Piezo-Photocatalytic Degradation of Tetracycline by 3D BaTiO3 Nanomaterials: The Effect of Crystal Structure and Catalyst Loadings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Preparation of BaTiO3 Nanocrystals
2.3. Characterization of the Samples
2.4. Piezo-Photocatalytic Activity Tests
3. Results
3.1. Morphology and Elemental Composition
3.2. Crystal Structure
3.3. Optical Properties
3.4. Piezo-Photocatalytic Performance
3.5. Mechanism Exploration
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Zhou, J.; Chen, X.; Wang, L.; Cai, W. Coupling of heterogeneous advanced oxidation processes and photocatalysis in efficient degradation of tetracycline hydrochloride by Fe-based MOFs: Synergistic effect and degradation pathway. Chem. Eng. J. 2019, 369, 745–757. [Google Scholar] [CrossRef]
- Wang, W.; Han, Q.; Zhu, Z.; Zhang, L.; Zhong, S.; Liu, B. Enhanced photocatalytic degradation performance of organic contaminants by heterojunction photocatalyst BiVO4/TiO2/RGO and its compatibility on four different tetracycline antibiotics. Adv. Powder Technol. 2019, 309, 1882–1896. [Google Scholar] [CrossRef]
- He, X.; Kai, T.; Ding, P. Heterojunction photocatalysts for degradation of the tetracycline antibiotic: A review. Environ. Chem. Lett. 2021, 196, 4563–4601. [Google Scholar] [CrossRef] [PubMed]
- Saadati, F.; Keramati, N.; Ghazi, M.M. Influence of parameters on the photocatalytic degradation of tetracycline in wastewater: A review. Crit. Rev. Environ. Sci. Technol. 2016, 468, 757–782. [Google Scholar] [CrossRef]
- Wang, D.; Jia, F.; Wang, H.; Chen, F.; Fang, Y.; Dong, W.; Zeng, G.; Li, X.; Yang, Q.; Yuan, X. Simultaneously efficient adsorption and photocatalytic degradation of tetracycline by Fe-based MOFs. J. Colloid Interface Sci. 2018, 519, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Selvam, A.; Kwok, K.; Chen, Y.; Cheung, A.; Leung, K.S.Y.; Wong, J.W.C. Influence of livestock activities on residue antibiotic levels of rivers in Hong Kong. Environ. Sci. Pollut. Res. 2016, 2410, 9058–9066. [Google Scholar] [CrossRef]
- Zou, S.; Xu, W.; Zhang, R.; Tang, J.; Chen, Y.; Zhang, G. Occurrence and distribution of antibiotics in coastal water of the Bohai Bay, China: Impacts of river discharge and aquaculture activities. Environ. Pollut. 2011, 15910, 2913–2920. [Google Scholar] [CrossRef]
- Han, Q.F.; Zhao, S.; Zhang, X.R.; Wang, X.L.; Song, C.; Wang, S.G. Distribution, combined pollution and risk assessment of antibiotics in typical marine aquaculture farms surrounding the Yellow Sea, North China. Environ. Int. 2020, 138, 105551. [Google Scholar] [CrossRef]
- Aydın, E.; Şahin, M.; Taşkan, E.; Hasar, H.; Erdem, M. Chlortetracycline removal by using hydrogen based membrane biofilm reactor. J. Hazard. Mater. 2016, 320, 88–95. [Google Scholar] [CrossRef]
- Álvarez, J.A.; Otero, L.; Lema, J.M.; Omil, F. The effect and fate of antibiotics during the anaerobic digestion of pig manure. Bioresour. Technol. 2010, 10122, 8581–8586. [Google Scholar] [CrossRef]
- Arikan, O.A.; Sikora, L.J.; Mulbry, W.; Khan, S.U.; Rice, C.; Foster, G.D. The fate and effect of oxytetracycline during the anaerobic digestion of manure from therapeutically treated calves. Process Biochem. 2006, 417, 1637–1643. [Google Scholar] [CrossRef]
- Lulijwa, R.; Rupia, E.J.; Alfaro, A.C. Antibiotic use in aquaculture, policies and regulation, health and environmental risks: A review of the top 15 major producers. Rev. Aquac. 2019, 122, 640–663. [Google Scholar] [CrossRef]
- Wang, C.; Qu, G.; Wang, T.; Deng, F.; Liang, D. Removal of tetracycline antibiotics from wastewater by pulsed corona discharge plasma coupled with natural soil particles. Chem. Eng. J. 2018, 346, 159–170. [Google Scholar] [CrossRef]
- Jannat Abadi, M.; Nouri, S.; Zhiani, R.; Heydarzadeh, H.; Motavalizadehkakhky, A. Removal of tetracycline from aqueous solution using Fe-doped zeolite. Int. J. Ind. Chem. 2019, 104, 291–300. [Google Scholar] [CrossRef]
- Song, Z.; Ma, Y.-L.; Li, C.-E. The residual tetracycline in pharmaceutical wastewater was effectively removed by using MnO2/graphene nanocomposite. Sci. Total Environ. 2019, 651, 580–590. [Google Scholar] [CrossRef]
- Ahmed, S.N.; Haider, W. Heterogeneous photocatalysis and its potential applications in water and wastewater treatment: A review. Nanotechnology 2018, 2934, 342001. [Google Scholar] [CrossRef]
- Srikanth, B.; Goutham, R.; Narayan, R.B.; Ramprasath, A.; Gopinath, K.; Sankaranarayanan, A. Recent advancements in supporting materials for immobilised photocatalytic applications in waste water treatment. J. Environ. Manag. 2017, 200, 60–78. [Google Scholar] [CrossRef]
- Chong, M.N.; Jin, B.; Chow, C.W.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 4410, 2997–3027. [Google Scholar] [CrossRef]
- Xue, C.; Zhang, P.; Shao, G.; Yang, G. Effective promotion of spacial charge separation in direct Z-scheme WO3/CdS/WS2 tandem heterojunction with enhanced visible-light-driven photocatalytic H2 evolution. Chem. Eng. J. 2020, 398, 125602. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Li, J.; Ruan, M.; Guo, Z. An effective strategy of constructing a multi-junction structure by integrating a heterojunction and a homojunction to promote the charge separation and transfer efficiency of WO3. J. Mater. Chem. A 2020, 813, 6256–6267. [Google Scholar] [CrossRef]
- Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A.A. Heterojunction photocatalysts. Adv. Mater. 2017, 2920, 1601694. [Google Scholar] [CrossRef] [PubMed]
- Su, T.; Qin, Z.; Ji, H.; Wu, Z. An overview of photocatalysis facilitated by 2D heterojunctions. Nanotechnology 2019, 3050, 502002. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Lan, S.; Cheng, S.; Zeng, L.; Zhu, M. Ba substituted SrTiO3 induced lattice deformation for enhanced piezocatalytic removal of carbamazepine from water. J. Hazard. Mater. 2022, 424, 127440. [Google Scholar] [CrossRef] [PubMed]
- Lan, S.; Yu, C.; Sun, F.; Chen, Y.; Chen, D.; Mai, W.; Zhu, M. Tuning piezoelectric driven photocatalysis by La-doped magnetic BiFeO3-based multiferroics for water purification. Nano Energy 2022, 93, 106792. [Google Scholar] [CrossRef]
- Chen, F.; Huang, H.; Guo, L.; Zhang, Y.; Ma, T. The role of polarization in photocatalysis. Angew. Chem. Int. Ed. 2019, 5830, 10061–10073. [Google Scholar] [CrossRef]
- Yuan, B.; Wu, J.; Qin, N.; Lin, E.; Bao, D. Enhanced Piezocatalytic Performance of (Ba,Sr)TiO3 Nanowires to Degrade Organic Pollutants. ACS Appl. Nano Mater. 2018, 19, 5119–5127. [Google Scholar] [CrossRef]
- Zhao, Y.; Fang, Z.B.; Feng, W.; Wang, K.; Huang, X.; Liu, P. Hydrogen Production from Pure Water via Piezoelectric-assisted Visible-light Photocatalysis of CdS Nanorod Arrays. ChemCatChem 2018, 1016, 3397–3401. [Google Scholar] [CrossRef]
- Kumar, M.; Vaish, R.; Elqahtani, Z.M.; Kebaili, I.; Al-Buriahi, M.S.; Sung, T.H.; Hwang, W.; Kumar, A. Piezo-photocatalytic activity of Bi2VO5.5 for methylene blue dye degradation. J. Mater. Res. Technol. 2022, 21, 1998–2012. [Google Scholar] [CrossRef]
- Tu, S.; Guo, Y.; Zhang, Y.; Hu, C.; Zhang, T.; Ma, T.; Huang, H. Piezocatalysis and Piezo-Photocatalysis: Catalysts Classification and Modification Strategy, Reaction Mechanism, and Practical Application. Adv. Funct. Mater. 2020, 30, 2005158. [Google Scholar] [CrossRef]
- Liang, Z.; Yan, C.-F.; Rtimi, S.; Bandara, J. Piezoelectric materials for catalytic/photocatalytic removal of pollutants: Recent advances and outlook. Appl. Catal. B Environ. 2019, 241, 256–269. [Google Scholar] [CrossRef]
- Zhou, X.; Shen, B.; Lyubartsev, A.; Zhai, J.; Hedin, N. Semiconducting piezoelectric heterostructures for piezo- and piezophotocatalysis. Nano Energy 2022, 96, 107141. [Google Scholar] [CrossRef]
- Wang, T.; Jin, L.; Li, C.; Hu, Q.; Wei, X. Relaxor ferroelectric BaTiO3–Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J. Am. Ceram. Soc. 2015, 982, 559–566. [Google Scholar] [CrossRef]
- Fazli, A.; Zakeri, F.; Khataee, A.; Orooji, Y. A BaTiO3/WS2 composite for piezo-photocatalytic persulfate activation and ofloxacin degradation. Commun. Chem. 2022, 5, 95. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Zhang, Y.; Xia, H.; Zhu, X.; Mao, X.; Zhao, W.; Miao, S.; Shi, M. In situ generation of H2O2 over Ce-doped BaTiO3 catalysts for enhanced piezo-photocatalytic degradation of pollutants in aqueous solution. Colloids Surf. A Physicochem. Eng. Asp. 2023, 663, 131030. [Google Scholar] [CrossRef]
- Zheng, H.; Li, X.; Zhu, K.; Liang, P.; Wu, M.; Rao, Y.; Jian, R.; Shi, F.; Wang, J.; Yan, K.; et al. Semiconducting BaTiO3@C core-shell structure for improving piezo-photocatalytic performance. Nano Energy 2022, 93, 106831. [Google Scholar] [CrossRef]
- Liu, X.; Xiao, L.; Zhang, Y.; Sun, H. Significantly enhanced piezo-photocatalytic capability in BaTiO3 nanowires for degrading organic dye. J. Mater. 2020, 62, 256–262. [Google Scholar] [CrossRef]
- Gong, S.; Zhang, W.; Liang, Z.; Zhang, Y.; Gan, T.; Hu, H.; Huang, Z. Construction of a BaTiO3/tubular g-C3N4 dual piezoelectric photocatalyst with enhanced carrier separation for efficient degradation of tetracycline. Chem. Eng. J. 2023, 461, 141947. [Google Scholar] [CrossRef]
- Meng, H.; Chen, Z.; Lu, Z.; Wang, X. Piezoelectric effect enhanced plasmonic photocatalysis in the Pt/BaTiO3 heterojunctions. J. Mol. Liq. 2023, 369, 120846. [Google Scholar] [CrossRef]
- Yi, Q.; Luo, H.; Xiong, H.; Liu, Q.; Zhai, D.; Sun, Q.; Zhang, D. Enhanced catalytic activity of Molar-like BaTiO3 by oxygen vacancies. Ceram. Int. 2023, 4923, 39707–39718. [Google Scholar] [CrossRef]
- Low, J.; Zhang, L.; Tong, T.; Shen, B.; Yu, J. TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity. J. Catal. 2018, 361, 255–266. [Google Scholar] [CrossRef]
- Xiao, Q.; Chen, L.; Xu, Y.; Feng, W.; Qiu, X. Impact of oxygen vacancy on piezo-photocatalytic catalytic activity of barium titanate. Appl. Surf. Sci. 2023, 619, 156794. [Google Scholar] [CrossRef]
- Yu, C.; He, J.; Tan, M.; Hou, Y.; Zeng, H.; Liu, C.; Meng, H.; Su, Y.; Qiao, L.; Lookman, T.; et al. Selective Enhancement of Photo-Piezocatalytic Performance in BaTiO3 Via heterovalent Ion Doping. Adv. Funct. Mater. 2022, 32, 2209365. [Google Scholar] [CrossRef]
- Zheng, W.; Tang, Y.; Liu, Z.; Xing, G.; Zhao, K. Enhanced charge carrier separation by bi-piezoelectric effects based on pine needle-like BaTiO3/ZnO continuous nanofibers. J. Mater. Chem. A 2022, 1025, 13544–13555. [Google Scholar] [CrossRef]
- Baek, C.; Yun, J.H.; Wang, H.S.; Wang, J.E.; Park, H.; Park, K.-I.; Kim, D.K. Enhanced output performance of a lead-free nanocomposite generator using BaTiO3 nanoparticles and nanowires filler. Appl. Surf. Sci. 2018, 429, 164–170. [Google Scholar] [CrossRef]
- Huang, X.; Wang, K.; Wang, Y.; Wang, B.; Zhang, L.; Gao, F.; Zhao, Y.; Feng, W.; Zhang, S.; Liu, P. Enhanced charge carrier separation to improve hydrogen production efficiency by ferroelectric spontaneous polarization electric field. Appl. Catal. B Environ. 2018, 227, 322–329. [Google Scholar] [CrossRef]
- Wu, J.; Qin, N.; Bao, D. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration. Nano Energy 2018, 45, 44–51. [Google Scholar] [CrossRef]
- Baek, C.; Wang, J.E.; Moon, S.; Choi, C.-H.; Kim, D.K. Formation and Accumulation of Intragranular Pores in the Hydrothermally Synthesized Barium Titanate Nanoparticles. J. Am. Ceram. Soc. 2016, 9911, 3802–3808. [Google Scholar] [CrossRef]
- Chen, X.-J.; Dai, Y.-Z.; Wang, X.-Y.; Guo, J.; Liu, T.-H.; Li, F.-F. Synthesis and characterization of Ag3PO4 immobilized with graphene oxide (GO) for enhanced photocatalytic activity and stability over 2,4-dichlorophenol under visible light irradiation. J. Hazard. Mater. 2015, 292, 9–18. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Lin, Y.-H.; Zhang, B.-P.; Wang, Y.; Nan, C.-W. Controlled fabrication of BiFeO3 uniform microcrystals and their magnetic and photocatalytic behaviors. J. Phys. Chem. C 2010, 1147, 2903–2908. [Google Scholar] [CrossRef]
- Yang, B.; Wu, C.; Wang, J.; Bian, J.; Wang, L.; Liu, M.; Du, Y.; Yang, Y. When C3N4 meets BaTiO3: Ferroelectric polarization plays a critical role in building a better photocatalyst. Ceram. Int. 2020, 464, 4248–4255. [Google Scholar] [CrossRef]
- Yu, C.; Tan, M.; Li, Y.; Liu, C.; Yin, R.; Meng, H.; Su, Y.; Qiao, L.; Bai, Y. Ultrahigh piezocatalytic capability in eco-friendly BaTiO3 nanosheets promoted by 2D morphology engineering. J. Colloid Interface Sci. 2021, 596, 288–296. [Google Scholar] [CrossRef]
- Acosta, M.; Novak, N.; Rojas, V.; Patel, S.; Vaish, R.; Koruza, J.; Rossetti, G.A., Jr.; Rödel, J. BaTiO3-based piezoelectrics: Fundamentals, current status, and perspectives. Appl. Phys. Rev. 2017, 44, 041305. [Google Scholar] [CrossRef]
- Gao, H.; Cao, J.; Liu, L.; Yang, Y. Theoretical investigation on the structure and electronic properties of barium titanate. J. Mol. Struct. 2011, 1003, 75–81. [Google Scholar] [CrossRef]
- Shao, Q.; Lin, H.; Shao, M. Determining locations of conduction bands and valence bands of semiconductor nanoparticles based on their band gaps. ACS Omega 2020, 518, 10297–10300. [Google Scholar] [CrossRef] [PubMed]
- Dou, L.; Zhong, J.; Li, J.; Pandian, R.; Burda, C. In-situ construction of 3D nanoflower-like BiOI/Bi2SiO5 heterojunctions with enhanced photocatalytic performance for removal of decontaminants originated from a step-scheme mechanism. Appl. Surf. Sci. 2021, 544, 148883. [Google Scholar] [CrossRef]
- Mushtaq, F.; Chen, X.; Hoop, M.; Torlakcik, H.; Pellicer, E.; Sort, J.; Gattinoni, C.; Nelson, B.J.; Pané, S. Piezoelectrically Enhanced Photocatalysis with BiFeO3 Nanostructures for Efficient Water Remediation. iScience 2018, 4, 236–246. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Shi, J.; He, Y.; Yang, Y.; Liu, Y.; Chen, M.; Xue, W.; Cao, D. Boosting piezo/photo-induced charge transfer of a bi-piezoelectrics BaTiO3/CdS isotype junction for kinetic optimization. J. Alloys Compd. 2023, 931, 167434. [Google Scholar] [CrossRef]
- Senasu, T.; Chankhanittha, T.; Hemavibool, K.; Nanan, S. Solvothermal synthesis of BiOBr photocatalyst with an assistant of PVP for visible-light-driven photocatalytic degradation of fluoroquinolone antibiotics. Catal. Today 2022, 384–386, 209–227. [Google Scholar] [CrossRef]
- Zhu, Q.; Dar, A.A.; Zhou, Y.; Zhang, K.; Qin, J.; Pan, B.; Lin, J.; Patrocinio, A.O.T.; Wang, C. Oxygen vacancies promoted piezoelectricity toward piezo-photocatalytic decomposition of tetracycline over SrBi4Ti4O15. ACS EST Eng. 2022, 28, 1365–1375. [Google Scholar] [CrossRef]
- Ray, S.K.; Cho, J.; Hur, J. A critical review on strategies for improving efficiency of BaTiO3-based photocatalysts for wastewater treatment. J. Environ. Manag. 2021, 290, 112679. [Google Scholar] [CrossRef]
- Du, D.; Shi, M.; Guo, Q.; Zhang, Y.; Allam, A.A.; Rady, A.; Wang, C. Metal Bi Loaded Bi2Ti2O7/CaTiO3 for Enhanced Photocatalytic Efficiency for NO Removal under Visible Light. Catalysts 2023, 138, 1169. [Google Scholar] [CrossRef]
Photocatalyst | Morphology | Ultrasonic Frequency | Target Pollutants | Piezo-Photocatalytic Performance | Ref. |
---|---|---|---|---|---|
Ce-BaTiO3 (0.1 g/L) | Sphere-like | 80 kHz | Acid chrome blue K 10 mg/L; 100 mL | 88.6% for 10 min Vis | [34] |
BaTiO3@C (0.1 g/L) | Circular | 40 kHz | Rhodamine B 10 mg/L; 100 mL | 93% for 120 min UV | [35] |
BaTiO3 (0.25 g/L) | Nanowires | 40 kHz | Methyl orange 5 mg/L; 100 mL | 98% for 100 min UV | [36] |
BaTiO3/g-C3N4 (0.4 g/L) | Tubular | 40 kHz | Tetracycline 10 mg/L; 50 mL | 91% for 100 min Vis | [37] |
Pt/BaTiO3 (0.25 g/L) | Cube-like | 53 kHz | Methyl orange 10 mg/L; 80 mL | 92.5% for 50 min UV | [38] |
BaTiO3 (0.5 g/L) | Molar-like | 24 kHz | Indigo carmine 10 mg/L; 100 mL | 99.02% for 45 min UV | [39] |
Samples | Ba 3d (eV) | Ti 2p (eV) | O 1s (eV) | |||||
---|---|---|---|---|---|---|---|---|
3d5/2 | 3d3/2 | 2p3/2 | 2p1/2 | Olat | Oads | |||
Peak 1 | Peak 2 | Peak 1 | Peak 2 | |||||
BTO-Nps | 779.91 | 778.71 | 795.34 | 794.06 | 458.30 | 464.01 | 529.57 | 530.82 |
BTO-Nf | 779.94 | 778.57 | 795.25 | 793.93 | 458.15 | 463.90 | 529.34 | 531.52 |
BTO-Nc | 779.82 | 778.66 | 795.31 | 794.03 | 458.24 | 463.99 | 529.48 | 530.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Q.; Gao, T.; Padervand, M.; Du, D.; Zhao, K.; Zhang, Y.; Jia, T.; Wang, C. Piezo-Photocatalytic Degradation of Tetracycline by 3D BaTiO3 Nanomaterials: The Effect of Crystal Structure and Catalyst Loadings. Processes 2023, 11, 3323. https://doi.org/10.3390/pr11123323
Guo Q, Gao T, Padervand M, Du D, Zhao K, Zhang Y, Jia T, Wang C. Piezo-Photocatalytic Degradation of Tetracycline by 3D BaTiO3 Nanomaterials: The Effect of Crystal Structure and Catalyst Loadings. Processes. 2023; 11(12):3323. https://doi.org/10.3390/pr11123323
Chicago/Turabian StyleGuo, Qingqing, Ting Gao, Mohsen Padervand, Diyuan Du, Ke Zhao, Yanqin Zhang, Tingting Jia, and Chuanyi Wang. 2023. "Piezo-Photocatalytic Degradation of Tetracycline by 3D BaTiO3 Nanomaterials: The Effect of Crystal Structure and Catalyst Loadings" Processes 11, no. 12: 3323. https://doi.org/10.3390/pr11123323
APA StyleGuo, Q., Gao, T., Padervand, M., Du, D., Zhao, K., Zhang, Y., Jia, T., & Wang, C. (2023). Piezo-Photocatalytic Degradation of Tetracycline by 3D BaTiO3 Nanomaterials: The Effect of Crystal Structure and Catalyst Loadings. Processes, 11(12), 3323. https://doi.org/10.3390/pr11123323