Exploring the Antioxidant and Anti-Inflammatory Potential of Wilckia maritima: In Vitro and In Silico Investigations
Abstract
:1. Introduction
2. Experimental
2.1. Plant Collection and Preparation of Extract
2.2. Phytochemical Investigation
2.3. GC-MS Technique
2.4. Methodology for Molecular Docking
2.4.1. Protein Targets’ Identification and Selection
2.4.2. Software Required
2.4.3. Target Protein Preparation
2.4.4. Preparation of Ligand and Molecular Docking
2.4.5. Visualization
2.4.6. Validation
2.5. Antioxidant Activity
2.5.1. DPPH Free Radical Scavenging Potential
2.5.2. H2O2 Assay
2.5.3. Ferrous Reducing Activity
2.6. Anti-Inflammatory Activity
2.7. Anti-Inflammatory Activity (In Vivo)
2.8. Statistical Analysis
3. Results and Discussion
3.1. GC-MS Technique
3.2. Molecular Docking
3.3. Antioxidant Activity
3.4. Anti-Inflammatory Effect
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Caughey, G.H. Mast cell proteases as pharmacological targets. Eur. J. Pharmacol. 2016, 778, 44–55. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sostres, C.; Gargallo, C.J.; Arroyo, M.T.; Lanas, A. Adverse effects of non-steroidal anti-inflammatory drugs (NSAIDs, aspirin and coxibs) on upper gastrointestinal tract. Best Pract. Res. Clin. Gastroenterol. 2010, 24, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Borquaye, L.S.; Laryea, M.K.; Gasu, E.N.; Boateng, M.A.; Baffour, P.K.; Kyeremateng, A.; Doh, G. Anti-inflammatory and antioxidant activities of extracts of Reissantia indica, Cissus cornifolia and Grosseria vignei. Cognet Biol. 2020, 6, 1785755. [Google Scholar] [CrossRef]
- Rivera, J.O.; Loya, A.M.; Ceballos, R. Use of herbal medicines and implications for conventional drug therapy medical sciences. Altern. Integr. Med. 2013, 2, 1–6. [Google Scholar]
- Oguntibeju, O.O. Medicinal plants with antiinflammatory activities from selected countries and regions of Africa. J. Inflamm. Res. 2018, 11, 307–317. [Google Scholar] [CrossRef] [Green Version]
- Welz, A.N.; Emberger-Klein, A.; Menrad, K. Why people use herbal medicine: Insights from a focusgroup study in Germany. BMC Complement. Altern. Med. 2018, 18, 92. [Google Scholar] [CrossRef]
- Poyton, R.O.; Ball, K.A.; Castello, P.R. Mitochondrial generation of free radicals and hypoxic signaling. Trends Endocrinol. Metab. 2009, 20, 332–340. [Google Scholar] [CrossRef]
- Reuter, S.; Gupta, S.C.; Chaturvedi, M.M.; Aggarwal, B.B. Oxidative stress, inflammation, and cancer: How are they linked? Free. Radic. Biol. Med. 2010, 49, 1603–1616. [Google Scholar] [CrossRef] [Green Version]
- Ravipati, A.S.; Zhang, L.; Koyyalamudi, S.R.; Jeong, S.C.; Reddy, N.; Bartlett, J. Antioxidant and anti-inflammatory activities of selected Chinese medicinal plants and their relation with antioxidant content. BMC Complement. Altern. Med. 2012, 12, 173. [Google Scholar] [CrossRef] [Green Version]
- Vaou, N.; Stavropoulou, E.; Voidarou, C.; Tsigalou, C.; Bezirtzoglou, E. Towards Advances in Medicinal Plant Antimicrobial Activity: A Review Study on Challenges and Future Perspectives. Microorganisms 2021, 9, 2041. [Google Scholar] [CrossRef]
- Pandey, A.K.; Kumar, S. Perspective on Plant Products as Antimicrobials Agents: A Review. Pharmacologia 2013, 4, 469–480. [Google Scholar] [CrossRef] [Green Version]
- Piechocka, J.; Wieczorek, M.; Głowacki, R. Gas Chromatography–Mass Spectrometry Based Approach for the Determination of Methionine-Related Sulfur-Containing Compounds in Human Saliva. Int. J. Mol. Sci. 2020, 21, 9252. [Google Scholar] [CrossRef]
- Ashish, C.; Manish, K.G.; Priyanka, C. GC-MS Technique and its Analytical Applications in Science and Technology. J. Anal. Bioanal. Tech. 2014, 5, 1–5. [Google Scholar]
- Hamayun, K.A.J.S.; Mehwish, J.; Rabia, S.; Zahid, K.; Aftab, A.; Sher, Z.S. Imran, nutritional composition and antioxidant activities od selected edible plants. J. Food Biochem. 2015, 40, 61–70. [Google Scholar]
- Patel, S.B.; Attar, U.A.; Sakate, D.M.; Ghane, S.G. Efficient extraction of cucurbitacins from Diplocyclos palmatus (L.) C. Jeffrey: Optimization using response surface methodology, extraction methods and study of some important bioactivities. Sci. Rep. 2010, 10, 2109. [Google Scholar] [CrossRef] [Green Version]
- Sumbul, S.; Ahmad, M.A.; Asif, M.; Akhtar, M.; Saud, I. Physicochemical and phytochemical standardization of berries of Myrtus communis Linn. J. Pharm. Bioallied Sci. 2012, 4, 322–326. [Google Scholar]
- Available online: https://www.rcsb.org/3O8Y (accessed on 1 November 2022).
- URATE OXIDASE FROM ASPERGILLUS FLAVUS COMPLEXED WITH ITS INHIBITOR OXONIC ACID. Available online: https//www.rcsb.org/1R4U (accessed on 1 November 2022).
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [Green Version]
- Accelrys Software Inc. Discovery Studio Visualizer, 2; Accelrys Software Inc.: San Diego, CA, USA, 2005. [Google Scholar]
- CambridgeSoft. ChemDraw Ultra 12.0 0 (Copyright) 1986 to 2009; CambridgeSoft Corp.: Cambridge, MA, USA, 2009. [Google Scholar]
- CambridgeSoft. Chem 3D Pro 12.0 (Copyright) 1986 to 2009; CambridgeSoft Corp.: Cambridge, MA, USA, 2009. [Google Scholar]
- Ferreira, L.G.; Dos Santos, R.N.; Oliva, G.; Andricopulo, A.D. Molecular Docking and Structure-Based Drug Design Strategies. Molecules 2015, 20, 13384–13421. [Google Scholar] [CrossRef] [Green Version]
- Zentgraf, M.; Steuber, H.; Koch, C.; La Motta, C.; Sartini, S.; Sotriffer, C.A.; Klebe, G. How reliable are current docking approaches for structure-based drug design? Lessons from aldose reductase. Angew. Chem. Int. Ed. 2007, 46, 3575–3578. [Google Scholar] [CrossRef]
- Yusuf, D.; Davis, A.M.; Kleywegt, G.J.; Schmitt, S. An alternative method for the evaluation of docking performance: RSR vs. RMSD J. Chem. Inf. Model 2008, 48, 1411–1422. [Google Scholar] [CrossRef]
- Awah, F.M.; Uzoegwu, P.N.; Oyugi, J.O.; Rutherford, J.; Ifeonu, P.; Yao, X.J.; Fowke, K.R.; Eze, M.O. Free radical scavenging activity and immunomodulatory effect of Stachytarpheta angustifolia leaf extract. Food Chem. 2010, 119, 1409–1416. [Google Scholar] [CrossRef]
- Ruch, R.J.; Cheng, S.J.; Klaunig, J.E. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 1989, 10, 1003–1008. [Google Scholar] [CrossRef] [PubMed]
- Meriga, B.; Mopuri, R.; MuraliKrishna, T. Insecticidal, antimicrobial and antioxidant activities of bulb extracts of Allium sativum. Asian Pac. J. Trop. Biomed. 2012, 5, 391–395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jabeen, M.A.F.; Uzair, M.; Chaudhary, B.A.; Jillani, U.; Zafar, Z. Phytochemical screening and biological potential of Phyla nodiflora (Verbenaceae) and Pterospermum acerifolium (sterculiaceae). J. Pharm. Biol. 2015, 5, 230–234. [Google Scholar]
- Hanif, M.; Ameer, N.; Mahmood, M.K.; Shehzad, A.; Azeem, M.; Rana, H.L.; Usman, M. Improved anti-inflammatory effect of curcumin by designing self emulsifying drug delivery system. Drug Dev. Ind. Pharm. 2022, 47, 1432–1438. [Google Scholar] [CrossRef]
- Koche, D.; Shirsat, R.; Kawale MA HE, S.H. An overerview of major classes of phytochemicals: Their types and role in disease prevention. Hislopia J. 2016, 1, 0976–2124. [Google Scholar]
- Harborne, A.J. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysi; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1998; pp. 54–84. [Google Scholar]
- Khandelwal, K. Practical Pharmacognosy; Pragati Books Pvt. Ltd.: Nagpur, India, 1997; Volume 218. [Google Scholar]
- Jananie, R.K.; Priya, V.; Vijayalakshmi, K. Determination of bioactive components of Cynodon dactylon by GC-MS analysis. N. Y. Sci. J. 2011, 4, 16–20. [Google Scholar]
- Kumar, P.P.; Kumaravel, S.; Lalitha, C. Screening of antioxidant activity, total phenolics and GC-MS studies of Vitex negundo. Afr. J. Biochem. Res. 2010, 4, 191–195. [Google Scholar]
- Shalini, K.; Ilango, K.J.P.J. Preliminary phytochemical studies, GC-MS analysis and In-vitro antioxidant activity of selected medicinal plants and its polyherbal formulation. Pharmacogn. J. 2021, 13, 648–659. [Google Scholar] [CrossRef]
- Al-Marzoqi, A.H.; Hadi, M.Y.; Hameed, I.H. Determination of metabolities products by Cassia angustifolia and evaluate antimicrobial activity. J. Pharmacogn. Phytother. 2016, 19, 151–157. [Google Scholar]
- Vadivel, E.; Gopalakrishnan, S. GC-MS analysis of some bioactive constituents of Mussaenda frondosa Linn. Int. J. Pharm. Biol. Sci. 2014, 2, 312–320. [Google Scholar]
- Mujeeb, F.; Bajpai, P.; Pathak, N. Phytochemical evaluation, antimicrobial activity and determination of bioactive components from leaves of Aegle marmelos. Biomed. Res. Int. 2014, 2014, 497606. [Google Scholar] [CrossRef] [Green Version]
- Ingole, A.S.; Kadam, M.P.; Dalu, A.P.; Kute, S.M.; Mange, P.R.; Theng, V.D.; Lahane, O.R.; Nikas, A.P.; Kawal, Y.V.; Nagrik, S.U.; et al. A review of pharmacological activities of vanillic acid. J. Drug Deliv. Ther. 2021, 11, 200–204. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
Sr. No. | Phytochemical Tests | Observations | Reference | Results |
---|---|---|---|---|
1. | Flavonoids; NaOH test | Yellow color | [32] | ++ |
2. | Glycosides; Keller Killiani test | Brown color at interface | [32,33] | + |
3. | Triterpenoids; Salkowski test | At interface, reddish brown appeared | [32] | ++ |
4. | Steroids 1. Libermann test 2. Salkowski test | Red color | [33] | + |
5. | Phenols; Bromine water test | Discoloration of bromine water | [32] | +++ |
6. | Tannins; Ferric chloride test Hydrolysable tannins Condensed tannins | Greenish brown precipitate Bluish green precipitates | [32,33] | ++ ++ |
7. | Alkaloids
|
| [32] | − − |
8. | Saponins; Foam test | Foam persistence for 15 min indicates presence of saponins | [32] | +++ |
9. | Anthraquinones
| No cherry red color appearing indicates the absence of free and bound anthraquinones. | [32] | − − |
Compound Name | Mol. Formula | Mol. Wt. | Retention Time | %Area | Area Sum | NIST NO | MF % |
---|---|---|---|---|---|---|---|
Butyrolactone | C4H6O2 | 86 | 6.38 | 0.85 | 0.23 | 288,341 | 79.4 |
Dimethyl sulfone | C2H6O2S | 94 | 6.62 | 1 | 0.27 | 19,624 | 70.5 |
N-methylene-N-vinylamine | C3H5N | 55 | 7.75 | 5.39 | 1.44 | 60,636 | 81.2 |
Dimethyl trisulfide | C2H6S3 | 126 | 7.94 | 0.82 | 0.22 | 105,196 | 72.9 |
2,4-dihydroxy-2,5-dimethyl-3(2H)-furan-3-one | C6H8O4 | 144 | 8.28 | 2.39 | 0.64 | 281,424 | 77.8 |
4-(methylsulfanyl) butanenitrile | C5H9NS | 115 | 11.49 | 0.88 | 0.23 | 51,994 | 75.0 |
3,5-dihydroxy-6-methyl-2,3-dihydro-4H-pyran-4-one, | C6H8O4 | 144 | 13.39 | 14.35 | 3.83 | 156,511 | 80.7 |
3-benzoyl-2—tert-butyl-4-(1hydroxyethyl)-4-[2-(methylsulfanyl)ethyl]-1,3-oxazolidin-5-one, | C19H27NO4S | 365 | 14.61 | 6.75 | 1.8 | 189,268 | 70.2 |
9-Oxabicyclo [3,3,1]nonane-2,6-diol | C8H14O3 | 158 | 15.28 | 0.85 | 0.23 | 186,945 | 68.6 |
Pyrimidin-2,4-dione, 1,2,3,4-tetrahydro-5-methyl-1-[[2-hydroxymethyl-3-dimethylamino]tetrahydrofur-5-yl | C12H19N3O4 | 269 | 15.58 | 0.42 | 0.11 | 301,670 | 70.5 |
2-methoxy-4-vinylphenol | C9H10O2 | 150 | 18.12 | 7.81 | 2.08 | 135,956 | 88.8 |
2,4-dimethoxyphenol | C8H10O3 | 154 | 19.12 | 1.98 | 0.53 | 191,767 | 75.5 |
Iberin nitrile | C5H9NOS | 131 | 20.22 | 100 | 26.7 | 281,680 | 79.6 |
Methyl 4-(4-nitrophenoxy)butanoate | C11H13NO5 | 239 | 21.31 | 2.9 | 0.77 | 135,410 | 69.5 |
Sulfamic acid, 1,7-heptanediyl ester | C7H18N2O6S2 | 290 | 22.26 | 57.35 | 15.31 | 131,682 | 70.0 |
4-(2,4,4-trimethyl-cyclohexa-1,5-dienyl)-but-3-en-2-one | C13H18O | 190 | 22.40 | 0.81 | 0.22 | 187,519 | 75.4 |
3-tert-butyl-4-hydroxyanisole | C11H16O2 | 180 | 24.45 | 11.18 | 2.98 | 250,106 | 76.4 |
4-hydroxy-3-methoxy-benzoic acid, | C8H8O4 | 168 | 24.88 | 5.38 | 1.44 | 135,427 | 80.0 |
(d)-(+)-(2R,3R)-2,3-Dibenzoyltartaric acid | C18H14O8 | 358 | 26.61 | 57.64 | 15.39 | 233,173 | 81.6 |
E-2-Hexenyl benzoate | C13H16O2 | 204 | 27.28 | 0.89 | 0.24 | 131,718 | 71.2 |
Hexanoic acid, tridec-2-ynyl ester | C19H34O2 | 294 | 27.50 | 0.73 | 0.19 | 299,360 | 76.3 |
4-((1E)3-Hyrdoxy-1-propenyl)-2-methoxyphenol | C10H12O3 | 180 | 28.41 | 5.33 | 1.42 | 297,955 | 79.9 |
Hexadecanoic acid, methyl ester | C17H34O2 | 270 | 31.99 | 3.72 | 0.99 | 79,124 | 85.3 |
[1,1′-Bicyclopropyl]-2-octanoic acid, 2′-hexyl-, methyl ester | C21H38O2 | 322 | 32.39 | 2.12 | 0.57 | 35,865 | 81.1 |
E-2-hexenyl benzoate | C13H16O2 | 204 | 32.68 | 3.63 | 0.97 | 131,718 | 71.2 |
n-Hexadecanoic acid | C16H32O2 | 256 | 32.89 | 26.96 | 7.2 | 335,494 | 92.8 |
7,10-octadecadienoic acid, methyl ester | C19H34O2 | 294 | 35.59 | 5.53 | 1.48 | 35,764 | 73.6 |
9,12-octadecadienoyl chloride, (Z,Z)- | C18H31ClO | 298 | 35.74 | 5.22 | 1.39 | 76,312 | 83.0 |
9,12,15-Octadecatrienoic acid,(Z,Z,Z)- | C18H30O2 | 278 | 37.19 | 25.52 | 6.81 | 333,201 | 83.5 |
Octadecanoic acid | C18H36O2 | 284 | 37.76 | 2.35 | 0.63 | 334,866 | 80.3 |
Methyl 13-eicosenoate | C21H40O2 | 324 | 43.06 | 2.01 | 0.54 | 336,484 | 84.1 |
9,12-Octadecadienoic acid (Z,Z)-, 2-hydroxy-1-(hydroxymethyl)ethyl ester | C21H38O4 | 354 | 68.13 | 1.76 | 0.47 | 16,013 | 84.6 |
9,12,15-Octadecatrienoic of acid, 2,3-dihydroxypropyl ester, (Z,Z,Z)- | C21H36O4 | 352 | 68.28 | 2.48 | 0.66 | 15,957 | 83.4 |
Vitamin E | C29H50O2 | 430 | 73.55 | 1.71 | 0.46 | 151,382 | 73.3 |
β-Sitosterol | C29H50O | 414 | 75.40 | 5.86 | 1.57 | 287,034 | 83.7 |
Ligand | Docking Score with Antioxidant Protein (1R4U) | Docking Score with Lipoxygenase Protein (3O8Y) |
---|---|---|
A | −6.88 | −6.21 |
B | −6.18 | −6.41 |
C | −3.82 | −3.56 |
D | −6.52 | −1.19 |
E | −3.49 | −5.93 |
F | −4.39 | −4.96 |
G | −4.04 | −4.98 |
Conc. µg/mL | DPPH Free Radical Scavenging Effect | H2O2 Assay | Ferrous Reducing Power | |||
---|---|---|---|---|---|---|
Sample Solution | Standard (Ascorbic Acid) | Sample Solution | Standard (Ascorbic Acid) | Sample Solution | Standard (Ascorbic Acid) | |
200 | 42.61 ± 0.82 | 51.31 ± 0.83 | 39.01 ± 0.30 | 55.07 ± 0.28 | 38.29 ± 0.95 | 49.15 ± 0.62 |
400 | 55.30 ± 0.32 | 64.71 ± 0.59 | 53.85 ± 1.87 | 64.92 ± 0.40 | 51.42 ± 0.32 | 57.64 ± 0.35 |
600 | 66.17 ± 0.56 | 76.32 ± 0.98 | 62.34 ± 0.83 | 76.80 ± 1.1 | 64.06 ± 0.47 | 69.29 ± 0.36 |
800 | 75.34 ± 0.46 | 86.57 ± 0.57 | 72.55 ± 1.0 | 87.11 ± 0.78 | 73.94 ± 0.25 | 82.17 ± 0.35 |
1000 | 83.55 ± 0.89 | 91.18 ± 0.94 | 79.40 ± 1.17 | 91.96 ± 1.03 | 81.26 ± 0.36 | 92.04 ± 0.65 |
Paw Volume (mL) | Time | 200 mg/Kg | 300 mg/Kg | Diclofenac | Control |
---|---|---|---|---|---|
0 min30 min60 min120 min180 min240 min | 0.038 ± 0.0080.140 ± 0.0100.156 ± 0.0110.110 ± 0.0100.082 ± 0.0080.062 ± 0.008 | 0.056 ± 0.0080.148 ± 0.0080.138 ± 0.0080.100 ± 0.0100.078 ± 0.0080.050 ± 0.007 | 0.052 ± 0.0080.092 ± 0.0080.116 ± 0.0110.108 ± 0.0130.094 ± 0.0110.064 ± 0.008 | 0.048 ± 0.0080.154 ± 0.0100.164 ± 0.0110.154 ± 0.0180.144 ± 0.0150.134 ± 0.015 | |
% Inhibition of edema in paw volume | 71.47 ± 0.012 | 75.55 ± 0.011 | 70.27 ± 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jabeen, M.; Uzair, M.; Siddique, F.; Khan, M.S.; Hanif, M.; Salamatullah, A.M.; Nafidi, H.-A.; Bourhia, M. Exploring the Antioxidant and Anti-Inflammatory Potential of Wilckia maritima: In Vitro and In Silico Investigations. Processes 2023, 11, 1497. https://doi.org/10.3390/pr11051497
Jabeen M, Uzair M, Siddique F, Khan MS, Hanif M, Salamatullah AM, Nafidi H-A, Bourhia M. Exploring the Antioxidant and Anti-Inflammatory Potential of Wilckia maritima: In Vitro and In Silico Investigations. Processes. 2023; 11(5):1497. https://doi.org/10.3390/pr11051497
Chicago/Turabian StyleJabeen, Mehreen, Muhammad Uzair, Farhan Siddique, Muhammad Shoaib Khan, Muhammad Hanif, Ahmad Mohammad Salamatullah, Hiba-Allah Nafidi, and Mohammed Bourhia. 2023. "Exploring the Antioxidant and Anti-Inflammatory Potential of Wilckia maritima: In Vitro and In Silico Investigations" Processes 11, no. 5: 1497. https://doi.org/10.3390/pr11051497
APA StyleJabeen, M., Uzair, M., Siddique, F., Khan, M. S., Hanif, M., Salamatullah, A. M., Nafidi, H.-A., & Bourhia, M. (2023). Exploring the Antioxidant and Anti-Inflammatory Potential of Wilckia maritima: In Vitro and In Silico Investigations. Processes, 11(5), 1497. https://doi.org/10.3390/pr11051497