Abatement of Greenhouse Gas Emissions from Ventilation Air Methane (VAM) Using Ionic Liquids: A Review of Experimental Methods and Modelling Approaches
Abstract
:1. Introduction
2. Methods for CH4 Capture from VAM
2.1. Oxidation
2.2. Clathrate Hydrate Formation
2.3. Membrane
2.4. Adsorption
2.5. Solvent Absorption
3. Ionic Liquids
3.1. Constituent Ions
3.2. Ionic Liquid Media for CH4 Capture
3.3. Ionic Liquid Recycling in Absorption Processes
4. Common Experimental Approaches
Apparatus and Methods
5. Process Modelling
5.1. Thermodynamic Properties of Solvation
5.2. Henr’s Law
5.3. Thermodynamic Equation of State (EoS)
5.3.1. Extended Henry’s Law Model (Extended Pitzer’s Model)
5.3.2. The Peng–Robinson (PR) Equation of State
5.3.3. Krichevsky–Kasarnovsky (KK) Equation
5.4. Artificial Intelligence Approaches
6. Novel Approaches to Capture CH4 Using ILs
7. Conclusions
8. Medium and Long-Term Perspectives of VAM Abatement Using ILs
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
No. | IL | IUPAC Name | (gmol−1) | (K) | (bar) | (K) | |
---|---|---|---|---|---|---|---|
1 | [emim] [tsac] | 1-ethyl-3-methylimidazolium [2,2,2-trifluoro-n-(trifluoromethyl)sulfonyl]acetamide | 355.3 | 0.4981 | 1069.9 | 25.2 | 764.4 |
2.1 | [bmim] [TFES] | 1-butyl-3-methylimidazolium 1,1,2,2-tetrafluoroethanosulfonate | 320.3 | 0.4583 | 1030.5 | 25.7 | 729.4 |
2.2 | [C12mim] [TFES] | 1-dodecyl-3-methylimidazolium 1,1,2,2-tetrafluoroethanosulfonate | 432.5 | 0.8065 | 1171.0 | 15.6 | 912.5 |
2.3 | [emim] [TFES] | 1-ethyl-3-methylimidazolium 1,1,2,2-tetrafluoroethanosulfonate | 292.3 | 0.3743 | 998.2 | 30.4 | 683.7 |
2.4 | [hpmim] [TFES] | 1-hepthyl-3-methylimidazolium 1,1,2,2-tetrafluoroethanosulfonate | 362.4 | 0.5903 | 1080.8 | 20.7 | 798.1 |
3 | [bmim] [HFPS] | 1-butyl-3-methylimidazolium 1,1,2,3,3,3-hexafluoropropanesulfonate | 370.3 | 0.4933 | 1032.1 | 21.3 | 747.6 |
4 | [bmim] [TPES] | 1-butyl-3-methylimidazolium 1,1,2-trifluoro-2-(perfluoroethoxy)ethanesulfonate | 436.3 | 0.5488 | 1061.3 | 17.9 | 788.2 |
5 | [bmim] [TTES] | 1-butyl-3-methylimidazolium1,1,2-trifluoro-2-(trifluoromethoxy)ethanesulfonate | 386.3 | 0.5085 | 1058.3 | 20.9 | 770.0 |
6 | [bmim] [FS] | 1-butyl-3-methylimidazolium 2-(1,2,2,2-tetrafluoroethoxy)-1,1,2,2-tetrafluoroethanesulfonate | 436.3 | 0.5488 | 1061.3 | 17.9 | 788.2 |
7.1 | [bmim] [Ac] | 1-butyl-3-methylimidazolium acetate | 198.3 | 0.6681 | 847.3 | 24.5 | 624.6 |
7.2 | [emim] [Ac] | 1-ethyl-3-methylimidazolium acetate | 170.2 | 0.5889 | 807.1 | 29.2 | 578.8 |
8.1 | [emim] [BEI] | 1-ethyl-3-methylimidazolium bis(pentafluoroethylsulfonyl)imide | 491.3 | 0.2895 | 1231.4 | 21.9 | 853.1 |
8.2 | [bmim] [BEI] | 1-butyl-3-methylimidazolium bis(pentafluoroethylsulfonyl)imide | 519.4 | 0.3812 | 1257.1 | 19.5 | 898.8 |
9.1 | [beim] [Tf2N] | 1-butyl-3-ethylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 433.4 | 0.3444 | 1281.1 | 25.6 | 885.3 |
9.2 | [bmim] [Tf2N] | 1-butyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 419.4 | 0.3004 | 1269.9 | 27.6 | 862.4 |
9.3 | [deim] [Tf2N] | 1,3-diethylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 405.3 | 0.2575 | 1259.3 | 30.0 | 839.6 |
9.4 | [edmim] [Tf2N] | 1-ethyl-2,3-dimethylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 405.3 | 0.2794 | 1258.9 | 29.8 | 844.5 |
9.5 | [eDmim] [Tf2N] | 1-ethyl-3,5-dimethylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 405.3 | 0.2794 | 1258.9 | 29.8 | 844.5 |
9.6 | [emim] [Tf2N] | 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 391.3 | 0.2157 | 1249.3 | 32.7 | 816.7 |
9.7 | [hmim] [Tf2N] | 1-hexyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 447.4 | 0.3893 | 1292.8 | 23.9 | 908.2 |
9.8 | [ibmim] [Tf2N] | 1-isobutyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 419.4 | 0.2846 | 1275.2 | 27.9 | 862.0 |
9.9 | [mdeim] [Tf2N] | 5-methyl-1,3-diethylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 419.4 | 0.3226 | 1269.7 | 27.5 | 867.4 |
9.10 | [meim] [Tf2N] | 1-methyl-3-ethylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 391.3 | 0.2157 | 1249.3 | 32.7 | 816.7 |
9.11 | [moemim] [Tf2N] | 1-metoxyethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 421.3 | 0.2695 | 1285.2 | 29.1 | 862.0 |
9.12 | [omim] [Tf2N] | 1-octyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 475.5 | 0.4811 | 1317.8 | 21.0 | 954.0 |
9.13 | [prdmim] [Tf2N] | 1-propyl-2,3-dimethylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 419.4 | 0.3226 | 1269.7 | 27.5 | 867.4 |
9.14 | [C3(mim)2] [Tf2N]2 | 1,3-di(3-methylimidazolium)propane di-bis[(trifluoromethyl)sulfonyl]imide | 766.6 | 0.2458 | 2033.6 | 19.5 | 1410.9 |
9.15 | [C6(mim)2] [Tf2N]2 | 1,6-di(3-methylimidazolium)hexane di-bis[(trifluoromethyl)sulfonyl]imide | 808.7 | 0.3899 | 2037.2 | 16.9 | 1479.5 |
9.16 | [C9(mim)2] [Tf2N]2 | 1,9-di(3-methylimidazolium)nonane di-bis[(trifluoromethyl)sulfonyl]imide | 850.8 | 0.5354 | 2052.8 | 14.8 | 1548.2 |
9.17 | [C12(mim)2] [Tf2N]2 | 1,12-di(3-methylimidazolium)dodecane di-bis[(trifluoromethyl)sulfonyl]imide | 892.8 | 0.6748 | 2079.4 | 13.2 | 1616.8 |
9.18 | [C9(bim)2] [Tf2N]2 | 1,9-di(3-butylimidazolium)nonane di-bis[(trifluoromethyl)sulfonyl]imide | 934.9 | 0.7974 | 2079.4 | 11.9 | 1685.4 |
9.19 | [C9(m2im)2] [Tf2N]2 | 1,9-di(2,3-dimethylimidazolium)nonane di-bis[(trifluoromethyl)sulfonyl]imide | 878.8 | 0.7974 | 2069.1 | 13.6 | 1603.9 |
9.20 | [C12(benzim)2] [Tf2N]2 | 1,12-di(3-benzylimidazolium)dodecane di-bis[(trifluoromethyl)sulfonyl]imide | 1045.0 | 0.8928 | 2395.1 | 10.6 | 1944.7 |
9.21 | [dmprim] [Tf2N] | 1,2-dimethyl-3-propylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 419.4 | 0.3226 | 1269.7 | 27.5 | 867.4 |
9.22 | [dbim] [Tf2N] | 1,3-dibutylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 461.5 | 0.4349 | 1305.0 | 22.3 | 931.1 |
9.23 | [E1,3M4I] [Tf2N] | 1,3-diethyl-4-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 419.4 | 0.3226 | 1269.7 | 27.5 | 867.4 |
9.24 | [dmim] [Tf2N] | 1,3-dimethylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 377.3 | 0.1752 | 1239.9 | 35.8 | 793.8 |
9.25 | [C10mim] [Tf2N] | 1-decyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 503.5 | 0.5741 | 1345.1 | 18.7 | 999.7 |
9.26 | [hpmim] [Tf2N] | 1-heptyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 461.5 | 0.4349 | 1305.0 | 22.3 | 931.1 |
9.27 | [nmim] [Tf2N] | 1-nonyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 489.5 | 0.5276 | 1331.2 | 19.8 | 976.8 |
9.28 | [pmim] [Tf2N] | 1-pentyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 433.4 | 0.3444 | 1281.1 | 25.6 | 885.3 |
9.29 | [prmim] [Tf2N] | 1-propyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 405.3 | 0.2575 | 1259.3 | 30.0 | 839.6 |
9.30 | [dmeim] [Tf2N] | 1,2-dimethyl-3-ethylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 405.3 | 0.2794 | 1258.9 | 29.8 | 844.5 |
9.31 | [eomim] [Tf2N] | ethoxymethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 421.3 | 0.2695 | 1285.2 | 29.1 | 862.0 |
9.32 | [Ph(CH2)mim] [Tf2N] | 1-(1-phenylalkyl)-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 453.4 | 0.3037 | 1405.9 | 27.0 | 957.8 |
9.33 | [Ph(CH2)2mim] [Tf2N] | 1-(2-phenylalkyl)-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 467.4 | 0.3484 | 1414.8 | 25.1 | 980.6 |
9.34 | [Ph(CH2)3mim] [Tf2N] | 1-(3-phenylalkyl)-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 481.4 | 0.3939 | 1424.5 | 23.4 | 1003.5 |
9.35 | [bdmim] [Tf2N] | 1-butyl-2,3-dimethylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 433.4 | 0.3669 | 1281.1 | 25.5 | 890.3 |
9.36 | [C12mim] [Tf2N] | 1-dodecyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 531.6 | 0.6662 | 1374.6 | 16.8 | 1045.5 |
9.37 | [memim] [Tf2N] | 1-methyl-3-ethyl-4-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 405.3 | 0.2794 | 1258.9 | 29.8 | 844.5 |
9.38 | [hdmim] [Tf2N] | 1-hexyl-2,3-dimethylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 461.5 | 0.4578 | 1305.5 | 22.2 | 936.1 |
9.39 | [C2F3mim] [Tf2N] | 1-trifluoroethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide | 445.3 | 0.2338 | 1210.5 | 26.7 | 811.3 |
10.1 | [bmim] [Br] | 1-butyl-3-methylimidazolium bromide | 219.1 | 0.4891 | 834.9 | 29.8 | 586.8 |
10.2 | [pmim] [Br] | 1-pentyl-3-methylimidazolium bromide | 233.2 | 0.5292 | 854.2 | 27.2 | 609.6 |
10.3 | [C9(mim)2] [Br] | 1,9-di(3-methylimidazolium)nonane dibromide | 450.3 | 0.9068 | 1270.4 | 16.6 | 996.8 |
10.4 | [C12(mim)2] [Br] | 1,12-di(3-methylimidazolium)dodecane dibromide | 492.3 | 1.0089 | 1328.7 | 14.4 | 1065.4 |
10.5 | [C9(bim)2] [Br] | 1,9-di(3-butylimidazolium)nonane dibromide | 534.4 | 1.0752 | 1392.3 | 12.6 | 1134.1 |
11.1 | [bmim] [Cl] | 1-butyl-3-methylimidazolium chloride | 174.7 | 0.4914 | 789.0 | 27.8 | 558.0 |
11.2 | [hmim] [Cl] | 1-hexyl-3-methylimidazolium chloride | 202.7 | 0.5725 | 829.2 | 23.5 | 603.8 |
11.3 | [omim] [Cl] | 1-octyl-3-methylimidazolium chloride | 230.8 | 0.6566 | 869.4 | 20.3 | 649.6 |
11.4 | [Bemim] [Cl] | 1-benzyl-3-methylimidazolium chloride | 208.7 | 0.5145 | 921.3 | 28.4 | 653.4 |
11.5 | [C12mim] [Cl] | 1-dodecyl-3-methylimidazolium chloride | 286.9 | 0.8212 | 951.5 | 16.0 | 741.1 |
11.6 | [emim] [Cl] | 1-ethyl-3-methylimidazolium chloride | 146.6 | 0.4165 | 748.6 | 34.2 | 512.3 |
11.7 | [mmim] [Cl] | 1-methyl-3-methylimidazolium chloride | 132.6 | 0.3825 | 728.2 | 38.5 | 489.4 |
11.8 | [mim] [Cl] | 1-methylimidazolium chloride | 118.6 | 0.4158 | 677.8 | 48.1 | 450.5 |
11.9 | [ClBenmim] [Cl] | 1-p-chlorobenzyl-3-methylimidazolium chloride | 243.1 | 0.5521 | 969.6 | 26.8 | 695.8 |
11.10 | [FBenmim] [Cl] | 1-p-fluorobenzyl-3-methylimidazolium chloride | 226.7 | 0.5660 | 913.1 | 26.4 | 657.6 |
11.11 | [dbim] [Cl] | 1,3-dibutylimidazolium chloride | 216.8 | 0.6144 | 849.2 | 21.8 | 626.7 |
11.12 | [C5O2mim] [Cl] | 1-[2-(methoxyethoxy)-ethyl]-3-methylimidazolium chloride | 220.7 | 0.5707 | 863.6 | 24.8 | 625.8 |
11.13 | [moim] [Cl] | 1-methyl-3-octylimidazolium chloride | 230.8 | 0.6566 | 869.4 | 20.3 | 649.6 |
12.1 | [bmim] [DCA] | 1-butyl-3-methylimidazolium dicyanamide | 205.3 | 0.8419 | 1035.8 | 24.4 | 783.0 |
12.2 | [emim] [DCA] | 1-ethyl-3-methylimidazolium dicyanamide | 177.2 | 0.7661 | 999.0 | 29.1 | 737.2 |
12.3 | [omim] [DCA] | 1-octyl-3-methylimidazolium dicyanamide | 261.4 | 0.9908 | 1113.1 | 18.4 | 874.5 |
13 | [emim] [DEGlyMSO4] | 1-ethyl-3-methylimidazolium diethyleneglycol monomethylethersulfate | 310.4 | 0.5176 | 1162.9 | 28.1 | 826.2 |
14 | [dmim] [DMPO4] | 1,3-dimethylimidazolium dimethylphosphate | 222.2 | 0.5973 | 816.8 | 27.2 | 590.0 |
15.1 | [edmim] [EtSO4] | 1-ethyl-2,3-dimethylimidazolium ethylsulfate | 250.3 | 0.4341 | 1082.6 | 35.8 | 740.5 |
15.2 | [emim] [EtSO4] | 1-ethyl-3-methylimidazolium ethylsulfate | 236.3 | 0.3744 | 1067.5 | 40.5 | 712.7 |
16.1 | [omim] [PF6] | 1-octyl-3-methylimidazolium hexafluorophosphate | 340.3 | 0.9385 | 810.8 | 14.0 | 646.1 |
16.2 | [bmim] [PF6] | 1-butyl-3-methylimidazolium hexafluorophosphate | 284.2 | 0.7917 | 719.4 | 17.3 | 554.6 |
16.3 | [emim] [PF6] | 1-ethyl-3-methylimidazolium hexafluorophosphate | 256.1 | 0.7083 | 674.0 | 19.5 | 508.8 |
16.4 | [hmim] [PF6] | 1-hexyl-3-methylimidazolium hexafluorophosphate | 312.2 | 0.8697 | 764.9 | 15.5 | 600.3 |
16.5 | [bdmim] [PF6] | 1-butyl-2,3-dimethylimidazolium hexafluorophosphate | 298.2 | 0.8526 | 746.3 | 16.2 | 582.4 |
16.6 | [hpmim] [PF6] | 1-heptyl-3-methylimidazolium hexafluorophosphate | 326.3 | 0.9055 | 787.8 | 14.7 | 623.2 |
16.7 | [nmim] [PF6] | 1-nonyl-3-methylimidazolium hexafluorophosphate | 354.3 | 0.9680 | 834.1 | 13.4 | 669.0 |
16.8 | [oprim] [PF6] | 1-octyl-3-propylimidazolium hexafluorophosphate | 368.3 | 0.9937 | 857.6 | 12.8 | 691.9 |
16.9 | [pmim] [PF6] | 1-pentyl-3-methylimidazolium hexafluorophosphate | 298.2 | 0.8316 | 742.1 | 16.3 | 577.5 |
16.10 | [eommim] [PF6] | ethoxymethyl-3-methylimidazolium hexafluorophosphate | 286.2 | 0.8316 | 723.7 | 18.2 | 554.1 |
16.11 | [mommim] [PF6] | methyloxymethyl-3-methylimidazolium hexafluorophosphate | 272.1 | 0.7277 | 701.2 | 19.3 | 531.2 |
16.12 | [Ph(CH2)3mim] [PF6] | 1-(3-phenylalkyl)-3-methylimidazolium hexafluorophosphate | 346.3 | 0.8894 | 885.1 | 15.7 | 695.7 |
16.13 | [prmim] [PF6] | 1-propyl-3-methylimidazolium hexafluorophosphate | 270.2 | 0.7504 | 696.7 | 18.3 | 531.7 |
16.14 | [hemim][PF6] | 1-hexyl-3-ethylimidazolium hexafluorophosphate | 326.3 | 0.9055 | 787.8 | 14.7 | 623.2 |
16.15 | [odmim] [PF6] | 1-octyl-2,3-dimethylimidazolium hexafluorophosphate | 354.3 | 0.9680 | 834.1 | 13.4 | 669.0 |
16.16 | [C2OHmim] [PF6] | 1-(2-hidroxyethyl)-3-methylimidazolium hexafluorophosphate | 272.1 | 1.0367 | 766.9 | 20.2 | 601.0 |
16.17 | [C3Omim] [PF6] | 1-propoxymethyl-3-methylimidazolium hexafluorophosphate | 286.2 | 0.7697 | 723.7 | 18.2 | 554.1 |
16.18 | [C5O2mim] [PF6] | 1-[2-(methoxyethoxy)-ethyl]-3-methylimidazolium hexafluorophosphate | 330.2 | 0.8676 | 795.3 | 16.1 | 622.3 |
16.19 | [C12(mim)2] [PF6] | 1-[2-(methoxyethoxy)-ethyl]-3-methylimidazolium hexafluorophosphate | 622.5 | 0.8285 | 1219.8 | 8.5 | 1001.1 |
16.20 | [C9(bim)2] [PF6] | 1,9-di(3-butylimidazolium)nonane bis(hexafluorophosphate) | 664.5 | 0.6496 | 1318.6 | 7.9 | 1069.7 |
16.21 | [C12(benzim)2] [PF6] | 1,12-di(3-benzylimidazolium)dodecane bis(hexafluorophosphate) | 774.7 | 0.4407 | 1671.1 | 7.4 | 1329.0 |
16.22 | [moim] [PF6] | 1-methyl-3-octylimidazolium hexafluorophosphate | 340.3 | 0.9385 | 810.8 | 14.0 | 646.1 |
17.1 | [bdmim] [BF4] | 1-butyl-2,3-dimethylimidazolium tetrafluoroborate | 240.1 | 0.9476 | 523.1 | 18.9 | 523.1 |
17.2 | [C10mim] [BF4] | 1-decyl-3-methylimidazolium tetrafluoroborate | 310.2 | 1.0818 | 632.5 | 14.5 | 632.5 |
17.3 | [moemim] [BF4] | ethyloxymethyl-3-methylimidazolium tetrafluoroborate | 228.0 | 0.8692 | 494.8 | 21.7 | 494.8 |
17.4 | [prmim] [BF4] | 1-propyl-3-methylimidazolium tetrafluoroborate | 212.0 | 0.8485 | 472.3 | 21.9 | 472.3 |
17.5 | [mommim] [BF4] | methyloxymethyl-3-methylimidazolium tetrafluoroborate | 214.0 | 0.8296 | 471.9 | 23.3 | 471.9 |
17.6 | [DEME] [BF4] | N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium tetrafluoroborate | 233.1 | 0.9465 | 393.5 | 17.1 | 393.5 |
17.7 | [bmim] [BF4] | 1-butyl-3-methilimidazolium tetrafluoroborate | 226.0 | 0.8877 | 495.2 | 20.4 | 495.2 |
17.8 | [emim] [BF4] | 1-ethyl-3-methylimidazolium tetrafluoroborate | 198.0 | 0.8087 | 449.5 | 23.6 | 449.5 |
17.9 | [hmim] [BF4] | 1-hexyl-3-methylimidazolium tetrafluoroborate | 254.1 | 0.9625 | 690.0 | 17.9 | 541.0 |
17.10 | [omim] [BF4] | 1-octyl-3-methylimidazolium tetrafluoroborate | 282.1 | 1.0287 | 737.0 | 16.0 | 586.7 |
17.11 | [moim] [BF4] | 1-methyl-3-octylimidazolium tetrafluoroborate | 282.1 | 1.0287 | 737.0 | 16.0 | 586.7 |
17.12 | [C2OHmim] [BF4] | 1-(2-hidroxyethyl)-3-methylimidazolium tetrafluoroborate | 214.0 | 1.1643 | 691.9 | 24.7 | 541.6 |
17.13 | [C3Omim] [BF4] | 1-propoxymethyl-3-methylimidazolium tetrafluoroborate | 228.0 | 0.8692 | 647.0 | 21.7 | 494.8 |
17.14 | [C5O2mim] [BF4] | 1-[2-(methoxyethoxy)-ethyl]-3-methylimidazolium tetrafluoroborate | 272.1 | 0.9644 | 720.2 | 18.8 | 562.9 |
17.15 | [C12(mim)2] [BF4] | 1,12-di(3-methylimidazolium)dodecane bis(tetrafluoroborate) | 506.1 | 0.9804 | 1074.4 | 10.1 | 882.4 |
17.16 | [C9(bim)2] [BF4] | 1,9-di(3-butylimidazolium)nonane bis(tetrafluoroborate) | 548.2 | 0.7841 | 1170.9 | 9.1 | 951.0 |
18.1 | [bmim] [HSO4] | 1-propyl-3-methylimidazolium hexafluorophosphate | 236.3 | 0.7034 | 1103.8 | 43.4 | 782.4 |
18.2 | [emim] [HSO4] | 1-ethyl-3-methylimidazolium hydrogensulfate | 208.2 | 0.6411 | 1073.8 | 57.6 | 736.7 |
18.3 | [mim] [HSO4] | 1-methylimidazolium hydrogensulfate | 180.2 | 0.6707 | 1012.7 | 91.9 | 674.9 |
19 | [bmim] [I] | 1-butyl-3-methylimidazolium iodide | 266.1 | 0.4835 | 871.2 | 28.6 | 613.7 |
20.1 | [bmim] [mesy] | 1-butyl-3-methylimidazolium methanesulfonate | 234.3 | 0.3990 | 1054.8 | 37.4 | 713.1 |
20.2 | [emim] [mesy] | 1-ethyl-3-methylimidazolium methanesulfonate | 206.3 | 0.3307 | 1026.0 | 48.1 | 667.4 |
21 | [dmim] [MOESO4] | 1,3-dimethylimidazolium methoxyethylsulfate | 252.3 | 0.3855 | 1094.4 | 38.9 | 735.1 |
22.1 | [dmim] [MeSO4] | 1,3-dimethylimidazolium methylsulfate | 208.2 | 0.3086 | 1040.0 | 52.9 | 666.9 |
22.2 | [bmim] [MeSO4] | 1-butyl-3-methylimidazolium methylsulfate | 250.3 | 0.4111 | 1081.6 | 36.1 | 735.6 |
23 | [bmim] [C8S] | 1-butyl-3-methylimidazolium octylsulfate | 348.5 | 0.7042 | 1189.8 | 20.2 | 895.7 |
24 | [bmim] [tca] | 1-butyl-3-methylimidazolium thiocyanate | 197.3 | 0.4781 | 1047.4 | 19.4 | 763.1 |
25 | [emim] [SCN] | 1-ethyl-3-methylimidazolium thiocyanate | 169.3 | 0.3931 | 1013.6 | 22.3 | 717.3 |
26 | [bmim] [TMEM] | 1-butyl-3-methilimidazolium tris(trifluoromethylsulfonyl)methide | 550.4 | 0.1322 | 1571.4 | 24.0 | 1034.4 |
27.1 | [emim] [ta] | 1-ethyl-3-methylimidazolium trifluoroacetate | 224.2 | 0.6051 | 785.3 | 24.3 | 573.4 |
27.2 | [beim] [ta] | 1-butyl-3-ethylimidazolium trifluoroacetate | 266.3 | 0.7312 | 847.6 | 19.6 | 642.0 |
27.3 | [bmim] [ta] | 1-butyl-3-methylimidazolium trifluoroacetate | 252.2 | 0.6891 | 826.8 | 20.9 | 619.2 |
27.4 | [deim] [ta] | diethylimidazolium trifluoroacetate | 238.2 | 0.6469 | 806.1 | 22.5 | 596.3 |
28 | [bmim] [NO3] | 1-butyl-3-methilimidazolium nitrate | 201.2 | 0.6436 | 954.8 | 27.3 | 694.9 |
29.1 | [bmim] [NfO] | 1-butyl-3-methylimidazolium nonafluorobutanesulfonate | 438.3 | 0.5150 | 1028.8 | 17.3 | 762.3 |
29.2 | [omim] [NfO] | 1-octyl-3-methylimidazolium nonafluorobutanesulfonate | 494.4 | 0.6926 | 1103.0 | 14.2 | 853.8 |
29.3 | [beim] [NfO] | 1-butyl-3-ethylimidazolium nonafluorobutanesulfonate | 452.3 | 0.5605 | 1046.9 | 16.4 | 785.2 |
29.4 | [emim] [NfO] | 1-ethyl-3-methylimidazolium nonafluorobutanesulfonate | 410.3 | 0.5605 | 993.4 | 19.4 | 716.5 |
30.1 | [mopmi] [TfO] | 1-(4-methoxyphenyl)-3-methylimidazolium trifluoromethanesulfonate | 338.3 | 0.4481 | 1184.7 | 28.0 | 830.4 |
30.2 | [dbim] [TfO] | 1,3-dibutylimidazolium trifluoromethanesulfonate | 330.4 | 0.5325 | 1072.0 | 23.2 | 776.4 |
30.3 | [Bemim] [TfO] | 1-benzyl-3-methylimidazolium trifluoromethanesulfonate | 322.3 | 0.4118 | 1158.0 | 29.0 | 803.0 |
30.4 | [omim] [TfO] | 1-octyl-3-methylimidazolium trifluoromethanesulfonate | 344.4 | 0.5766 | 1088.7 | 21.6 | 799.2 |
30.5 | [beim] [TfO] | 1-butyl-3-ethylimidazolium trifluoromethanesulfonate | 302.3 | 0.4463 | 1039.5 | 27.0 | 730.6 |
30.6 | [bmim] [TfO] | 1-butyl-3-methylimidazolium trifluoromethanesulfonate | 288.3 | 0.4046 | 1023.5 | 29.5 | 707.7 |
30.7 | [deim] [TfO] | 1,3-diethylimidazolium trifluoromethanesulfonate | 274.3 | 0.3643 | 1007.8 | 32.4 | 684.8 |
30.8 | [C12eim] [TfO] | 1-dodecyl-3-ethylimidazolium trifluoromethanesolfonate | 414.5 | 0.7935 | 1177.2 | 16.1 | 913.6 |
30. | [edmim] [TfO] | 1-ethyl-3,5-dimethylimidazolium trifluoromethanesolfonate | 274.3 | 0.3869 | 1177.2 | 32.1 | 689.8 |
30. | [emim] [TfO] | 1-ethyl-3-methylimidazolium trifluoromethanesulfonate | 260.2 | 0.3255 | 992.3 | 35.8 | 662.0 |
References
- Wang, W.; Ren, J.; Li, X.; Li, H.; Li, D.; Li, H.; Song, Y. Enrichment experiment of ventilation air methane (0.5%) by the mechanical tower. Sci. Rep. 2020, 10, 7276. [Google Scholar] [CrossRef] [PubMed]
- Whiting, G.J.; Chanton, J.P. Greenhouse carbon balance of wetlands: Methane emission versus carbon sequestration. Tellus B 2001, 53, 521–528. [Google Scholar] [CrossRef]
- Karakurt, I.; Aydin, G.; Aydiner, K. Mine ventilation air methane as a sustainable energy source. Renew. Sustain. Energy Rev. 2011, 15, 1042–1049. [Google Scholar] [CrossRef]
- Kim, J.; Maiti, A.; Lin, L.-C.; Stolaroff, J.K.; Smit, B.; Aines, R.D. New materials for methane capture from dilute and medium-concentration sources. Nat. Commun. 2013, 4, 1694. [Google Scholar] [CrossRef] [PubMed]
- Somers, J.; Schultz, H. Thermal oxidation of coal mine ventilation air methane. In Proceedings of the 12th US/North American Mine Ventilation Symposium, Sparks, NV, USA, 9–11 June 2008. [Google Scholar]
- Somers, J. Ventilation Air Methane (VAM) Utilization Technologies; US EPA Coalbed Methane Outreach Program, Technical Options Series; United States Environmental Protection Agency: Washington, DC, USA, 2009. [Google Scholar]
- Setiawan, A.; Kennedy, E.M.; Stockenhuber, M. Development of Combustion Technology for Methane Emitted from Coal-Mine Ventilation Air Systems. Energy Technol. 2017, 5, 521–538. [Google Scholar] [CrossRef]
- Su, S.; Chen, H.; Teakle, P.; Xue, S. Characteristics of coal mine ventilation air flows. J. Environ. Manag. 2008, 86, 44–62. [Google Scholar] [CrossRef] [PubMed]
- Monai, M.; Montini, T.; Gorte, R.J.; Fornasiero, P. Catalytic oxidation of methane: Pd and beyond. Eur. J. Inorg. Chem. 2018, 2018, 2884–2893. [Google Scholar] [CrossRef]
- Epling, W.S.; Hoflund, G.B. Catalytic oxidation of methane over ZrO2-supported Pd catalysts. J. Catal. 1999, 182, 5–12. [Google Scholar] [CrossRef]
- Jiang, H.; Chen, Y.; Jiang, P.; Zhang, C.; Smith, T.J.; Murrell, J.C.; Xing, X.-H. Methanotrophs: Multifunctional bacteria with promising applications in environmental bioengineering. Biochem. Eng. J. 2010, 49, 277–288. [Google Scholar] [CrossRef]
- Du, J.; Li, H.; Wang, L. Phase equilibria and methane enrichment of clathrate hydrates of mine ventilation air+ tetrabutylphosphonium bromide. Ind. Eng. Chem. Res. 2014, 53, 8182–8187. [Google Scholar] [CrossRef]
- Gambelli, A.M.; Stornelli, G.; Di Schino, A.; Rossi, F. Methane and carbon dioxide hydrates properties in presence of Inconel 718 particles: Analyses on its potential application in gas separation processes to perform efficiency improvement. J. Environ. Chem. Eng. 2021, 9, 106571. [Google Scholar] [CrossRef]
- Liu, G.; Zhu, L.; Cao, W.; Liu, H.; He, Y. New technique integrating hydrate-based gas separation and chemical absorption for the sweetening of natural gas with high H2S and CO2 contents. ACS Omega 2021, 6, 26180–26190. [Google Scholar] [CrossRef]
- Kamata, Y.; Oyama, H.; Shimada, W.; Ebinuma, T.; Takeya, S.; Uchida, T.; Nagao, J.; Narita, H. Gas separation method using tetra-n-butyl ammonium bromide semi-clathrate hydrate. Jpn. J. Appl. Phys. 2004, 43, 362. [Google Scholar] [CrossRef]
- Carvalho, P.J.; Coutinho, J.A. The polarity effect upon the methane solubility in ionic liquids: A contribution for the design of ionic liquids for enhanced CO2/CH4 and H2S/CH4 selectivities. Energy Environ. Sci. 2011, 4, 4614–4619. [Google Scholar] [CrossRef]
- Hojniak, S.D.; Khan, A.L.; Holloczki, O.; Kirchner, B.; Vankelecom, I.F.; Dehaen, W.; Binnemans, K. Separation of carbon dioxide from nitrogen or methane by supported ionic liquid membranes (SILMs): Influence of the cation charge of the ionic liquid. J. Phys. Chem. B 2013, 117, 15131–15140. [Google Scholar] [CrossRef]
- Alonso, A.; Moral-Vico, J.; Markeb, A.A.; Busquets-Fité, M.; Komilis, D.; Puntes, V.; Sánchez, A.; Font, X. Critical review of existing nanomaterial adsorbents to capture carbon dioxide and methane. Sci. Total Environ. 2017, 595, 51–62. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Chen, L.; Liu, G.; Yuan, Z.-Y.; Li, B.-F.; Zhang, X.; Wei, J.-Q. Porous metal–organic frameworks for methane storage and capture: Status and challenges. New Carbon Mater. 2021, 36, 468–496. (In Chinese) [Google Scholar] [CrossRef]
- Makal, T.A.; Li, J.-R.; Lu, W.; Zhou, H.-C. Methane storage in advanced porous materials. Chem. Soc. Rev. 2012, 41, 7761–7779. [Google Scholar] [CrossRef] [PubMed]
- Ramdin, M.; Amplianitis, A.; Bazhenov, S.; Volkov, A.; Volkov, V.; Vlugt, T.J.; de Loos, T.W. Solubility of CO2 and CH4 in ionic liquids: Ideal CO2/CH4 selectivity. Ind. Eng. Chem. Res. 2014, 53, 15427–15435. [Google Scholar] [CrossRef]
- Ramdin, M.; Chen, Q.; Balaji, S.P.; Vicent-Luna, J.M.; Torres-Knoop, A.; Dubbeldam, D.; Calero, S.; de Loos, T.W.; Vlugt, T.J. Solubilities of CO2, CH4, C2H6, and SO2 in ionic liquids and Selexol from Monte Carlo simulations. J. Comput. Sci. 2016, 15, 74–80. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, X.; Yang, Q.; Zhang, Z.; Ren, Q.; Xing, H. Long-chain carboxylate ionic liquids combining high solubility and low viscosity for light hydrocarbon separations. Ind. Eng. Chem. Res. 2017, 56, 7336–7344. [Google Scholar] [CrossRef]
- Mirzaei, M.; Mokhtarani, B.; Badiei, A.; Sharifi, A. Solubility of carbon dioxide and methane in 1-hexyl-3-methylimidazolium nitrate ionic liquid, experimental and thermodynamic modeling. J. Chem. Thermodyn. 2018, 122, 31–37. [Google Scholar] [CrossRef]
- Shamsuri, A.A. Ionic liquids: Preparations and limitations. Makara J. Sci. 2011, 14, 102–106. [Google Scholar] [CrossRef]
- Kaur, G.; Kumar, H.; Singla, M. Diverse applications of ionic liquids: A comprehensive review. J. Mol. Liq. 2022, 351, 118556. [Google Scholar] [CrossRef]
- Welton, T. Ionic liquids: A brief history. Biophys. Rev. 2018, 10, 691–706. [Google Scholar] [CrossRef]
- Ghandi, K. A review of ionic liquids, their limits and applications. Green Sustain. Chem. 2014, 4, 44–53. [Google Scholar] [CrossRef]
- Long, Z.; Zhou, X.; Shen, X.; Li, D.; Liang, D. Phase equilibria and dissociation enthalpies of methane hydrate in imidazolium ionic liquid aqueous solutions. Ind. Eng. Chem. Res. 2015, 54, 11701–11708. [Google Scholar] [CrossRef]
- Maiti, A.; Kumar, A.; Rogers, R.D. Water-clustering in hygroscopic ionic liquids—An implicit solvent analysis. Phys. Chem. Chem. Phys. 2012, 14, 5139–5146. [Google Scholar] [CrossRef]
- Hawker, R.R.; Haines, R.S.; Harper, J.B. Variation of the cation of ionic liquids: The effects on their physicochemical properties and reaction outcome. Targets Heterocycl. Syst. Prop 2015, 18, 141–213. [Google Scholar] [CrossRef]
- Anderson, J.L.; Dixon, J.K.; Brennecke, J.F. Solubility of CO2, CH4, C2H6, C2H4, O2, and N2 in 1-Hexyl-3-methylpyridinium Bis (trifluoromethylsulfonyl) imide: Comparison to Other Ionic Liquids. Acc. Chem. Res. 2007, 40, 1208–1216. [Google Scholar] [CrossRef]
- Treder, N.; Bączek, T.; Wychodnik, K.; Rogowska, J.; Wolska, L.; Plenis, A. The influence of ionic liquids on the effectiveness of analytical methods used in the monitoring of human and veterinary pharmaceuticals in biological and environmental samples—Trends and perspectives. Molecules 2020, 25, 286. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.K.; Savoy, A.W. Ionic liquids synthesis and applications: An overview. J. Mol. Liq. 2020, 297, 112038. [Google Scholar] [CrossRef]
- Karadas, F.; Atilhan, M.; Aparicio, S. Review on the use of ionic liquids (ILs) as alternative fluids for CO2 capture and natural gas sweetening. Energy Fuels 2010, 24, 5817–5828. [Google Scholar] [CrossRef]
- Raeissi, S.; Peters, C. High pressure phase behaviour of methane in 1-butyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide. Fluid Phase Equilibria 2010, 294, 67–71. [Google Scholar] [CrossRef]
- Jacquemin, J.; Gomes, M.F.C.; Husson, P.; Majer, V. Solubility of carbon dioxide, ethane, methane, oxygen, nitrogen, hydrogen, argon, and carbon monoxide in 1-butyl-3-methylimidazolium tetrafluoroborate between temperatures 283 K and 343 K and at pressures close to atmospheric. J. Chem. Thermodyn. 2006, 38, 490–502. [Google Scholar] [CrossRef]
- Lei, Z.; Chen, B.; Li, C.; Liu, H. Predictive molecular thermodynamic models for liquid solvents, solid salts, polymers, and ionic liquids. Chem. Rev. 2008, 108, 1419–1455. [Google Scholar] [CrossRef]
- Finotello, A.; Bara, J.E.; Camper, D.; Noble, R.D. Room-temperature ionic liquids: Temperature dependence of gas solubility selectivity. Ind. Eng. Chem. Res. 2008, 47, 3453–3459. [Google Scholar] [CrossRef]
- Chen, Y.; Mutelet, F.; Jaubert, J.-N. Solubility of carbon dioxide, nitrous oxide and methane in ionic liquids at pressures close to atmospheric. Fluid Phase Equilibria 2014, 372, 26–33. [Google Scholar] [CrossRef]
- Bermejo, M.D.; Fieback, T.M.; Martín, Á. Solubility of gases in 1-alkyl-3methylimidazolium alkyl sulfate ionic liquids: Experimental determination and modeling. J. Chem. Thermodyn. 2013, 58, 237–244. [Google Scholar] [CrossRef]
- Althuluth, M.; Kroon, M.C.; Peters, C.J. Solubility of methane in the ionic liquid 1-ethyl-3-methylimidazolium tris (pentafluoroethyl) trifluorophosphate. Ind. Eng. Chem. Res. 2012, 51, 16709–16712. [Google Scholar] [CrossRef]
- Jacquemin, J.; Husson, P.; Majer, V.; Gomes, M.F.C. Low-pressure solubilities and thermodynamics of solvation of eight gases in 1-butyl-3-methylimidazolium hexafluorophosphate. Fluid Phase Equilibria 2006, 240, 87–95. [Google Scholar] [CrossRef]
- Kumełan, J.; Pérez-Salado Kamps, Á.; Tuma, D.; Maurer, G. Solubility of the single gases methane and xenon in the ionic liquid [bmim][CH3SO4]. J. Chem. Eng. Data 2007, 52, 2319–2324. [Google Scholar] [CrossRef]
- Hert, D.G.; Anderson, J.L.; Aki, S.N.; Brennecke, J.F. Enhancement of oxygen and methane solubility in 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide using carbon dioxide. Chem. Commun. 2005, 20, 2603–2605. [Google Scholar]
- Althuluth, M.; Kroon, M.C.; Peters, C.J. High pressure solubility of methane in the ionic liquid 1-hexyl-3-methylimidazolium tricyanomethanide. J. Supercrit. Fluids 2017, 128, 145–148. [Google Scholar] [CrossRef]
- Liu, X.; Afzal, W.; Yu, G.; He, M.; Prausnitz, J.M. High solubilities of small hydrocarbons in trihexyl tetradecylphosphonium bis (2, 4, 4-trimethylpentyl) phosphinate. J. Phys. Chem. B 2013, 117, 10534–10539. [Google Scholar] [CrossRef] [PubMed]
- Yuan, X.; Zhang, S.; Chen, Y.; Lu, X.; Dai, W.; Mori, R. Solubilities of gases in 1, 1, 3, 3-tetramethylguanidium lactate at elevated pressures. J. Chem. Eng. Data 2006, 51, 645–647. [Google Scholar] [CrossRef]
- Oliveira, L.M.; Ribeiro, F.R.; Alcantara, M.L.; Pisoni, G.O.; Cabral, V.F.; Cardozo-Filho, L.; Mattedi, S. High pressure vapor-liquid equilibria for binary methane and protic ionic liquid based on propionate anions. Fluid Phase Equilibria 2016, 426, 65–74. [Google Scholar] [CrossRef]
- Alcantara, M.L.; Ferreira, P.I.; Pisoni, G.O.; Silva, A.K.; Cardozo-Filho, L.; Lião, L.M.; Pires, C.A.; Mattedi, S. High pressure vapor-liquid equilibria for binary protic ionic liquids+ methane or carbon dioxide. Sep. Purif. Technol. 2018, 196, 32–40. [Google Scholar] [CrossRef]
- Cadena, C.; Anthony, J.L.; Shah, J.K.; Morrow, T.I.; Brennecke, J.F.; Maginn, E.J. Why is CO2 so soluble in imidazolium-based ionic liquids? J. Am. Chem. Soc. 2004, 126, 5300–5308. [Google Scholar] [CrossRef]
- Bates, E.D.; Mayton, R.D.; Ntai, I.; Davis, J.H. CO2 capture by a task-specific ionic liquid. J. Am. Chem. Soc. 2002, 124, 926–927. [Google Scholar] [CrossRef]
- Anthony, J.L.; Maginn, E.J.; Brennecke, J.F. Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. J. Phys. Chem. B 2002, 106, 7315–7320. [Google Scholar] [CrossRef]
- Anthony, J.L.; Anderson, J.L.; Maginn, E.J.; Brennecke, J.F. Anion effects on gas solubility in ionic liquids. J. Phys. Chem. B 2005, 109, 6366–6374. [Google Scholar] [CrossRef] [PubMed]
- Baltus, R.E.; Culbertson, B.H.; Dai, S.; Luo, H.; DePaoli, D.W. Low-pressure solubility of carbon dioxide in room-temperature ionic liquids measured with a quartz crystal microbalance. J. Phys. Chem. B 2004, 108, 721–727. [Google Scholar] [CrossRef]
- Baltus, R.E.; Counce, R.M.; Culbertson, B.H.; Luo, H.; DePaoli, D.W.; Dai, S.; Duckworth, D.C. Examination of the potential of ionic liquids for gas separations. Sep. Sci. Technol. 2005, 40, 525–541. [Google Scholar] [CrossRef]
- Cammarata, L.; Kazarian, S.; Salter, P.; Welton, T. Molecular states of water in room temperature ionic liquids. Phys. Chem. Chem. Phys. 2001, 3, 5192–5200. [Google Scholar] [CrossRef]
- Camper, D.; Scovazzo, P.; Koval, C.; Noble, R. Gas solubilities in room-temperature ionic liquids. Ind. Eng. Chem. Res. 2004, 43, 3049–3054. [Google Scholar] [CrossRef]
- Gomes, M.C.; Padua, A.A. Gas–liquid interactions in solution. Pure Appl. Chem. 2005, 77, 653–665. [Google Scholar] [CrossRef]
- Husson-Borg, P.; Majer, V.; Costa Gomes, M.F. Solubilities of oxygen and carbon dioxide in butyl methyl imidazolium tetrafluoroborate as a function of temperature and at pressures close to atmospheric pressure. J. Chem. Eng. Data 2003, 48, 480–485. [Google Scholar] [CrossRef]
- Muldoon, M.J.; Aki, S.N.; Anderson, J.L.; Dixon, J.K.; Brennecke, J.F. Improving carbon dioxide solubility in ionic liquids. J. Phys. Chem. B 2007, 111, 9001–9009. [Google Scholar] [CrossRef] [PubMed]
- Scovazzo, P.; Camper, D.; Kieft, J.; Poshusta, J.; Koval, C.; Noble, R. Regular solution theory and CO2 gas solubility in room-temperature ionic liquids. Ind. Eng. Chem. Res. 2004, 43, 6855–6860. [Google Scholar] [CrossRef]
- Shiflett, M.B.; Yokozeki, A. Solubilities and diffusivities of carbon dioxide in ionic liquids:[bmim][PF6] and [bmim][BF4]. Ind. Eng. Chem. Res. 2005, 44, 4453–4464. [Google Scholar] [CrossRef]
- Shariati, A.; Gutkowski, K.; Peters, C.J. Comparison of the phase behavior of some selected binary systems with ionic liquids. AIChE J. 2005, 51, 1532–1540. [Google Scholar] [CrossRef]
- Scovazzo, P.; Kieft, J.; Finan, D.A.; Koval, C.; DuBois, D.; Noble, R. Gas separations using non-hexafluorophosphate [PF6]− anion supported ionic liquid membranes. J. Membr. Sci. 2004, 238, 57–63. [Google Scholar] [CrossRef]
- Ramdin, M.; Balaji, S.P.; Vicent-Luna, J.M.; Gutiérrez-Sevillano, J.J.; Calero, S.; de Loos, T.W.; Vlugt, T.J. Solubility of the precombustion gases CO2, CH4, CO, H2, N2, and H2S in the ionic liquid [bmim][Tf2N] from Monte Carlo simulations. J. Phys. Chem. C 2014, 118, 23599–23604. [Google Scholar] [CrossRef]
- Zubeir, L.F.; Lacroix, M.H.; Meuldijk, J.; Kroon, M.C.; Kiss, A.A. Novel pressure and temperature swing processes for CO2 capture using low viscosity ionic liquids. Sep. Purif. Technol. 2018, 204, 314–327. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, Y.; Lu, X.; Ji, X. Energy consumption analysis for CO2 separation using imidazolium-based ionic liquids. Appl. Energy 2014, 136, 325–335. [Google Scholar] [CrossRef]
- Zareiekordshouli, F.; Lashanizadehgan, A.; Darvishi, P. Study on the use of an imidazolium-based acetate ionic liquid for CO2 capture from flue gas in absorber/stripper packed columns: Experimental and modeling. Int. J. Greenh. Gas Control 2018, 70, 178–192. [Google Scholar] [CrossRef]
- Ramdin, M.; de Loos, T.W.; Vlugt, T.J. State-of-the-art of CO2 capture with ionic liquids. Ind. Eng. Chem. Res. 2012, 51, 8149–8177. [Google Scholar] [CrossRef]
- Kumełan, J.; Pérez-Salado Kamps, Á.; Tuma, D.; Maurer, G. Solubility of the single gases methane and xenon in the ionic liquid [hmim][Tf2N]. Ind. Eng. Chem. Res. 2007, 46, 8236–8240. [Google Scholar] [CrossRef]
- Pérez-Salado Kamps, Á.; Tuma, D.; Xia, J.; Maurer, G. Solubility of CO2 in the ionic liquid [bmim][PF6]. J. Chem. Eng. Data 2003, 48, 746–749. [Google Scholar] [CrossRef]
- Jalili, A.H.; Safavi, M.; Ghotbi, C.; Mehdizadeh, A.; Hosseini-Jenab, M.; Taghikhani, V. Solubility of CO2, H2S, and their mixture in the ionic liquid 1-octyl-3-methylimidazolium bis (trifluoromethyl) sulfonylimide. J. Phys. Chem. B 2012, 116, 2758–2774. [Google Scholar] [CrossRef] [PubMed]
- Jalili, A.H.; Shokouhi, M.; Maurer, G.; Hosseini-Jenab, M. Solubility of CO2 and H2S in the ionic liquid 1-ethyl-3-methylimidazolium tris (pentafluoroethyl) trifluorophosphate. J. Chem. Thermodyn. 2013, 67, 55–62. [Google Scholar] [CrossRef]
- Safavi, M.; Ghotbi, C.; Taghikhani, V.; Jalili, A.H.; Mehdizadeh, A. Study of the solubility of CO2, H2S and their mixture in the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate: Experimental and modelling. J. Chem. Thermodyn. 2013, 65, 220–232. [Google Scholar] [CrossRef]
- Kumełan, J.; Pérez-Salado Kamps, Á.; Tuma, D.; Maurer, G. Solubility of CO2 in the ionic liquids [bmim][CH3SO4] and [bmim][PF6]. J. Chem. Eng. Data 2006, 51, 1802–1807. [Google Scholar] [CrossRef]
- Wagner, W.; Overhoff, U. ThermoFluids: Interactive Software for the Calculation of Thermodynamic Properties for More than 60 Pure Substances; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Carvalho, P.J.; Álvarez, V.H.; Machado, J.J.; Pauly, J.; Daridon, J.-L.; Marrucho, I.M.; Aznar, M.; Coutinho, J.A. High pressure phase behavior of carbon dioxide in 1-alkyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide ionic liquids. J. Supercrit. Fluids 2009, 48, 99–107. [Google Scholar] [CrossRef]
- Valderrama, J.; Robles, P. Critical properties, normal boiling temperatures, and acentric factors of fifty ionic liquids. Ind. Eng. Chem. Res. 2007, 46, 1338–1344. [Google Scholar] [CrossRef]
- Valderrama, J.O.; Rojas, R.E. Critical properties of ionic liquids. Revisited. Ind. Eng. Chem. Res. 2009, 48, 6890–6900. [Google Scholar] [CrossRef]
- Peng, D.-Y.; Robinson, D.B. A new two-constant equation of state. Ind. Eng. Chem. Fundam. 1976, 15, 59–64. [Google Scholar] [CrossRef]
- Song, H.N.; Lee, B.-C.; Lim, J.S. Measurement of CO2 solubility in ionic liquids:[BMP][TfO] and [P14, 6, 6, 6][Tf2N] by measuring bubble-point pressure. J. Chem. Eng. Data 2010, 55, 891–896. [Google Scholar] [CrossRef]
- Chin, H.-Y.; Lee, B.-S.; Chen, Y.-P.; Chen, P.-C.; Lin, S.-T.; Chen, L.-J. Prediction of phase equilibrium of methane hydrates in the presence of ionic liquids. Ind. Eng. Chem. Res. 2013, 52, 16985–16992. [Google Scholar] [CrossRef]
- Smith, J.M. Introduction to chemical engineering thermodynamics. J. Chem. Educ. 1950, 27, 584. [Google Scholar] [CrossRef]
- Sakhaeinia, H.; Taghikhani, V.; Jalili, A.H.; Mehdizadeh, A.; Safekordi, A.A. Solubility of H2S in 1-(2-hydroxyethyl)-3-methylimidazolium ionic liquids with different anions. Fluid Phase Equilibria 2010, 298, 303–309. [Google Scholar] [CrossRef]
- Jalili, A.H.; Rahmati-Rostami, M.; Ghotbi, C.; Hosseini-Jenab, M.; Ahmadi, A.N. Solubility of H2S in ionic liquids [bmim][PF6],[bmim][BF4], and [bmim][Tf2N]. J. Chem. Eng. Data 2009, 54, 1844–1849. [Google Scholar] [CrossRef]
- Sandler, S.I. Chemical, Biochemical, and Engineering Thermodynamics; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Elliott, J.R.; Lira, C.T.; Lira, C.T. Introductory Chemical Engineering Thermodynamics; Pearson: Prentice Hall Upper, NJ, USA, 2012; Volume 668. [Google Scholar]
- Abdul Kareem, F.A.; Shariff, A.M.; Ullah, S.; Garg, S.; Dreisbach, F.; Keong, L.K.; Mellon, N. Experimental and neural network modeling of partial uptake for a carbon dioxide/methane/water ternary mixture on 13X zeolite. Energy Technol. 2017, 5, 1373–1391. [Google Scholar] [CrossRef]
- Eslamimanesh, A.; Gharagheizi, F.; Mohammadi, A.H.; Richon, D. Artificial neural network modeling of solubility of supercritical carbon dioxide in 24 commonly used ionic liquids. Chem. Eng. Sci. 2011, 66, 3039–3044. [Google Scholar] [CrossRef]
- Hamzehie, M.; Fattahi, M.; Najibi, H.; Van der Bruggen, B.; Mazinani, S. Application of artificial neural networks for estimation of solubility of acid gases (H2S and CO2) in 32 commonly ionic liquid and amine solutions. J. Nat. Gas Sci. Eng. 2015, 24, 106–114. [Google Scholar] [CrossRef]
- Lashkarbolooki, M.; Vaferi, B.; Rahimpour, M. Comparison the capability of artificial neural network (ANN) and EOS for prediction of solid solubilities in supercritical carbon dioxide. Fluid Phase Equilibria 2011, 308, 35–43. [Google Scholar] [CrossRef]
- Oliferenko, A.A.; Oliferenko, P.V.; Seddon, K.R.; Torrecilla, J.S. Prediction of gas solubilities in ionic liquids. Phys. Chem. Chem. Phys. 2011, 13, 17262–17272. [Google Scholar] [CrossRef] [PubMed]
- Safamirzaei, M.; Modarress, H. Hydrogen solubility in heavy n-alkanes; modeling and prediction by artificial neural network. Fluid Phase Equilibria 2011, 310, 150–155. [Google Scholar] [CrossRef]
- Sedghamiz, M.A.; Rasoolzadeh, A.; Rahimpour, M.R. The ability of artificial neural network in prediction of the acid gases solubility in different ionic liquids. J. CO2 Util. 2015, 9, 39–47. [Google Scholar] [CrossRef]
- Safamirzaei, M.; Modarress, H. Correlating and predicting low pressure solubility of gases in [bmim][BF4] by neural network molecular modeling. Thermochim. Acta 2012, 545, 125–130. [Google Scholar] [CrossRef]
- Dashti, A.; Harami, H.R.; Rezakazemi, M.; Shirazian, S. Estimating CH4 and CO2 solubilities in ionic liquids using computational intelligence approaches. J. Mol. Liq. 2018, 271, 661–669. [Google Scholar] [CrossRef]
- Hamedi, N.; Rahimpour, M.R.; Keshavarz, P. Methane solubility in ionic liquids: Comparison of cubic-plus-association and modified Sanchez-Lacombe equation of states. Chem. Phys. Lett. 2020, 738, 136903. [Google Scholar] [CrossRef]
- Loreno, M.; Reis, R.A.; Mattedi, S.; Paredes, M.L. Predicting the solubility of carbon dioxide or methane in imidazolium-based ionic liquids with GC-sPC-SAFT equation of state. Fluid Phase Equilibria 2019, 479, 85–98. [Google Scholar] [CrossRef]
- Kurnia, K.A.; Matheswaran, P.; How, C.J.; Noh, M.H.; Kusumawati, Y. Solubility of Methane in Alkylpyridinium-Based Ionic Liquids at Temperatures between 298.15 and 343.15 K and Pressures up to 4 MPa. J. Chem. Eng. Data 2020, 65, 4642–4648. [Google Scholar] [CrossRef]
- Kurnia, K.A.; How, C.J.; Matheswaran, P.; Noh, M.H.; Alamsjah, M.A. Insight into the molecular mechanism that controls the solubility of CH 4 in ionic liquids. New J. Chem. 2020, 44, 354–360. [Google Scholar] [CrossRef]
- Elhenawy, S.; Khraisheh, M.; AlMomani, F.; Hassan, M. Key applications and potential limitations of ionic liquid membranes in the gas separation process of CO2, CH4, N2, H2 or mixtures of these gases from various gas streams. Molecules 2020, 25, 4274. [Google Scholar] [CrossRef] [PubMed]
- do Nascimento, D.C.; Pelaquim, F.P.; Bertoncin, T.A.; Neto, A.M.B.; da Costa, M.C. Thermodynamic modeling of methane hydrate equilibrium conditions in the presence of imidazolium based ionic liquids with the Waals-Platteeuw solid solution approach along with SRK and CPA EoS. Fluid Phase Equilibria 2023, 571, 113822. [Google Scholar] [CrossRef]
Aspect | Ionic Liquids | Conventional Organic Solvents |
---|---|---|
Solvent properties | High polarity and low volatility, good solvation power, tuneable properties | Variable polarity and volatility, limited solvation power, limited tunability |
Environmental impact | Lower toxicity, non-flammable, low vapor pressure | Higher toxicity, flammable, high vapor pressure |
Stability | High thermal and chemical stability, wide temperature range | Limited thermal and chemical stability, narrow temperature range |
Reusability | Can be reused multiple times with minimal loss of performance | Limited reusability due to degradation and contamination |
Cost | Generally more expensive than conventional solvents | Generally less expensive than ionic liquids |
Accessibility | Limited availability of some types of ionic liquids | Wide availability of conventional solvents |
Name of Cation | Structure of Cation | Name of Anion | Structure of Anion |
---|---|---|---|
Imidazolium | Bis (trifluoromethylsulfonyl) imide | ||
Pyridinium | Alkyl sulphate | ||
Pyrrolidinium | Tetrafluoroborate | ||
Phosphonium | Triflate | ||
Ammonium | Dicyanamide | ||
Sulfonium | Hexafluorophosphate |
ILs | Abbreviation | References |
---|---|---|
1-methyl-3-methylimidazolium methyl sulfate | [MMIM][Me] | [39] |
1,3-dimethylimidazolium methylphosphonate | [C1-MIM][Me] | [40] |
1-Ethyl-3-methylimidazolium tetrafluoroborate | [EMIM] [] | [39] |
1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide | [EMIM][] | [39] |
1-Ethyl-3-methylimidazolium ethyl sulfate | [EMIM][Et] | [41] |
1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate | [EMIM][FAP] | [42] |
1-Ethyl-3-methylimidazolium tricyanomethanide | [EMIM][TCM] | [34] |
1-Butyl-3-methylimidazolium hexafluorophosphate | [BMIM][] | [43] |
1-butyl-3-methylimidazoliumtrifluoromethanesulfonate | [C4-MIM][] | [40] |
1-butyl-3-methylimidazolium octylsulfate | [C4-MIM][Oct] | [40] |
1-butyl-3-methylpyridinium tetrafluoroborate | [BMIM][] | [37] |
1-butyl-3-methylimidazolium methyl sulfate | [BMIM][CH3] | [44] |
1-butyl-3-methyl-imidazolium bis[(trifluoromethyl)sulfonyl]imide | [C4mim][] | [36] |
1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide | [HMIM][] | [45] |
1-Butyl-3-methylimidazolium nitrate | [HMIM][] | [24] |
1-hexyl-3-methylimidazolium tricyanomethanide | [HMIM][TCM] | [46] |
1-(2-hydroxyethyl)-3-methylimidazolium bis(trifluoromethanesulfonyl)imide | [C2OH-MIM][] | [40] |
1-n-hexyl-3-methylpyridinium bis(trifluoromethanesulfonyl)imide | [HMPY][] | [32] |
1-butyl-4-methylpyridinium tetrafluoroborate | [C4-mpy][] | [37] |
trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate | [P(14)666][TMPP] | [47] |
trimethyl(hexyl)ammonium bis(trifluoromethylsulfonyl)imide | [N(6)111][] | [40] |
1,1,3,3-tetramethylguanidium lactate (TMG) lactic acid (LAC) | [TMG][LAC] | [48] |
1-Ethyl-3-methylimidazolium diethylphosphate | [EMIM][DEP] | [21] |
1-Allyl-3-methylimidazolium dicyanamide | [AMIM][DCA] | [21] |
Propionate N-methil-(2-hydroxyethyl)amine | [m2HEA][Pr] | [49,50] |
Propionate bis(2-hydroxyethyl)amine | [BHEA][Pr] | [49] |
Propionate (2-hydroxyethyl)amine | [2HEA][Pr] | [49] |
Bis(2-hydroxyethyl) ammonium butanoate | [BHEA][Bu] | [50] |
Trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl) phosphinate | [thtdp][phos] | [21] |
Trihexyltetradecylphosphonium dicyanamide | [thtdp][dca] | [21] |
1-Butyl-1-methylpyrrolidinium dicyanamide | [bmpyrr][dca] | [21] |
1,2,3-Tris(diethylamino)cyclopropenylium dicyanamide | [cprop][dca] | [21] |
1,2,3-Tris(diethylamino)cyclopropenylium bis(trifluoromethylsulfonyl)imide | [cprop][] | [21] |
1-Butyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide | [bmpip][] | [21] |
Triethylsulfonium bis(trifluoromethylsulfonyl)imide | [TES][] | [21] |
Methyltrioctylammonium bis(trifluoromethylsulfonyl)imide | [TOA][] | [21] |
1-butyl-3-methylimidazolium methanesulfonate | [BMIM][] | [21] |
1-methyl-3-methylimidazolium methyl sulfate | [MMIM][Me] | [40] |
Abbreviation | T (K) | P (MPa) | Henry’s Constant (MPa) | Solubility (Mole Fraction × 103) | References |
---|---|---|---|---|---|
[BMIM][] | 283.31–343.08 | 0.0456–0.096 | 74.79–113.8 | 0.87–1.57 | [43] |
[BMIM][] | 294.15–312.75 | 0.05132–0.05482 | 45.84–127.33 | 0.431–1.12 | [40] |
[BMIM][Oct] | 300.85–313.25 | 0.05093–0.05329 | 42.31–155.1 | 0.343–1.204 | [40] |
[BMIM][] | 283.05–343.09 | 0.046–0.097 | 79.41–221.6 | 0.45–1.25 | [37] |
[BMIM][] | 293.15–413.20 | 1.363–8.853 | 34.5–44.1 | 9.1–46.1 | [44] |
[BMIM][] | 300.31–449.12 | 1.51–16.105 | 29.8–224.5 | [36,66] | |
[HMIM][] | 298.15–313.15 | 0.02–0.98 | 32.9–38 | 1.33–24.6 | [32] |
[HMIM][] | 293.15–343.15 | 0.874–3.055 | 11.189–11.417 | 20.4–99.3 | [24] |
[EMIM][eFAP] | 293.30–363.42 | 2.076–8.692 | 38.48–44.43 | 52–155 | [46] |
[EMIM][] | 299.65–312.35 | 0.05021–0.05268 | 25.89–125.9 | 1.939–0.418 | [40] |
[MMIM][Me] | 298.15–312.95 | 0.05102–0.05394 | 58.16–206.3 | 0.261–0.877 | [40] |
[HMIM][TCM] | 293.26–363.37 | 1.80–10.36 | 68.2–80 | 25–10 | [46] |
[EMIM][DEP] | 303–363 | 1.685–9.441 | 20–76 | [21] | |
[EMIM][FAP] | 303–363 | 2.076–8.692 | 38.48–44.43 | 52–155 | [42] |
[C2OHmim][] | 300.05–301.25 | 0.05039–0.05062 | 19.27–20.42 | 2.479–2.614 | [40] |
[EMIM][Et] | 292.31–293.63 | 0.198–10.150 | 1.3–40.5 | [41] | |
[AMIM][DCA] | 303–363 | 3.351–9.59 | 15–34 | [41] |
Symbol | Name |
---|---|
The amount of gaseous solute (CH4) dissolved in the IL | |
is the entire amount of IL calculated by weighing | |
The quantity of CH4 initially present in the bulb of glass | |
The quantity of CH4 in equilibrium with the IL | |
The initial pressure of CH4 present in the gas bulb | |
The volume of the bulb initially filled with CH4 | |
The initial temperature of CH4 present in the gas bulb | |
The universal gas constant | |
The compressibility factor for the pure CH4; it is assumed as an ideal gas, therefore Z = 1 | |
Equilibrium pressure | |
The total volume of the equilibrium cell | |
The volume occupied by the IL at and | |
The volume of the magnetic bar | |
Equilibrium Temperature | |
The initial quantity of the IL | |
The density of the IL |
Symbol | Name |
---|---|
The fugacity of gas (CH4) | |
subscript 1 | Solvent (IL) |
subscript 2 | Component (gas) dissolved in the solvent (IL) |
The activity coefficient of component (gas) 2 at infinite dilution | |
The constant of Henry’s law | |
The mole fraction of Component (gas) dissolved in the solvent (IL) | |
The standard state of the pressure | |
Number of groups | |
Group Parameter | |
Group Parameter |
Group | ||
---|---|---|
CH2 | 1.695 | −488.423 |
CH3 | −0.145 | 35.661 |
Imidazolium | 1.925 | −512.809 |
Pyrilium | 0.671 | −168.551 |
Pyrridilium | 1.491 | −368.296 |
Ammonium | −0.697 | 232.171 |
Phosphonium | 0.917 | −57.890 |
Tetrafluoroborate | 5.115 | −403.870 |
Texafluorophosphate | 4.648 | −274.631 |
Phosphonate | 0.900 | 91.800 |
Phosphate | 4.107 | 98.388 |
Sulfonate | 3.586 | 22.398 |
Sulfate | 3.945 | −136.707 |
Bis(perfluoromethylsulfonyl)imide | 3.619 | −110.162 |
Bis((trifluoromethyl)sulfonyl)imide | 3.807 | −160.684 |
Methoxy | −2.412 | 157.887 |
Hydroxy | 1.041 | −229.363 |
Trifluoromethane | −0.589 | 50.367 |
Bisfluoromethane | 0.079 | 13.715 |
Symbol | Name |
---|---|
The fugacity of CH4 in the vapor phase at temperature T and pressure P | |
The activity of CH4 in the IL at temperature T (considering the negligible effect of pressure on the activity) | |
The constant of Henry’s law of CH4 in ILs at temperature T and pressure P on the molality scale | |
The constant of Henry’s law of CH4 in ILs at zero pressure | |
Methane partial molar volume at infinite dilution in IL | |
R | The universal gas constant |
=1 mol/kg | |
Activity Coefficient | |
Binary interaction between CH4 molecules in the IL | |
Ternary interaction between CH4 molecules in the IL | |
Fugacity coefficient calculated with thermodynamic models [77] | |
Total pressure |
Symbol | Name |
---|---|
The binary interaction parameter and | |
The binary interaction parameter and | |
Critical pressure | |
Critical temperature | |
Acentric factors | |
Molecular weight in ILs |
Symbol | Name |
---|---|
The fugacity of pure CH4 in the gas phase at pressure P and temperature T | |
Subscript i | Represents Solute |
The mole fraction of solute i present in the solvent | |
The constant of Henry’s law for solute i in the solvent on the mole-fraction scale and at the vapor pressure () of IL solvent | |
The partial molar volume of gas solute i at infinite dilution | |
The universal gas constant |
(MPa) | (MPa) | ||
---|---|---|---|
303 | 38.48 | 3.32 | 11.58 |
313 | 39.48 | 4.05 | 9.74 |
323 | 40.47 | 4.67 | 8.65 |
333 | 41.46 | 5.35 | 7.74 |
343 | 42.45 | 6.08 | 6.98 |
353 | 43.44 | 6.86 | 6.33 |
363 | 44.43 | 7.70 | 5.77 |
Symbol | Name |
---|---|
The output of i-th neuron | |
The transfer function | |
The input of i-th neuron | |
The output of the previous layer | |
Weights relating j-th neuron (from the previous layer) to i-th neuron | |
The bias of i-th neuron |
Highlights | ILs Used in the Study | Results | References |
---|---|---|---|
|
|
| [97] |
|
|
| [98] |
|
|
| [50] |
|
|
| [99] |
|
|
| [100] |
|
|
| [101] |
|
|
| [102] |
|
|
| [103] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahimpour, H.R.; Zanganeh, J.; Moghtaderi, B. Abatement of Greenhouse Gas Emissions from Ventilation Air Methane (VAM) Using Ionic Liquids: A Review of Experimental Methods and Modelling Approaches. Processes 2023, 11, 1496. https://doi.org/10.3390/pr11051496
Rahimpour HR, Zanganeh J, Moghtaderi B. Abatement of Greenhouse Gas Emissions from Ventilation Air Methane (VAM) Using Ionic Liquids: A Review of Experimental Methods and Modelling Approaches. Processes. 2023; 11(5):1496. https://doi.org/10.3390/pr11051496
Chicago/Turabian StyleRahimpour, Hamid Reza, Jafar Zanganeh, and Behdad Moghtaderi. 2023. "Abatement of Greenhouse Gas Emissions from Ventilation Air Methane (VAM) Using Ionic Liquids: A Review of Experimental Methods and Modelling Approaches" Processes 11, no. 5: 1496. https://doi.org/10.3390/pr11051496
APA StyleRahimpour, H. R., Zanganeh, J., & Moghtaderi, B. (2023). Abatement of Greenhouse Gas Emissions from Ventilation Air Methane (VAM) Using Ionic Liquids: A Review of Experimental Methods and Modelling Approaches. Processes, 11(5), 1496. https://doi.org/10.3390/pr11051496