Studying the Settlement of OWT Monopile Foundations Using a T-Z Spring with the Torsional Effect
Abstract
:1. Introduction
2. Finite Element Formulation of a T-Z Spring with Torsion and Shear Effects
2.1. Formulations
2.2. Validation Examples
3. Study on Vertical Settlements of Monopile Wind Turbines
3.1. For DTU 10 MW OWT System
3.2. For NREL 5 MW, IEA 15 MW, and 20 MW Wind Turbine Systems
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
API | American Petroleum Institute |
3D | Three dimensional |
D | The diameter of a tubular section (m) |
d | The total displacement of the t-z element (m) |
DTU | Technical University of Denmark |
DLC | Design load cases |
EWM | Turbulent extreme wind speed model |
F1P | The rotor frequency at the rated power (Hz) |
F3P | Three times of F1P (Hz) |
F6P | Six times of F1P (Hz) |
F9P | Nine times of F1P (Hz) |
FT1 | The first torsional natural frequency (Hz) |
IEA | International Energy Agency |
IEC | International Electrotechnical Commission |
A section length of the element (m) | |
NTM | Normal turbulence model |
NSS | Normal sea state |
NREL | National Renewable Energy Laboratory |
NPD | A nonlinear proportional derivative |
OWT | Offshore Wind Turbine |
PGA | Peak ground acceleration |
pult | the ultimate earth resistance for p-y curve (kN/) |
qult | the ultimate tip resistance for the Q-z curve (kN/) |
R | The radius of a tubular section (m) |
T | Torsion in the axial direction of the pile (kN-m) |
tult | the ultimate side friction for the t-z curve (kN/) |
Vhub | 10-min. Average wind speed at the hub height (m/s) |
Vr | Rated wind speed (m/s) |
z | The displacement of the t-z curve spring (m) |
θ | The twist angle of the t-z curve spring (rad) |
The total shear stress along the pile surface of the t-z element | |
The ultimate resistance of the t-z element (kN/m2) | |
γ | The submerged weight density (kN/m3) |
ψ | The submerged internal frictional angle (degree) |
References
- Yu, H.; Zeng, X.; Li, B.; Lian, J. Centrifuge modeling of offshore wind foundations under earthquake loading. Soil Dyn. Earthq. Eng. 2015, 77, 402–415. [Google Scholar] [CrossRef]
- Anastasopoulos, I.; Theofilou, M. Hybrid foundation for offshore wind turbines: Environmental and seismic loading. Soil Dyn. Earthq. Eng. 2016, 80, 192–209. [Google Scholar] [CrossRef]
- Kaynia, A.M. Seismic considerations in the design of offshore wind turbines. Soil Dyn. Earthq. Eng. 2019, 124, 399–407. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, X.; Yang, X.; Li, J. Seismic response of offshore wind turbine with hybrid monopile foundation based on centrifuge modelling. Appl. Energy 2019, 235, 1335–1350. [Google Scholar] [CrossRef]
- Wang, X.; Zeng, X.; Li, X.; Li, J. Liquefaction characteristics of offshore wind turbine with hybrid monopile foundation via centrifuge modelling. Renew. Energy 2020, 145, 2358–2372. [Google Scholar] [CrossRef]
- Staubach, P.; Wichtmann, T. Long-term deformations of monopile foundations for offshore wind turbines studied with a high-cycle accumulation model. Comput. Geotech. 2020, 124, 103553. [Google Scholar] [CrossRef]
- Shi, S.; Zhai, E.; Xu, C.; Iqbal, K.; Sun, Y.; Wang, S. Influence of Pile-Soil Interaction on Dynamic Properties and Response of Offshore Wind Turbine with Monopile Foundation in Sand Site. Appl. Ocean Res. 2022, 126, 103279. [Google Scholar] [CrossRef]
- Basack, S.; Sen, S. Numerical Solution of Single Pile Subjected to Simultaneous Torsional and Axial Loads. Int. J. Geomech. 2014, 14, 06014006. [Google Scholar] [CrossRef]
- Hamed, Y.; Aly, A.A.; Saleh, B.; Alogla, A.F.; Aljuaid, A.M.; Alharthi, M.M. Nonlinear Structural Control Analysis of an Offshore Wind Turbine Tower System. Processes 2019, 8, 22. [Google Scholar] [CrossRef]
- Nimbalkar, S.S.; Punetha, P.; Basack, S.; Mirzababaei, M. Piles Subjected to Torsional Cyclic Load: Numerical Analysis. Front. Built Environ. 2019, 5, 24. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; Wang, S.W.; Ou, X.D.; Fu, C.Z. Analysis of the bearing characteristics of single pile under the T -> V loading path in clay ground. Rock Soil Mech. 2020, 41, 3573–3582. [Google Scholar] [CrossRef]
- Mehra, S.; Trivedi, A. Pile Groups Subjected to Axial and Torsional Loads in Flow-Controlled Geomaterial. Int. J. Geomech. 2021, 21, 04021002. [Google Scholar] [CrossRef]
- Altan, B.D.; Gungor, A. Examination of the Effect of Triangular Plate on the Performances of Reverse Rotating Dual Savonius Wind Turbines. Processes 2022, 10, 2278. [Google Scholar] [CrossRef]
- Al-Quraan, A.; Al-Mahmodi, M.; Alzaareer, K.; El-Bayeh, C.; Eicker, U. Minimizing the Utilized Area of PV Systems by Generating the Optimal Inter-Row Spacing Factor. Sustainability 2022, 14, 6077. [Google Scholar] [CrossRef]
- Radaideh, A.; Bodoor, M.M.; Al-Quraan, A.; Vallée, F. Active and Reactive Power Control for Wind Turbines Based DFIG Using LQR Controller with Optimal Gain-Scheduling. J. Electr. Comput. Eng. 2021, 2021, 1218236. [Google Scholar] [CrossRef]
- Boulanger, R.W.; Curras, C.J.; Kutter, B.L.; Wilson, D.W.; Abghari, A. Seismic soil-pile-structure interaction experiments and analyses. J. Geotech. Geoenvironmental Eng. 1999, 125, 750–759. [Google Scholar] [CrossRef]
- Bak, C.; Zahle, F.; Bitsche, R.; Kim, T.; Anders, Y.; Henriksen, L.C.; Natarajan, A.; Hansen, M.H. Description of the DTU 10 MW Reference Wind Turbine; DTU Wind Energy: Lyngby, Denmark, 2013; Available online: https://orbit.dtu.dk (accessed on 30 December 2022).
- Fu, D.F.; Zhang, Y.H.; Aamodt, K.K.; Yan, Y. A multi-spring model for monopile analysis in soft clays. Mar. Struct. 2020, 72, 20. [Google Scholar] [CrossRef]
- Ju, S.H.; Huang, Y.C.; Hsu, H.H. Parallel Analysis of Offshore Wind Turbine Structures under Ultimate Loads. Appl. Sci. 2019, 9, 14. [Google Scholar] [CrossRef]
- Ju, S.H.; Huang, Y.C. Analyses of offshore wind turbine structures with soil-structure interaction under earthquakes. Ocean Eng. 2019, 187, 11. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Zhang, Y.; Lin, H.D.; Feng, L. Numerical investigation on bearing capacity of OWT foundation with large diameter monopile under Seismic load. Appl. Ocean. Res. 2021, 108, 102518. [Google Scholar] [CrossRef]
- American Petroleum Institute. Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms—Load and Resistance Factor Design; API RP 2A-LRFD; American Petroleum Institute: Washington, DC, USA, 1997; Available online: https://www.api.org (accessed on 30 December 2022).
- Simon, J. Parameter identification for dynamic analysis of pile foundation using nonlinear p-y method. In Proceedings of the Second Conference of Junior Researchers of Civil Engineering, Budapest, Hungary, 17–18 June 2013. [Google Scholar]
- Jonkman, B.J.; Buhl, M. Turbsim User’s Guide v2.00.00; Technical Report No. NRELEL-500-36970; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2004. [Google Scholar]
- Jonkman, J.M.; Buhl, M. FAST User’s Guide; Technical Report NREL/EL-500-38230; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2005. [Google Scholar]
- Sharma, J.N.; Dean, R.G. Second-order directional seas and associated wave forces. Soc. Pet. Eng. J. 1981, 21, 129–140. [Google Scholar] [CrossRef]
- As, D.N.V. Buckling Strength of Shells, DNV-RP-C202. 2013. Available online: https://www.dnv.com (accessed on 30 December 2022).
- Ju, S.H. Increasing the fatigue life of offshore wind turbine jacket structures using yaw stiffness and damping. Renew. Sustain. Energy Rev. 2022, 162, 112458. [Google Scholar] [CrossRef]
- Chopra, A.K. Dynamics of Structures: Theory and Applications to Earthquake Engineering; Prentice Hall: Hoboken, NJ, USA, 1995. [Google Scholar]
- Jonkman, J.M.; Butterfield, S.; Musial, W.; Scott, G. Definition of a 5-MW Reference Wind Turbine for Offshore System Development; Technical Report NREL/TP-500-38060; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2009. [Google Scholar]
- Gaertner, E.; Rinker, J.; Sethuraman, L.; Zahle, F.; Anderson, B.; Barter, G.; Abbas, N.; Meng, F.; Bortolotti, P.; Skrzypinski, W.; et al. Definition of the IEA 15-Megawatt Offshore Reference Wind; NREL/TP-5000-75698; National Renewable Energy Laboratory: Golden, CO, USA, 2020. [Google Scholar]
- Ju, S.H.; Huang, Y.C.; Huang, Y.Y. Study of optimal large-scale offshore wind turbines. Renew. Energy 2020, 154, 161–174. [Google Scholar] [CrossRef]
- Liang, F.; Yuan, Z.; Liang, X.; Zhang, H. Seismic response of monopile-supported offshore wind turbines under combined wind, wave and hydrodynamic loads at scoured sites. Comput. Geotech. 2022, 144, 104640. [Google Scholar] [CrossRef]
Depth (m) | tult (kN/m2) | qult (kN/m2) | pult (kN/m2) |
---|---|---|---|
4 | 5.29 | 677.3 | 205.2 |
8 | 15.9 | 1933 | 612.0 |
12 | 26.4 | 3071 | 1220.3 |
27 | 51.6 | 5387 | 5297.3 |
33 | 79.3 | 7510 | 7721.7 |
43 | 100 | 8983 | 12,771.0 |
142 | 149 | 16,154 | 47,490.0 |
Design Situation | DLC | Wind Condition at the Hub Height Vhub (m/s) | Significant Wave Height (m) | Wind Dir. | Yaw | Partial Safety Factor | ||
---|---|---|---|---|---|---|---|---|
Wave Dir. | ||||||||
Power production | 1.1 | NTM | 11 m/s for 10 MW case 25 m/s for 5, 15, and 20 MW cases | NSS | 1.71 m for 10 MW case 3.88 m for 5, 15, and 20 MW cases | 0° | 0° | 1.0 |
Earthquake X-PGA = 0.32 g Y-PGA = 0.224 g Z-PGA = 0.096 g | 1.8 | NTM | 11.4 m/s for 5, 10 and 20 MW cases 10.59 m/s for 15 MW case | NSS | 1.71 m | 0° | 0° | 1.0 |
Tropical cyclone | I.2 | EWM | 72 m/s | NSS | 14 m | 30° | 60° | 1.0 |
180° |
Unit: meter D = Diameter t = Thickness | 5 MW case | 10 MW case | 15 MW case | 20 MW case | ||||
C-1 D = 6.0 t = 0.113 | P-1 D = 5.75 t = 0.122 | C-1 D = 7.8 t = 0.128 | P-1 D = 7.48 t = 0.125 | C-1 D = 9.6 t = 0.159 | P-1 D = 9.6 t = 0.158 | C-1 D = 11.4 t = 0.156 | P-1 D = 11.4 t = 0.160 | |
C-2 D = 6.0 t = 0.98 | P-2 D = 5.75 t = 0.120 | C-2 D = 7.8 t = 0.116 | P-2 D = 7.48 t = 0.125 | C-2 D = 9.6 t = 0.146 | P-2 D = 9.6 t = 0.129 | C-2 D = 11.4 t = 0.139 | P-2 D = 11.4 t = 0.154 | |
C-3 D = 6.0 t = 0.084 | P-3 D = 5.75 t = 0.093 | C-3 D = 7.8 t = 0.102 | P-3 D = 7.48 t = 0.096 | C-3 D = 9.6 t = 0.129 | P-3 D = 9.6 t = 0.114 | C-3 D = 11.4 t = 0.118 | P-3 D = 11.4 t = 0.144 | |
C-4 D = 6.0 t = 0.073 | T-1 D = 6.0 t = 0.067 | C-4 D = 7.8 t = 0.090 | T-1 D = 9.6 t = 0.085 | C-4 D = 9.6 t = 0.114 | T-1 D = 9.6 t = 0.114 | C-4 D = 11.4 t = 0.102 | T-1 D = 11.4 t = 0.102 | |
T-2 D = 4.0 t = 0.041 | T-2 D = 4.0 t = 0.085 | T-2 D = 4.8 t = 0.114 | T-2 D = 8.09 t = 0.102 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ju, S.-H.; Chiu, C.-S.; Hsu, H.-H. Studying the Settlement of OWT Monopile Foundations Using a T-Z Spring with the Torsional Effect. Processes 2023, 11, 490. https://doi.org/10.3390/pr11020490
Ju S-H, Chiu C-S, Hsu H-H. Studying the Settlement of OWT Monopile Foundations Using a T-Z Spring with the Torsional Effect. Processes. 2023; 11(2):490. https://doi.org/10.3390/pr11020490
Chicago/Turabian StyleJu, Shen-Haw, Chueh-Sheng Chiu, and Hsin-Hsiang Hsu. 2023. "Studying the Settlement of OWT Monopile Foundations Using a T-Z Spring with the Torsional Effect" Processes 11, no. 2: 490. https://doi.org/10.3390/pr11020490
APA StyleJu, S.-H., Chiu, C.-S., & Hsu, H.-H. (2023). Studying the Settlement of OWT Monopile Foundations Using a T-Z Spring with the Torsional Effect. Processes, 11(2), 490. https://doi.org/10.3390/pr11020490