Thermodynamic Prediction of Scale Formation in Oil Fields During Water Injection: Application of SPsim Program Through Utilizing Advanced Visual Basic Excel Tool
Abstract
:1. Introduction
2. Data and Methods
2.1. Water Composition
2.2. SPsim Program
- Computational Tools:
- Data Input and Ease of Use:
- Development and Updates:
- Cost and Accessibility:
2.3. Saturation Index Calculation
3. Results and Discussion
3.1. Saturation Index (SI) and Mineral Deposits
3.2. pH
3.3. Water Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hashemi, S.H.; Hashemi, S.A. Prediction of Scale formation according to water injection operations in Nosrat Oil Field. Model. Earth Syst. Environ. 2020, 6, 585–589. [Google Scholar] [CrossRef]
- Khormali, A.; Ahmadi, S. Prediction of barium sulfate precipitation in dynamic tube blocking tests and its inhibition for waterflooding application using response surface methodology. J. Petrol. Explor. Prod. Technol. 2023, 13, 2267–2281. [Google Scholar] [CrossRef]
- Zhao, R.; Wang, B.; Li, D.; Chen, Y.; Zhang, Q. Effect of sulfate-reducing bacteria from salt scale of water flooding pipeline on corrosion behavior of X80 steel. Eng. Fail. Anal. 2022, 142, 106788. [Google Scholar] [CrossRef]
- Jing, G.; Tang, S.; Li, X.; Wang, H. The analysis of scaling mechanism for water-injection pipe columns in the Daqing Oilfield. Arab. J. Chem. 2017, 10, S1235–S1239. [Google Scholar] [CrossRef]
- Binmerdhah, A.; Yassin, A. Scale Formation in Oil Reservoir During Water Injection at High-Salinity Formation Water. J. Appl. Sci. 2007, 7, 3198–3207. [Google Scholar] [CrossRef]
- McElhiney, E.; Sydansk, D.; Benzel, N.; Davidson, B. Determination of in-situ precipitation of barium sulfate during coreflooding. In Proceedings of the SPE Third International Symposium on Oilfield Scale SPE 68309, Aberdeen, UK, 30–31 January 2001. [Google Scholar]
- Mackay, E.J.; Jordan, M.M.; Torabi, F. Predicting Brine Mixing Deep Within the Reservoir, and the Impact on Scale Control in Marginal and Deepwater Developments. In Proceedings of the International Symposium and Exhibition on Formation Damage Control, Lafayette, Louisiana, 20–21 February 2002. [Google Scholar]
- Abu-Khamsin, S.; Ahmad, S. Laboratory Study on Precipitation of Calcium Sulphate in Berea Sandstone Cores. In Proceedings of the SPE Technical Symposium of Saudi Arabia Section, Dhahran, Saudi Arabia, 14–16 May 2005. SPE 106336.2005. [Google Scholar]
- Raju, K. Successful Scale Mitigation Strategies in Saudi Arabian Oil Fields. In Proceedings of the SPE International Symposium on Oilfield Chemistry, The Woodlands, TX, USA, 20–22 April 2009. SPE 121679.2009. [Google Scholar]
- Haghtalab, A.; Kamali, J.; Shahrabadi, A. Prediction mineral scale formation in oil reservoirs during water injection. Fluid Phase Equilibria 2014, 373, 43–54. [Google Scholar] [CrossRef]
- Shabani, A.; Sisakhti, H.; Sheikhi, S.; Barzega, F. A reactive transport approach for modeling scale formation and deposition in water injection wells. J. Pet. Sci. Eng. 2020, 190, 107031. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, L.; Wang, Z.; Zhang, C.; Meng, W.; Ren, S. Experimental study on scaling and adhesion characteristics in water-producing gas wellbore. Nat. Gas Ind. B 2021, 8, 252–266. [Google Scholar] [CrossRef]
- Al Jaberi, J.; Ahmed, A.; Bageri, B.; Elsayed, M.; Mahmoud, M.; Patil Sh Al-Garadi, K.; Barri, A. Minimizing the Barite Scale in Carbonate Formations during the Filter Cake Removal Process. ACS Omega 2022, 7, 17976–17983. [Google Scholar] [CrossRef]
- Hashemi, S.H.; Niknam, A.; Karimian Torghabeh, A.; Pimentel, N. Thermodynamic and geochemical studies of formation water in Rag-e Sefid oil and gas field, Iran. AIMS Geosci. 2023, 9, 578–594. [Google Scholar] [CrossRef]
- Razavirad, F.; Heidari, S.; Shahrabadi, A. Evaluation of compatibility between formation and Injection water into the Reservoir Rock. Colloids Surf. A Physicochem. Eng. Asp. 2024, 690, 133787. [Google Scholar] [CrossRef]
- Bader, M.S.H. Sulfate scale problems in oil fields water injection operations. Desalination 2006, 201, 100–105. [Google Scholar] [CrossRef]
- Ardakani, S.F.G.; Hosseini, S.T.; Kazemzadeh, Y. A review of scale inhibitor methods during modified smart water injection. Can. J. Chem. Eng. 2024, 102, 3922. [Google Scholar] [CrossRef]
- Mpelwa, M.; Tang, S.F. State of the art of synthetic threshold scale inhibitors for mineral scaling in the petroleum industry: A review. Pet. Sci. 2019, 16, 830–849. [Google Scholar] [CrossRef]
- Azizi, J.; Shadizadeh, S.R.; Manshad, K.A.; Mohammadi, A.H. A dynamic method for experimental assessment of scale inhibitor efficiency in oil recovery process by water flooding. Petroleum 2019, 5, 303–314. [Google Scholar] [CrossRef]
- Khormali, A.; Petrakov, D.G.; Moghaddam, N.R. Study of adsorption/desorption properties of a new scale inhibitor package to prevent calcium carbonate formation during water injection in oil reservoirs. J. Pet. Sci. Eng. 2017, 153, 257–267. [Google Scholar] [CrossRef]
- Yuan, M.D.; Todd, A.C. Prediction of Sulfate Scaling Tendency in Oilfield Operations. SPE Prod. Eng. 1991, 6, 63–72. [Google Scholar] [CrossRef]
- Oddo, J.; Tomson, M. Why Scale Forms and How to Predict It. SPE Prod. Oper. 1994, 9, 47–54. [Google Scholar] [CrossRef]
- Mohammadi, A.; Manteghian, M.; Mohammadi, A.H.; Kamran-Pirzaman, A. Thermodynamic modeling of the dissociation conditions of hydrogen sulfide clathrate hydrate in the presence of aqueous solution of inhibitor (alcohol, salt or ethylene glycol). Chem. Eng. Res. Des. 2014, 92, 2283–2293. [Google Scholar] [CrossRef]
- Garcia, A.; Thomsen, K.; Stenby, E. Prediction of mineral scale formation in geothermal and oilfield operations using the extended UNIQUAC model Part I. Sulfate scaling minerals. Geothermics 2005, 34, 61–97. [Google Scholar] [CrossRef]
- Thomsen, K.; Rasmussen, P. Modeling of vapor-liquid-solid equilibrium in gas-aqueous electrolyte systems. Chem. Eng. Sci. 1999, 54, 1787–1802. [Google Scholar] [CrossRef]
- Prausnitz, J.M.; Lichtenthaler, R.N.; de Azevedo, E.G. Molecular Thermodynamics of Fluid Phase Equilibria, 3rd ed.; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Kan, A.T.; Mason, B.T. Scale Prediction for Oil and Gas Production. SPE J. 2012, 17, 362–378. [Google Scholar] [CrossRef]
- Villafafila Garcia, A. Measurement and Modeling of Scaling Minerals. Ph.D. Thesis, Technical University of Denmark, Kongens Lyngby, Denmark, August 2005. Available online: https://backend.orbit.dtu.dk/ws/portalfiles/portal/5459463/Ada%20Villafafila%20Garcia,%20ph.d..pdf (accessed on 20 January 2024).
- Vetter, J.O.; Kandarpa, V.; Harouaka, A. Prediction of scale problems due to injection of incompatible waters. J. Pet. Technol. 1982, 34, 273–284. [Google Scholar] [CrossRef]
- Alhseinat, E.; Jaoude, M.A.; Alkatheeri, A.; Darawsheh, I.; Safieh, A. Insights into the Composite Scale Formation and Coprecipitation Behavior of CaSO4 and SrSO4 at different salinity level. Surf. Interfaces 2021, 22, 100875. [Google Scholar] [CrossRef]
- Pamidimukkala, P.K. Analysis of Scaling Potentials in Marcellus Shale Gas Wells. Master’s Thesis, The Pennsylvania State University, University Park, PA, USA, 2012. Available online: https://etda.libraries.psu.edu/files/final_submissions/4998 (accessed on 20 January 2024).
- Lychnos, G.; Fletcher, J.P.; Davies, P.A. Properties of seawater bitterns with regard to liquid-desiccant cooling. Desalination 2010, 250, 172–178. [Google Scholar] [CrossRef]
FW-1 | SW-1 | FW-1 | SW-2 | |
---|---|---|---|---|
Downhole Conditions Temp. (°C) | 100 | 100 | ||
Pressure (bar) | 200 | 200 | ||
This work (SPsim Program) | SICasSO4 = 0.02 SIBasSO4 = 0.66 SISrSO4 = 1.46 SICasSO4·2H2O = −4.10 | SICasSO4 = 0.18 SIBasSO4 = 1.06 SISrSO4 = 1.04 SICasSO4.2H2O = −3.85 | ||
ScaleChem 3.2 Software | SICasSO4 = 0.38 SIBasSO4 = 2.15 SISrSO4 = 0.36 SICasSO4.2H2O = −0.20 | SICasSO4 = −0.046 SIBasSO4 = 1.79 SISrSO4 = −0.069 SICasSO4.2H2O = −0.56 | ||
StimCad 2 Software | % SICasSO4 = 100 % SIBasSO4 = 100 % SISrSO4 = 81.25 % SICasSO4.2H2O = 12.64 | % SICasSO4 = 61.22 % SIBasSO4 = 100 % SISrSO4 = 52.18 % SICasSO4.2H2O = 9.57 | ||
Haghtalab et al. (2014) [10] | SICasSO4 = 3.29 SIBasSO4 = 9.21 SICasSO4.2H2O = 7.09 | SICasSO4 = 2.07 SIBasSO4 = 7.93 SISrSO4 = 2.73 SICasSO4.2H2O = 3.29 | ||
Vetter et al. (1982) [29] | BaSO4 CaSO4 | BaSO4 CaSO4 | ||
Yuan and Todd (1991) [21] | BaSO4 CaSO4 SrSO4 | BaSO4 CaSO4 SrSO4 | ||
Field Observation [21] | BaSO4 CaSO4 | BaSO4 CaSO4 |
Field Observation [21] | Yuan and Todd (1991) [21] | Haghtalab et al. (2014) [10] | StimCad 2 Software | ScaleChem 3.2 Software | This Work (SPsim Program) | P (Bar) | T (°C) | Brine |
---|---|---|---|---|---|---|---|---|
BaSO4 SrSO4 | BaSO4 SrSO4 | SIBasSO4 = 4.81 SISrSO4 = 0.6 | % SICasSO4 = 10.54 % SIBasSO4 = 100 % SISrSO4 = 100 % SICasSO4.2H2O = 13.26 | SICasSO4 = −0.658 SIBasSO4 = 3.046 SISrSO4 = 0.454 SICasSO4.2H2O = −0.55 | SICasSO4 = −0.197 SIBasSO4 = 1.447 SISrSO4 = 0.248 SICasSO4.2H2O = −3.63 | 1 | 25 | Forties FW + North SW |
BaSO4 SrSO4 | BaSO4 SrSO4 | SIBasSO4 = 3.94 SISrSO4 = 0.6 | % SICasSO4 = 10.54 % SIBasSO4 = 100 % SISrSO4 = 100 % SICasSO4.2H2O =13.26 | SICasSO4 = −0.801 SIBasSO4 = 2.835 SISrSO4 = 0.277 SICasSO4.2H2O = −0.67 | SICasSO4 = −0.431 SIBasSO4 = 1.386 SISrSO4 = 0.254 SICasSO4.2H2O = −3.75 | 300 | 25 | |
BaSO4 SrSO4 | BaSO4 SrSO4 | SIBasSO4 = 4.37 SISrSO4 = 0.3 | % SICasSO4 = 37.01 % SIBasSO4 = 100 % SISrSO4 = 100 % SICasSO4.2H2O = 6.04 | SICasSO4 = 0.0767 SIBasSO4 = 2.461 SISrSO4 = 0.895 SICasSO4.2H2O = −0.38 | SICasSO4 = 0.774 SIBasSO4 = 1.368 SISrSO4 = 0.374 SICasSO4.2H2O = −3.25 | 1 | 100 | |
BaSO4 SrSO4 | BaSO4 SrSO4 | SIBasSO4 = 0.89 SISrSO4 = 4.38 | % SICasSO4 = 37.01 % SIBasSO4 = 100 % SISrSO4 = 100 % SICasSO4.2H2O = 6.04 | SICasSO4 = −0.071 SIBasSO4 = 2.250 SISrSO4 = 0.725 SICasSO4.2H2O = −0.51 | SICasSO4 = 0.523 SIBasSO4 = 1.30 SISrSO4 = 0.368 SICasSO4.2H2O = −3.38 | 300 | 100 |
Batch No. | NaCl M | [Ca2+] mM | [Sr2+] mM | [SO42−] mM | SR (Exp) | SI (This Work) | ||
---|---|---|---|---|---|---|---|---|
CaSO4 | SrSO4 | CaSO4 | SrSO4 | |||||
1 | 0.35 | 47.5 | 0 | 47.5 | 1.7 | 0 | 0.965 | 0 |
2 | 0.5 | 47.5 | 0 | 47.5 | 1.5 | 0 | 0.954 | 0 |
3 | 1.5 | 47.5 | 0 | 47.5 | 0.6 | 0 | 0.5 | 0 |
4 | 0.35 | 47.5 | 5 | 47.5 | 1.5 | 45.9 | 0.962 | 0.027 |
5 | 0.5 | 47.5 | 5 | 47.5 | 1.3 | 33.7 | 0.951 | 0.17 |
6 | 1.5 | 47.5 | 5 | 47.5 | 0.6 | 14.7 | 0.54 | 0.76 |
7 | 0.35 | 47.5 | 20 | 47.5 | 1.9 | 14.7 | 0.89 | 0.029 |
8 | 0.5 | 47.5 | 20 | 47.5 | 1.6 | 13.4 | 0.84 | 0.169 |
9 | 1.5 | 47.5 | 20 | 47.5 | 0.6 | 3.7 | 0.3 | 0.75 |
StimCad 2 Software | ScaleChem 3.2 Software | This Work (SPsim Program) | P (Bar) | T (°C) | Brine |
---|---|---|---|---|---|
6.876 | 6.75 | 6.836 | 1 | 25 | Forties FW + North SW |
6.876 | 6.85 | 6.837 | 300 | 25 | |
6.112 | 6.33 | 6.354 | 1 | 100 | |
6.112 | 6.07 | 6.093 | 300 | 100 | |
5.3975 6.09 | 5.18 5.88 | 5.76 6.46 | 200 200 | 100 25 | FW-1 + SW-1 |
5.376 6.22 | 5.53 6.23 | 5.844 6.5 | 200 200 | 100 25 | FW-1 + SW-2 |
Ions (mg/L) | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 |
---|---|---|---|---|---|
Na+ | 4983 | 5301 | 6665 | 8650 | 11,260 |
K+ | 75 | 108 | 104 | 199 | 327 |
Mg2+ | 882 | 1027 | 1104 | 1595 | 2222 |
Ca2+ | 85 | 102 | 98 | 136 | 191 |
Ba2+ | 1.6 | 1.4 | 1.9 | 2.2 | 6.6 |
Sr2+ | 121 | 154 | 148 | 281 | 400 |
Fe2+ | 18 | 18 | 15 | 21 | 19 |
Cl− | 9000 | 10,000 | 12,000 | 16,000 | 24,000 |
SO42− | 763 | 553 | 473 | 385 | 200 |
pH (Exp) | 7.03 | 7.14 | 7.25 | 7.06 | 7.08 |
pH (This Work) | 7.093 | 7.096 | 7.103 | 7.11 | 7.14 |
ScaleChem 3.2 Software | This Work (SPsim Program) | ScaleChem 3.2 Software | This Work (SPsim Program) | % North Sea Water |
---|---|---|---|---|
a H2O at 100 °C | a H2O at 25 °C | |||
0.951 | 0.905 | 0.949 | 0.89 | 10 |
0.954 | 0.9114 | 0.953 | 0.896 | 20 |
0.958 | 0.917 | 0.956 | 0.903 | 30 |
0.962 | 0.923 | 0.96 | 0.909 | 40 |
0.965 | 0.929 | 0.963 | 0.917 | 50 |
0.996 | 0.935 | 0.967 | 0.923 | 60 |
0.972 | 0.941 | 0.978 | 0.931 | 70 |
0.975 | 0.947 | 0.974 | 0.938 | 80 |
0.978 | 0.953 | 0.977 | 0.945 | 90 |
0.981 | 0.959 | 0.980 | 0.952 | 100 |
Ions (mol/kg) | Sample 1 | Sample 2 | Sample 3 | Sample 4 | Sample 5 |
---|---|---|---|---|---|
Na+ | 0.548 | 1.74 | 0.16 | 1.976 | 0.072 |
K+ | 0.012 | 0.324 | 0.082 | 0.308 | 0.021 |
Mg2+ | 0.072 | 1.444 | 3.281 | 1.373 | 3.733 |
Ca2+ | 0.0118 | 0.00474 | 0.0014 | 0.00555 | 0.00153 |
Cl− | 0.656 | 4.373 | 6.346 | 4.212 | 7.79 |
SO42− | 0.0273 | 0.406 | 0.298 | 0.531 | 0.247 |
Li+ | 0.00003 | 0.000594 | 0.00188 | 0.000565 | 0.0025 |
aw (Exp) | 0.981 | 0.668 | 0.424 | 0.658 | 0.346 |
aw (This Work) | 0.946 | 0.717 | 0.663 | 0.719 | 0.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hashemi, S.H.; Besharati, Z.; Torabi, F.; Pimentel, N. Thermodynamic Prediction of Scale Formation in Oil Fields During Water Injection: Application of SPsim Program Through Utilizing Advanced Visual Basic Excel Tool. Processes 2024, 12, 2722. https://doi.org/10.3390/pr12122722
Hashemi SH, Besharati Z, Torabi F, Pimentel N. Thermodynamic Prediction of Scale Formation in Oil Fields During Water Injection: Application of SPsim Program Through Utilizing Advanced Visual Basic Excel Tool. Processes. 2024; 12(12):2722. https://doi.org/10.3390/pr12122722
Chicago/Turabian StyleHashemi, Seyed Hossein, Zahra Besharati, Farshid Torabi, and Nuno Pimentel. 2024. "Thermodynamic Prediction of Scale Formation in Oil Fields During Water Injection: Application of SPsim Program Through Utilizing Advanced Visual Basic Excel Tool" Processes 12, no. 12: 2722. https://doi.org/10.3390/pr12122722
APA StyleHashemi, S. H., Besharati, Z., Torabi, F., & Pimentel, N. (2024). Thermodynamic Prediction of Scale Formation in Oil Fields During Water Injection: Application of SPsim Program Through Utilizing Advanced Visual Basic Excel Tool. Processes, 12(12), 2722. https://doi.org/10.3390/pr12122722