TGF-β1 and Mechanical-Stretch Induction of Lysyl-Oxidase and Matrix-Metalloproteinase Expression in Synovial Fibroblasts Requires NF-κB Pathways
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture
2.2. TGF-β1 Treatment
2.3. Mechanical Injury
2.4. Signaling-Pathway-Inhibitor Treatment
2.5. Real-Time Quantitative PCR
2.6. Zymography
2.7. Statistical Analysis
3. Results
3.1. Effects of Different Concentrations of TGF-β1 on Gene Levels of LOX and MMP Families in Normal SFs
3.2. Time Process of TGF-β1-Induced Expression Levels of LOXs, MMP-1, -2, and -3 in Normal SFs
3.3. Time Course of TGF-β1-Induced Expression Levels of LOXs, MMP-1, -2, and -3 in Injured SFs
3.4. Effects of NF-κB-Pathway Inhibitors on Injurious Stretch and TGF-1-Induced MMP-2 Expression and Activity in SFs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miyasaka, K.C.; Daniel, D.M.; Stone, M.L.; Hirshman, P. The incidence of knee ligament injuries in the general population. Am. J. Knee Surg. 1991, 4, 3–8. [Google Scholar]
- Dale, K.M.; Bailey, J.R.; Moorman, C.T. Surgical management and treatment of the anterior cruciate ligament/medial collateral ligament injured knee. Clin. Sport. Med. 2017, 36, 87–103. [Google Scholar] [CrossRef]
- Benedikt, L.P.; Jakob, T.S.; Martha, M.M.; Matthew, R.A.; Kaitlyn, E.C.; Gabriel, S.P.; Tarpit, K.P.; Braden, C.F. Extracellular matrix-blood composite injection reduces post-traumatic osteoarthritis after anterior cruciate ligament injury in the rat. J. Orthop. Res. 2016, 34, 995–1003. [Google Scholar]
- Baldwin, P.; Li, D.J.; Auston, D.A.; Mir, H.S.; Yoon, R.S.; Koval, K.J. Autograft, allograft, and aone graft substitutes: Clinical evidence and indications for use in the setting of orthopaedic trauma surgery. J. Orthop. Trauma 2019, 33, 203–213. [Google Scholar] [CrossRef]
- Nagineni, C.N.; Amiel, D.; Green, M.H.; Berchuck, M.; Akeson, W.H. Characterization of the intrinsic properties of the anterior cruciate and medial collateral ligament cells: An in vitro cell culture study. J. Orthop Res. 1992, 10, 465–475. [Google Scholar] [CrossRef]
- Wiig, M.E.; Amiel, D.; Ivarsson, M. Type I procollagen gene expression in normal and early healing of the medial collateral and anterior cruciate ligaments in rabbits: An in situ hybridization study. J. Orthop Res. 1991, 9, 374–382. [Google Scholar] [CrossRef]
- Zhou, D.; Lee, H.S.; Villarreal, F.; Teng, A.; Lu, E.; Reynolds, S.; Qin, C.; Smith, J.; Sung, K.L. Differential MMP-2 activity of ligaments cells under mechanical stretch injury: An in vitro study on human ACL and MCL fibroblasts. J. Orthop Res. 2005, 23, 949–957. [Google Scholar] [CrossRef]
- Rothman, S. How is the balance between protein synthesis and degradation achieved? Theor. Biol. Med. Model. 2010, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Jiang, J.; Zhang, Y.; Xu, C.; Yin, L.; Wang, C.; Chen, P.C.Y.; Sung, K.L.P. Up-regulation expressions of lysyl oxidase family in anterior cruciate ligament and medial collateral ligament fibroblasts induced by transforming growth factor-beta1. Int. Orthop. 2012, 36, 207–213. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Jiang, J.; Huang, W.; Zhang, Y.; Xu, C.; Wang, C.; Yin, L.; Chen, P.C.Y.; Sung, K.L.P. TNF-α induced down-regulation of lysyl oxidase family in anterior cruciate ligament and medial collateral ligament fibroblasts. Knee 2014, 21, 47–53. [Google Scholar] [CrossRef]
- Xu, C.; Zhang, Y.; Linawati, S.; Yang, L.; Chen, R.; Sung, K. Bay11-7082 facilitates wound healing by antagonizing mechanical injury- and TNF-α-induced expression of MMPs in posterior cruciate ligament. Connect. Tissue. Res. 2019, 60, 311–322. [Google Scholar] [CrossRef]
- Umezawa, K.; Lin, Y. Inhibition of matrix metalloproteinase expression and cellular invasion by NF-κB inhibitors of microbial origin. BBA-Proteins Proteom. 2020, 1868, 140412–140418. [Google Scholar] [CrossRef]
- Vater, C.A.; Harris, E.D.; Siegel, R.C. Native cross-links in collagen fbrils induce resistance to human synovial collagenase. Biochem. J. 1979, 181, 639–645. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Jiang, J.; Xie, J.; Xu, C.; Wang, C.; Yin, L.; Yang, L.; Sung, K.L. Combined effects of tumor necrosis factor-α and interleukin-1β on lysyl oxidase and matrix metalloproteinase expression in human knee synovial fibroblasts in vitro. Exp. Ther. Med. 2017, 14, 5258–5266. [Google Scholar] [CrossRef]
- Tang, Z.; Yang, L.; Wang, Y.; Xue, R.; Zhang, J.; Huang, W.; Chen, P.C.; Sung, K.L.P. Contributions of different intraarticular tissues to the acute phase elevation of synovial fluid MMP-2 following rat ACL rupture. J. Orthop. Res. 2010, 27, 243–248. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, L.; Zhang, J.; Xue, R.; Sung, K.L.P. Differential MMP-2 activity induced by mechanical compression and inflammatory factors in human synoviocytes. Mol. Cell. Biomech. 2010, 7, 105–114. [Google Scholar]
- Zhang, Y.; Huang, W.; Jiang, J.; Xie, J.; Xu, C.; Wang, C.; Yin, L.; Yang, L.; Zhou, K.; Chen, P.; et al. Influence of TNF-α and biomechanical stress on matrix metalloproteinases and lysyl oxidases expressions in human knee synovial fibroblasts. Knee Surg. Sports Traumatol. Arthrosc. 2014, 22, 1997–2006. [Google Scholar] [CrossRef]
- Bigoni, M.; Sacerdote, P.; Turati, M.; Franchi, S.; Torsello, A. Acute and late changes in intraarticular cytokine levels following anterior cruciate ligament injury. J. Orthop. Res. 2013, 31, 315–321. [Google Scholar] [CrossRef]
- Li, Q.; Cheng, Q.; Chen, Z.; Peng, R.; Chen, R.; Ma, Z.; Wan, X.; Liu, J.; Meng, M.; Peng, Z. MicroRNA-663 inhibits the proliferation, migration and invasion of glioblastoma cells via targeting TGF-β1. Oncol. Rep. 2016, 35, 1125–1134. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Sun, Z.; Yang, S.; Chen, B.; Shi, J. CTRP6 inhibits cell proliferation and ECM expression in rat mesangial cells cultured under TGF-β1. Biomed. Pharmacother. 2018, 97, 280–285. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, Z.; Xue, R.; Gurinder, K.S.; Lv, Y.; Shi, K.; Cai, K.; Deng, L.; Yang, L. TGF-β1 promoted MMP-2 mediated wound healing of anterior cruciate ligament fibroblasts through NF-κB. Connect. Tissue Res. 2011, 52, 218–225. [Google Scholar] [CrossRef]
- Kim, H.S.; Shang, T.; Chen, Z.; Pflugfelder, S.C.; Li, D.Q. TGF-beta1 stimulates production of gelatinase (MMP-9), collagenases (MMP-1, -13) and stromelysins (MMP-3, -10, -11) by human corneal epithelial cells. Exp. Eye Res. 2004, 79, 263–274. [Google Scholar] [CrossRef]
- Fang, Y.; Chang, H.M.; Cheng, J.C.; Klausen, C.; Leung, P.C.K.; Yang, X. TGF-β1 increases lysyl oxidase by reducing miR-29a in human granulosa-lutein cells. Reproduction 2016, 152, 205–213. [Google Scholar] [CrossRef]
- Anitua, E.; Sánchez, M.; Maria, D.L.F.; Azofra, J.; Zalduendo, M.; Aguirre, J.J.; Andia, I. Relationship between investigative biomarkers and radiographic grading in patients with knee osteoarthritis. Int. J. Rheumatol. 2009, 2009, 747432. [Google Scholar] [CrossRef]
- Schlaak, J.F.; Pfers, I.; Büschenfelde, K.H.M.Z.; Märker-Hermann, E. Different cytokine profiles in the synovial fluid of patients with osteoarthritis, rheumatoid arthritis and seronegative spondylarthropathies. Clin. Exp. Rheumatol. 1996, 14, 155–162. [Google Scholar]
- Monaco, J.A.L.; Lawrence, W.T. Acute wound healing-An overview. Clin. Plast. Surg. 2003, 30, 1–12. [Google Scholar] [CrossRef]
- Ding, J.; Kwan, P.; Ma, Z.; Iwashina, T.; Wang, J.; Shankowsky, H.A.; Tredget, E.E. Synergistic effect of vitamin D and low concentration of transforming growth factor beta 1, a potential role in dermal wound healing. Burns 2016, 42, 1277–1286. [Google Scholar] [CrossRef]
- Hunziker, E. Repair of partial-thickness defects in articular cartilage: Cell recruitment from the synovial membrane. J. Bone Joint. Surg. Am. 1996, 78, 721–733. [Google Scholar] [CrossRef]
- Davidson, J.M. Transforming growth factor-beta stimulates wound healing and modulates extracellular matrix gene expression in pig skin: Incisional wound model. Lab. Investig. 1990, 63, 307–319. [Google Scholar]
- Coşkun, Ş.; Peker, E.G.G.; Balabanli, B.; Ahiska, S.; Acartürk, F. Effect of transforming growth factor beta 1 (TGF-beta 1) on nitric oxide production and lipid peroxidation in oral mucosal wound healing. Med. Chem. Res. 2011, 20, 23–28. [Google Scholar] [CrossRef]
- Zhang, C.; Tan, C.K.; McFarlane, C.; Sharma, M.; Tan, N.S.; Kambadur, R. Myostatin-null mice exhibit delayed skin wound healing through the blockade of transforming growth factor-βsignaling by decorin. Am. J. Physiol. Cell Physiol. 2012, 302, 1213–1225. [Google Scholar] [CrossRef] [Green Version]
- Desrosiers, E.A.; Yahia, L.; Rivard, C.H. Proliferative and matrix synthesis response of canine anterior cruciate ligament fibroblasts submitted to combined growth factors. J. Orthop. Res. 1996, 14, 200–208. [Google Scholar] [CrossRef]
- Amiel, D.; Nagineni, C.N.; Choi, S.H.; Lee, J. Intrinsic properties of ACL and MCL cells and their responses to growth factors. Med. Sci. Sport Exerc. 1995, 27, 844–851. [Google Scholar] [CrossRef]
- Pepper, M.S.; Vassalli, J.D.; Orci, L.; Montesano, R. Biphasic effect of transforming growth factor-β1 on in vitro angiogenesis. Exp. Cell. Res. 1993, 204, 356–363. [Google Scholar] [CrossRef]
- Hall, M.C. The comparative role of activator protein 1 and Smad factors in the regulation of timp-1 and mmp-1 gene expression by transforming growth factor-β1. J. Biol. Chem. 2003, 278, 10304–10313. [Google Scholar] [CrossRef] [Green Version]
- Yuan, W.H.; Varga, J. Transforming growth factor-β repression of matrix metalloproteinase-1 in dermal fibroblasts involves smad3. J. Biol. Chem. 2016, 276, 38502–38510. [Google Scholar] [CrossRef] [Green Version]
- Roy, R.; Polgar, P.; Wang, Y.Y.; Goldstein, R.H.; And, L.T.; Kagan, H.M. Regulation of lysyl oxidase and cyclooxygenase expression in human lung fibroblasts: Interactions among TGF-beta, IL-1 beta, and prostaglandin E. J. Cell. Biochem. 2015, 62, 411–417. [Google Scholar] [CrossRef]
- Hong, H.H.; Uzel, M.I.; Duan, C.N.; Sheff, M.C.; Trackman, P.C. Regulation of lysyl oxidase, collagen, and connective tissue growth factor by TGF-beta1 and detection in human gingiva. Lab. Investig. 1999, 79, 1655–1667. [Google Scholar]
- Ezzoukhry, Z.; Henriet, E.; Piquet, L.; Boyé, K.; Bioulac-Sage, P.; Balabaud, C.; Couchy, G.; Zucman-Rossi, J.; Moreau, V.; Saltel, F. TGF-β1 promotes linear invadosome formation in hepatocellular carcinoma cells, through DDR1 up-regulation and collagen I cross-linking. Eur. J. Cell Biol. 2016, 95, 503–512. [Google Scholar] [CrossRef]
- Bais, M.; Mehra, P. Lysyl oxidase like-2: Potential anabolic agent expressed in hip, knee and temporomandibular joints arthritis. Int. J. Oral. Max. Surg. 2019, 48, 172–173. [Google Scholar] [CrossRef]
- Hajdú, I. Matrix metalloproteinase inhibitors: A critical appraisal of design principles and proposed therapeutic utility. Drugs 2010, 70, 949–964. [Google Scholar]
- Zhan, D.; Guo, L.; Zheng, L. Inhibition of the receptor for advanced glycation promotes proliferation and repair of human periodontal ligament fibroblasts in response to high glucose via the NF-kappa B signaling pathway. Arch. Oral. Biol. 2018, 87, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Zhang, Y.; Qu, X.; Wang, Z.; Yang, T. Effect of hyperoside on the proliferation and apoptosis of human gastric cancer cells by inhibiting the NF-κB pathway. Acta. Med. Mediterr. 2020, 36, 471–475. [Google Scholar]
- Lei, R.; Li, J.; Liu, F.; Li, W.; Zhang, S.; Wang, Y.; Chu, X.; Xu, J. HIF-1α promotes the keloid development through the activation of TGF-β/Smad and TLR4/MyD88/NF-κB pathways. Cell. Cycle 2019, 18, 3239–3250. [Google Scholar] [CrossRef] [PubMed]
- Kunnumakkara, A.B.; Shabnam, B.; Girisa, S.; Harsha, C.; Aggarwal, B.B. Inflammation, NF-κB, and chronic diseases: How are they linked? Crit. Rev. Immunol. 2020, 40, 1–39. [Google Scholar] [CrossRef]
- Choy, K.W.; Murugan, D.; Leong, X.F.; Abas, R.; Mustafa, M.R. Flavonoids as natural anti-inflammatory agents targeting nuclear factor-kappa B (NFκB) signaling in cardiovascular diseases: A mini review. Front. Pharmacol. 2019, 10, 1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, J.; Cao, J.; Yu, L.; Ma, H. Dehydroepiandrosterone alleviates E. Coli O157:H7-induced inflammation by preventing the activation of p38 MAPK and NF-κB pathways in mice peritoneal macrophages-sciencedirect. Mol. Immunol. 2019, 114, 114–122. [Google Scholar] [CrossRef]
- Horie, K.; Ma, J.; Umezawa, K. Inhibition of canonical NF-κB nuclear localization by (-)-DHMEQ via impairment of DNA binding. Oncol. Res. 2015, 22, 105–115. [Google Scholar] [CrossRef]
- Zhang, Q.; Mao, Z.; Sun, J. NF-κB inhibitor, BAY11-7082, suppresses M2 tumor-associated macrophage induced EMT potential via miR-30a/NF-κB/snail signaling in bladder cancer cells. Gene 2019, 710, 91–97. [Google Scholar] [CrossRef]
- Tang, Z.; Yang, L.; Xue, R.; Zhang, J.; Wang, Y.; Chen, P.C.; Sung, K.L.P. Differential expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in anterior cruciate ligament and medial collateral ligament fibroblasts after a mechanical injury: Involvement of the p65 subunit of NF-κB. Wound. Repair. Regen. 2009, 17, 709–716. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, Z.; Xue, R.; Singh, G.K.; Shi, K.; Lv, Y.; Yang, L. Combined effects of TNF-α, IL-1β, and HIF-1α on MMP-2 production in ACL fibroblasts under mechanical stretch: An in vitro study. J. Orthop. Res. 2011, 29, 1008–1014. [Google Scholar] [CrossRef] [PubMed]
- Eisenbud, D.E. Oxygen in wound healing:nutrient, antibiotic, signaling molecule, and therapeutic agent. Clin. Plast. Surg. 2012, 39, 293–310. [Google Scholar] [CrossRef] [PubMed]
- Tandara, A.A.; Mustoe, T.A. Oxygen in wound healing—More than a nutrient. World J. Surg. 2004, 28, 294–300. [Google Scholar] [CrossRef] [PubMed]
Gene | Forward Primer (5′-3′) | Reverse Primer (5′-3′) |
---|---|---|
GAPDH | GCACCGTCAAGGCTGAGAAC | TGGTGAAGACGCCAGTGGA |
LOX | GCATACAGGGCAGATGTCAGA | TTGGCATCAAGCAGGTCATAG |
LOXL-1 | TGCCACCAGCATTACCACAG | GAGGTTGCCGAAGTCACAGG |
LOXL-2 | CTGCAAGTTCAATGCCGAGT | TCTCCACCAGCACCTCCACTC |
LOXL-3 | CAACAGGAGGTTTGAACGCTAC | GCTGACATGGGTTTCTTGGTAA |
LOXL-4 | TTCACCCACTACGACCTCCTCA | CAGCAGCCTACAGTCACTCCCT |
MMP-1 | GGCTGAAAGTGACTGGGAAACC | TGCTCTTGGCAAATCTGGCGTG |
MMP-2 | ACCGGGATAAGAAGTATGGATT | GTCATCATCGTAGTTGGTTGTG |
MMP-3 | GACAAAGGATACAACAGGGAC | TGAGTGAGTGATAGAGTGGG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, C.; Li, X.; Yang, L. TGF-β1 and Mechanical-Stretch Induction of Lysyl-Oxidase and Matrix-Metalloproteinase Expression in Synovial Fibroblasts Requires NF-κB Pathways. Processes 2022, 10, 1574. https://doi.org/10.3390/pr10081574
Zhang Y, Wang C, Li X, Yang L. TGF-β1 and Mechanical-Stretch Induction of Lysyl-Oxidase and Matrix-Metalloproteinase Expression in Synovial Fibroblasts Requires NF-κB Pathways. Processes. 2022; 10(8):1574. https://doi.org/10.3390/pr10081574
Chicago/Turabian StyleZhang, Yanjun, Chunli Wang, Xiaona Li, and Li Yang. 2022. "TGF-β1 and Mechanical-Stretch Induction of Lysyl-Oxidase and Matrix-Metalloproteinase Expression in Synovial Fibroblasts Requires NF-κB Pathways" Processes 10, no. 8: 1574. https://doi.org/10.3390/pr10081574
APA StyleZhang, Y., Wang, C., Li, X., & Yang, L. (2022). TGF-β1 and Mechanical-Stretch Induction of Lysyl-Oxidase and Matrix-Metalloproteinase Expression in Synovial Fibroblasts Requires NF-κB Pathways. Processes, 10(8), 1574. https://doi.org/10.3390/pr10081574