRef]
- Markets, T. NuNaturals, Oat Fiber Powder. Available online: https://Eg.Iherb.Com/Pr/Nunaturals-Oat-Fiber-Powder-1-Lb-454-G/46824 (accessed on 17 May 2022).
- Showkat, S.; Dar, A.H.; Khan, S.; Gani, M. Effect of Mung Bean and Rice on Physico-Chemical, Sensory and Microstructural Properties of Cereal Bars. Carpathian J. Food Sci. Technol. 2018, 10, 70–78. [Google Scholar]
- AOAC. Official Methods of Analysis of the AOAC, 19th ed.; Association of Official Analytical Chemists (AOAC): Rockville, MD, USA, 2012. [Google Scholar]
- Nielsen, S.S. (Ed.) Vitamin C Determination by Indophenol Method. In Food Analysis Laboratory Manual; Springer International Publishing: Cham, Switzerland, 2017; pp. 143–146. [Google Scholar]
- Borah, S.; Baruah, A.; Das, A.; Borah, J. Determination of Mineral Content in Commonly Consumed Leafy Vegetables. Food Anal. Methods 2009, 2, 226–230. [Google Scholar] [CrossRef]
- Bettaieb, I.; Bourgou, S.; Wannes, W.A.; Hamrouni, I.; Limam, F.; Marzouk, B. Essential Oils, Phenolics, and Antioxidant Activities of Different Parts of Cumin (Cuminum cyminum L.). J Agri Food Chem 2010, 58, 10410–10418. [Google Scholar] [CrossRef]
- Khalifa, I.; Barakat, H.; El-Mansy, H.; Soliman, S. Optimizing Bioactive Substances Extraction Procedures from Guava, Olive and Potato Processing Wastes and Evaluating Their Antioxidant Capacity. J. Food Chem. Nanotechnol 2016, 2, 170–177. [Google Scholar] [CrossRef]
- Barakat, H.; Almundarij, T.I. Phenolic Compounds and Hepatoprotective Potential of Anastatica Hierochuntica Ethanolic and Aqueous Extracts against Ccl4-Induced Hepatotoxicity in Rats. Tradit. Chin. Med. 2020, 40, 947. [Google Scholar]
- Kumaran, A.; Karunakaran, R.J. In Vitro Antioxidant Activities of Methanol Extracts of Five Phyllanthus Species from India. LWT-Food Sci. Technol. 2007, 40, 344–352. [Google Scholar] [CrossRef]
- Zhang, D.; Hamauzu, Y. Phenolics, Ascorbic Acid, Carotenoids and Antioxidant Activity of Broccoli and Their Changes During Conventional and Microwave Cooking. Food Chem 2004, 88, 503–509. [Google Scholar] [CrossRef]
- Kim, K.-H.; Tsao, R.; Yang, R.; Cui, S.W. Phenolic Acid Profiles and Antioxidant Activities of Wheat Bran Extracts and the Effect of Hydrolysis Conditions. Food Chem. 2006, 95, 466–473. [Google Scholar] [CrossRef]
- Eldahshan, O.; Abdelhalim, M.; Elsayed, E.; Ahmed Saad, K. Gc/Ms Analysis and Antimicrobial Activities of Different Extracts of Egyptian Sprouting Broccoli Leaves (Brassica oleracea L. var. Italica) Family Brassicaceae. Arch. Pharm. Sci. Ain Shams Univ. 2023, 7, 31–40. [Google Scholar]
- Cohen, S.A.; Meys, M.; Travin, T.L. The Pico Tag Method a Manual of Advanced Techniques for Amino Acid Analysis; Waters Chromatography Division: Milford, MA, USA, 1989. [Google Scholar]
- Blouth, V.I.; Charaezinoki, N.; Berlec, H. A New Rapid Methods for Determination Tryptophan. Anal. Biochem. 1962, 6, 69–70. [Google Scholar] [CrossRef]
- WHO. Protein and Amino Acid Requirements in Human Nutrition; World Health Organization: Geneva, Switzerland, 2007; Volume 935. [Google Scholar]
- Chavan, U.D.; McKenzie, D.B.; Shahidi, F. Protein Classification of Beach Pea (Lathyrus maritimus L.). Food Chem. 2001, 75, 145–153. [Google Scholar] [CrossRef]
- Petrović, M.; Kezić, N.; Bolanča, V. Optimization of the Gc Method for Routine Analysis of the Fatty Acid Profile in Several Food Samples. Food Chem. 2010, 122, 285–291. [Google Scholar] [CrossRef]
- Aribas, M.; Kahraman, K.; Koksel, H. In Vitro Glycemic Index, Bile Acid Binding Capacity and Mineral Bioavailability of Spaghetti Supplemented with Resistant Starch Type 4 and Wheat Bran. J. Funct. Foods 2020, 65, 103778. [Google Scholar] [CrossRef]
- Barakat, H.; Almutairi, A.S. The Organoleptic and Nutritional Characteristics of Innovative High-Fiber Khalas Date-Based Bar. Ital. J. Food Sci. 2024, 36, 13–29. [Google Scholar] [CrossRef]
- Steel, R.G.; Torrie, J.H.; Dickey, D.A. Principles and Procedures of Statistics: A Biometrical Approach; McGraw-Hill Book Company Inc.: New York, NY, USA, 1997. [Google Scholar]
- Li, H.; Xia, Y.; Liu, H.-Y.; Guo, H.; He, X.-Q.; Liu, Y.; Wu, D.-T.; Mai, Y.-H.; Li, H.-B.; Zou, L. Nutritional Values, Beneficial Effects, and Food Applications of Broccoli (Brassica oleracea Var. Italica Plenck). Trends Food Sci. Technol. 2022, 119, 288–308. [Google Scholar] [CrossRef]
- Standing Committee on the Scientific Evaluation of Dietary Reference Intakes, Subcommittee on Interpretation, Uses of Dietary Reference Intakes, Subcommittee on Upper Reference Levels of Nutrients, Panel on the Definition of Dietary Fiber, Panel on Macronutrients. Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein, and Amino Acids; National Academies Press: Washington, DC, USA, 2005. [Google Scholar]
- National Research Council, Division on Earth, Life Studies, Committee on Animal Nutrition, Subcommittee on Dog, Cat Nutrition. In Nutrient Requirements of Dogs and Cats; National Academies Press: Washington, DC, USA, 2006.
- Vallejo, F.; Tomás-Barberán, F.; García-Viguera, C. Phenolic Compound Contents in Edible Parts of Broccoli Inflorescences after Domestic Cooking. J. Sci. Food Agric. 2003, 83, 1511–1516. [Google Scholar] [CrossRef]
- Reddy, M.S.; Agnihotri, M.; Divija, S.; Belal, B.; Karthik, S. Host Plant Resistance Profiling of Chickpea Genotypes against Helicoverpa armigera (Hübner) through Sem and Gc–Ms Studies. Int. J. Trop. Insect Sci. 2022, 42, 1627–1638. [Google Scholar] [CrossRef]
- Jacobsson, A.; Nielsen, T.; Sjöholm, I. Influence of Temperature, Modified Atmosphere Packaging, and Heat Treatment on Aroma Compounds in Broccoli. J. Agric. Food Chem. 2004, 52, 1607–1614. [Google Scholar] [CrossRef]
- Munir, M.; Nadeem, M.; Qureshi, T.M.; Qayyum, A.; Suhaib, M.; Zeb, F.; Ashokkumar, M. Addition of Oat Enhanced the Physico-Chemical, Nutritional and Sensory Qualities of Date Fruit Based Snack Bars. J. Food Nutr. Res 2018, 6, 271–276. [Google Scholar]
- El-Sohaimy, S.; Hafez, E. Biochemical and Nutritional Characterizations of Date Palm Fruits (Phoenix dactylifera L.). J. Appl. Sci. Res. 2010, 6, 1060–1067. [Google Scholar]
- Drabińska, N. The Evaluation of Amino Acid Profiles in Gluten-Free Mini Sponge Cakes Fortified with Broccoli by-Product. Separations 2022, 9, 81. [Google Scholar] [CrossRef]
- Campas-Baypoli, O.N.; Sánchez-Machado, D.I.; Bueno-Solano, C.; Núñez-Gastélum, J.A.; Reyes-Moreno, C.; López-Cervantes, J. Biochemical Composition and Physicochemical Properties of Broccoli Flours. Int. J. Food Sci. Nutr. 2009, 60, 163–173. [Google Scholar] [CrossRef]
- Nie, C.; He, T.; Zhang, W.; Zhang, G.; Ma, X. Branched Chain Amino Acids: Beyond Nutrition Metabolism. Int. J. Mol. Sci. 2018, 19, 954. [Google Scholar] [CrossRef]
- Song, W.; Kong, X.; Hua, Y.; Li, X.; Zhang, C.; Chen, Y. Antioxidant and Antibacterial Activity and in Vitro Digestion Stability of Cottonseed Protein Hydrolysates. LWT 2020, 118, 108724. [Google Scholar] [CrossRef]
- Singh, T.P.; Sogi, D.S. Comparative Study of Structural and Functional Characterization of Bran Protein Concentrates from Superfine, Fine and Coarse Rice Cultivars. Int. J. Biol. Macromol. 2018, 111, 281–288. [Google Scholar] [CrossRef]
- Bhandari, S.R.; Park, M.Y.; Chae, W.B.; Kim, D.-Y.; Kwak, J.-H. Seasonal Variation in Fatty Acid Composition in Various Parts of Broccoli Cultivars. Korean J. Agric. Sci. 2013, 40, 289–296. [Google Scholar] [CrossRef]
- Murcia, M.A.; López-Ayerra, B.; García-Carmona, F. Effect of Processing Methods and Different Blanching Times on Broccoli: Proximate Composition and Fatty Acids. LWT-Food Sci. Technol. 1999, 32, 238–243. [Google Scholar] [CrossRef]
- Summo, C.; De Angelis, D.; Ricciardi, L.; Caponio, F.; Lotti, C.; Pavan, S.; Pasqualone, A. Data on the Chemical Composition, Bioactive Compounds, Fatty Acid Composition, Physico-Chemical and Functional Properties of a Global Chickpea Collection. Data Brief 2019, 27, 104612. [Google Scholar] [CrossRef]
- Burgos-Díaz, C.; Wandersleben, T.; Marqués, A.M.; Rubilar, M. Multilayer Emulsions Stabilized by Vegetable Proteins and Polysaccharides. Curr. Opin. Colloid Interface Sci. 2016, 25, 51–57. [Google Scholar] [CrossRef]
- Wootton-Beard, P.C.; Moran, A.; Ryan, L. Stability of the Total Antioxidant Capacity and Total Polyphenol Content of 23 Commercially Available Vegetable Juices before and after in Vitro Digestion Measured by Frap, Dpph, Abts and Folin–Ciocalteu Methods. Food Res. Int. 2011, 44, 217–224. [Google Scholar] [CrossRef]
- Atkinson, F.S.; Foster-Powell, K.; Brand-Miller, J.C. International Tables of Glycemic Index and Glycemic Load Values: 2008. Diabetes Care 2008, 31, 2281–2283. [Google Scholar] [CrossRef]
Ingredients | PVS1 | PVS2 | PVS2 |
---|---|---|---|
Blanched broccoli | 20 | 25 | 30 |
Soaked and peeled chickpeas | 30 | 25 | 20 |
Blanched pumpkin pulp | 15 | 15 | 15 |
Whole oat flour | 10 | 10 | 10 |
Oat fiber | 1 | 1 | 1 |
Red sweet pepper | 10 | 10 | 10 |
Fresh onion | 5 | 5 | 5 |
Fresh garlic | 0.75 | 0.75 | 0.75 |
Edible salt | 1.25 | 1.25 | 1.25 |
Green leafy mix | 6 | 6 | 6 |
Mixed spices | 1 | 1 | 1 |
Organoleptical Characteristics | PVS Formulas | ||
---|---|---|---|
PVS1 | PVS2 | PVS3 | |
Appearance | 6.18 b ± 0.35 | 7.65 a ± 0.34 | 5.22 b ± 0.33 |
Color | 7.66 b ± 0.38 | 8.28 a ± 0.34 | 6.25 b ± 0.41 |
Taste | 6.84 c ± 0.25 | 8.66 a ± 0.35 | 6.88 b ± 0.35 |
Smell | 7.25 b ± 0.29 | 7.51 a ± 0.33 | 7.29 b ± 0.41 |
Texture | 6.15 b ± 0.39 | 8.51 a ± 0.31 | 5.82 b ± 0.44 |
Easy cutting | 7.58 c ± 0.35 | 8.22 a ± 0.44 | 6.85 b ± 0.39 |
Overall acceptability | 6.95 c ± 0.26 | 8.13 a ± 0.38 | 6.39 b ± 0.27 |
Composition | PVS2 (g 100 g−1) * | PVS2 (g 100 g−1) ** | Minerals | PVS2 (mg 100 g−1) |
---|---|---|---|---|
Moisture | 74.80 ± 0.21 | 3.40 ± 0.12 | Sodium | 958.87 ± 21.24 |
Protein | 7.35 ± 0.11 | 28.18 ± 0.11 | Calcium | 157.89 ± 5.13 |
Total fat | 1.30 ± 0.24 | 4.97 ± 0.32 | Magnesium | 97.86 ± 5.27 |
Ash | 2.05 ± 0.05 | 7.86 ± 0.06 | Phosphorus | 5.67 ± 148.57 |
Dietary fiber | 0.96 ± 0.27 | 3.69 ± 0.34 | Manganese | 4.19 ± 0.98 |
Total carbohydrates | 13.54 ± 0.23 | 51.89 ± 0.27 | Potassium | 530.87 ± 8.87 |
Calories (Kcal) | 95.24 ± 1.36 | 340.17 ± 2.63 | Copper | 2.68 ± 0.55 |
Vitamin C mg 100 g−1 | 54.28 ± 2.67 | 145.32 ± 5.98 | Zinc | 5.19 ± 0.64 |
Iron | 2.35 ± 0.98 | |||
Selenium | 0.15 ± 0.08 |
Items | PVS2 |
---|---|
TPC [mg GAE 100 g−1] | 630.63 ± 13.98 |
DPPH-RSA [µmol of TE 100 g−1] | 978.25 ± 19.28 |
Carotenoid [mg 100 g−1] | 1.03 ± 0.08 |
TF [mg QE g−1] | 1845.57 ± 54.27 |
TFL [mg QE g−1] | 1487.27 ± 27.19 |
Item | R.T. (min) | Compound | (µg g−1) |
---|---|---|---|
Phenolic acids | 3.39 | Gallic acid | 267.27 |
4.17 | Chlorogenic acid | 1741.60 | |
5.69 | Methyl gallat | 44.55 | |
6.28 | Caffeic acid | 14.86 | |
6.63 | Syringic acid | 46.44 | |
8.68 | Ellagic acid | 69.72 | |
9.04 | Coumaric acid | 91.57 | |
14.04 | Cinnamic acid | 6.39 | |
Flavonoids | 8.01 | Rutin | 172.65 |
10.41 | Naringenin | 302.38 | |
12.47 | Daidzein | 22.27 | |
12.64 | Quercetin | 18.68 | |
14.50 | Apigenin | 27.99 | |
15.37 | Hesperidin | 34.20 |
No | R.T. (min) | Compound | (g 100 g−1) |
---|---|---|---|
1 | 5.04 | D-Fructose, diethyl mercaptal, pentaacetat | 0.78 |
2 | 8.78 | 2-Hydroxytetradecanoic acid | 0.41 |
3 | 9.72 | D-Fructose, diethyl mercaptal, pentaacetat | 1.37 |
4 | 14.93 | 10-Heptadecen-8-ynoic acid, methyl ester, (E)- | 0.32 |
5 | 15.04 | Methyl 4,6-tetradecadiynoate | 0.16 |
6 | 16.25 | Methanol, tris(methylenecyclopropyl)- | 0.12 |
7 | 21.39 | Pyrrolizidine-3-one-5-ol, ethyl ether | 0.10 |
8 | 21.83 | 9,12,15-Octadecatrienoic acid, (2-phenyl-1,3-dioxolan-4-yl)methyl ester | 0.12 |
9 | 22.40 | Cyclobutanecarboxylic acid, 1-hydroxy-, methyl ester | 0.16 |
10 | 24.34 | 1H-Indol-5-ol, 3-(2-aminoethyl)- | 0.11 |
11 | 24.63 | 9-Octadecenoic acid (z)- | 0.28 |
12 | 25.49 | 1-Heptatriacontanol | 0.16 |
13 | 26.04 | cis-5,8,11,14,17-Eicosapentaenoic acid | 0.17 |
14 | 26.28 | Cyclopropanedodecanoic acid, 2-octyl-, methyl ester | 0.22 |
15 | 26.46 | Hexadecanoic acid, methyl ester | 4.14 |
16 | 27.93 | n-Hexadecanoic acid | 4.44 |
17 | 28.77 | Palmitic Acid, TMS derivative | 0.92 |
18 | 29.28 | 9-Hexadecenoic acid | 0.34 |
19 | 29.58 | 9,12-Octadecadienoic acid, methyl ester, (E,E)- | 4.69 |
20 | 29.71 | cis-13-Octadecenoic acid, methyl ester | 43.89 |
21 | 30.17 | Heptadecanoic acid, 16-methyl-, methyl ester | 1.35 |
22 | 30.53 | Oxiraneoctanoic acid, 3-octyl-, cis- | 0.23 |
23 | 31.15 | Oleic acid (cis-13-Octadecenoic acid) | 22.45 |
24 | 31.81 | 9-Octadecenoic acid | 0.17 |
25 | 32.27 | trans-13-Octadecenoic acid | 1.31 |
26 | 32.40 | cis-13-Octadecenoic acid | 0.96 |
27 | 32.62 | Oxiraneoctanoic acid, 3-octyl-, cis- | 0.10 |
28 | 32.91 | cis-13-Eicosenoic acid | 0.12 |
29 | 33.10 | 12-Methyl-E,E-2,13-octadecadienoic-1-ol | 0.16 |
30 | 33.43 | cis-Vaccenic acid | 0.26 |
31 | 33.57 | Oxiraneundecanoic acid, 3-pentyl-,methyl ester, cis- | 0.33 |
32 | 35.26 | 9,12-Octadecadienoyl chloride,(Z,Z)- | 2.24 |
33 | 35.66 | 9-Octadecenoic acid (Z)-,2-hydroxy-1-(hydroxymethyl)ethyl ester | 0.27 |
34 | 36.72 | Cyclopropanedodecanoic acid, 2-octyl-, methyl ester | 0.27 |
35 | 37.00 | 1,2-Benzenedicarboxylic acid | 0.55 |
36 | 43.76 | 10,13-Octadecadiynoic acid, methyl ester | 0.12 |
37 | 47.17 | α-Sitosterol | 0.12 |
Essential Amino Acids | PVS2 (mg g−1 Protein) |
---|---|
Lysine | 38.91 |
Threonine | 21.93 |
Valine | 24.41 |
Methionine | 6.01 |
Isoleucine | 19.81 |
Leucine | 37.50 |
Phenylalanine | 39.27 |
Histidine | 26.53 |
Cystine | 15.21 |
Non-Essential Amino acids | |
Arginine | 53.41 |
Aspartic | 167.32 |
Serine | 50.59 |
Glutamic | 234.88 |
Proline | 37.14 |
Glycine | 63.67 |
Alanine | 48.11 |
Tyrosine | 21.22 |
Essential Amino Acids | 229.58 |
Non-Essential Amino Acids | 676.35 |
EAA/TAA ratio | 0.25 |
Total Amino Acids | 905.93 |
Parameters | PVS |
---|---|
Total BCAAs (mg g−1 protein) | 81.72 |
Total aromatic AA (mg g−1 protein) | 60.49 |
Total conditional AA (mg g−1 protein) | 412.45 |
Total basic AAs (mg g−1 protein) | 118.85 |
Total acidic A.A.s (mg g−1 protein) | 402.20 |
Total hydrophobic A.A.s (mg g−1 protein) | 275.92 |
Total polar A.A.s (mg g−1 protein) | 343.83 |
BV | 8.82 |
EAAI | 35.70 |
Requirement index (Infants) | 76.47 |
Requirement index (Preschool child) | 83.05 |
Requirement index (Schoolchild) | 90.88 |
Requirement index (Adult) | 95.58 |
Fatty Acids | R.T. (min) | Fatty Acids | PVS2 * |
---|---|---|---|
Saturated fatty acids | |||
2.875 | Heptanoic acid (C7:0) | 0.11 | |
6.670 | Undecanoic acid (C11:0) | 0.34 | |
11.534 | Hexadecanoic acid (C16:0) | 0.11 | |
12.242 | Heptadecanoic acid (C17:0) | 0.11 | |
13.604 | Stearic acid (C18:0) | 18.55 | |
15.819 | Arachidic acid (20:0) | 0.11 | |
17.335 | Heneicosanoic acid (21:0) | 0.51 | |
19.057 | Behenic acid (C22:0) | 0.26 | |
Total of saturated fatty acids | 20.10 | ||
Monounsaturated fatty acids | |||
13.088 | cis-10-heptadecanoic acid (C17:1) | 0.20 | |
14.319 | Oleic acid (18:1) | 0.49 | |
16.166 | cis-11-Eicosenoic acid (C20:1n9) | 0.37 | |
19.346 | Erucic acid (22:1 n-9) | 0.63 | |
19.556 | cis-13,16-Docosadienoic acid (C22:2) | 0.11 | |
Total of monounsaturated fatty acids | 1.80 | ||
Polyunsaturated fatty acids | |||
15.136 | Linoleic acid (C18:2n6c) | 0.09 | |
15.346 | Linoleliadic acid (C18:2n6t) | 0.06 | |
15.676 | α-Linolenic acid (C18:3n3) | 0.11 | |
15.935 | γ-Linolenic acid (C18:3n6) | 0.23 | |
16.926 | Arachidonic acid (20:4n6) | 2.37 | |
16.696 | cis-11,14,17-Eicosatrienoic acid (C20:3n3) | 37.13 | |
16.606 | cis-8,11,14-Eicosatrienoic acid (C20:3n6) | 36.02 | |
17.069 | cis-5,8,11,14,17-Eicosapentaenoic acid (C22:3n) | 0.68 | |
19.734 | cis-4,7,10,13,16,19-Hexaenoic acid (C22:6n3) | 0.94 | |
Total of polyunsaturated fatty acid | 77.63 | ||
Unknown | 0.47 | ||
Total of fatty acids | 100.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barakat, H.; Aljutaily, T.; Khalifa, I.; Almutairi, A.S.; Aljumayi, H. Nutritional Properties of Innovatively Prepared Plant-Based Vegan Snack. Processes 2024, 12, 2720. https://doi.org/10.3390/pr12122720
Barakat H, Aljutaily T, Khalifa I, Almutairi AS, Aljumayi H. Nutritional Properties of Innovatively Prepared Plant-Based Vegan Snack. Processes. 2024; 12(12):2720. https://doi.org/10.3390/pr12122720
Chicago/Turabian StyleBarakat, Hassan, Thamer Aljutaily, Ibrahim Khalifa, Abdulkarim S. Almutairi, and Huda Aljumayi. 2024. "Nutritional Properties of Innovatively Prepared Plant-Based Vegan Snack" Processes 12, no. 12: 2720. https://doi.org/10.3390/pr12122720
APA StyleBarakat, H., Aljutaily, T., Khalifa, I., Almutairi, A. S., & Aljumayi, H. (2024). Nutritional Properties of Innovatively Prepared Plant-Based Vegan Snack. Processes, 12(12), 2720. https://doi.org/10.3390/pr12122720