Effects of Alkaline-Reduced Water on Exercise-Induced Oxidative Stress and Fatigue in Young Male Healthy Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Study Design
2.3. Preparation of Test Water
2.4. Measurement of ROS
2.5. Measurement of NO Activity
2.6. Measurement of GPx
2.7. Measurement of MDA
2.8. Measurement of Lactate Levels and LDH Assay
2.9. Phosphate Assay
2.10. Data Management and Statistical Analysis
3. Results
3.1. Characteristics of Study Participants
3.2. Effect of Drinking ARW after Exercise on Oxidative Stress
3.3. Effect of Drinking ARW after Exercise on Antioxidant Enzymes
3.4. Effects of Drinking ARW after Exercise on Lactate, LDH, and Phosphate Levels
3.5. Correlation of ARW Consumption with Oxidative Stress and Fatigue Markers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knez, W.L.; Coombes, J.S.; Jenkins, D.G. Ultra-endurance exercise and oxidative damage. Sports Med. 2006, 36, 429–441. [Google Scholar] [CrossRef] [PubMed]
- Zuo, L.; Nogueira, L.; Hogan, M.C. Reactive oxygen species formation during tetanic contractions in single isolated xenopus myofibers. J. Appl. Physiol. 2011, 111, 898–904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neubauer, O.; Reichhold, S.; Nersesyan, A.; König, D.; Wagner, K.-H. Exercise-induced DNA damage: Is there a relationship with inflammatory responses? Exerc. Immunol. Rev. 2008, 14, 51–72. [Google Scholar] [PubMed]
- Powers, S.K.; Nelson, W.B.; Hudson, M.B. Exercise-induced oxidative stress in humans: Cause and consequences. Free Radic. Biol. Med. 2011, 51, 942–950. [Google Scholar] [CrossRef] [PubMed]
- Vollaard, N.B.; Shearman, J.P.; Cooper, C.E. Exercise-induced oxidative stress. Sports Med. 2005, 35, 1045–1062. [Google Scholar] [CrossRef]
- Davies, K.J.; Quintanilha, A.T.; Brooks, G.A.; Packer, L. Free radicals and tissue damage produced by exercise. Biochem. Biophys. Res. Commun. 1982, 107, 1198–1205. [Google Scholar] [CrossRef]
- Duthie, G.G.; Robertson, J.D.; Maughan, R.J.; Morrice, P.C. Blood antioxidant status and erythrocyte lipid peroxidation following distance running. Arch. Biochem. Biophys. 1990, 282, 78–83. [Google Scholar] [CrossRef]
- Marzatico, F.; Pansarasa, O.; Bertorelli, L.; Somenzini, L.; Della Valle, G. Blood free radical antioxidant enzymes and lipid peroxides following long-distance and lactacidemic performances in highly trained aerobic and sprint athletes. J. Sports Med. Phys. Fit. 1997, 37, 235–239. [Google Scholar]
- Todd, J. Lactate: Valuable for physical performance and maintenance of brain function during exercise. Biosci. Horiz. 2014, 7, hzu001. [Google Scholar] [CrossRef]
- Garnacho-Castaño, M.V.; Domínguez, R.; Ruiz-Solano, P.; Maté-Muñoz, J.L. Acute physiological and mechanical responses during resistance exercise at the lactate threshold intensity. J. Strength Cond. Res. 2015, 29, 2867–2873. [Google Scholar] [CrossRef]
- Nikseresht, A.; Yabande, I.; Rahmanian, K.; Jahromi, A.S. Blood lactate level in elite boy swimmers after lactate tolerance exercise test. Biomed. Res. Ther. 2017, 4, 1318–1326. [Google Scholar] [CrossRef] [Green Version]
- Lippi, G.; Schena, F.; Salvagno, G.; Montagnana, M.; Gelati, M.; Tarperi, C.; Banfi, G.; Guidi, G. Acute variation of biochemical markers of muscle damage following a 21-km, half-marathon run. Scand. J. Clin. Lab. Investig. 2008, 68, 667–672. [Google Scholar] [CrossRef] [PubMed]
- Ara, J.; Fadriquela, A.; Ahmed, M.F.; Bajgai, J.; Sajo, M.E.J.; Lee, S.P.; Kim, T.S.; Jung, J.Y.; Kim, C.S.; Kim, S.-K. Hydrogen water drinking exerts antifatigue effects in chronic forced swimming mice via antioxidative and anti-inflammatory activities. BioMed. Res. Int. 2018, 2018, 2571269. [Google Scholar] [CrossRef]
- Morillas-Ruiz, J.; García, J.V.; López, F.; Vidal-Guevara, M.; Zafrilla, P. Effects of polyphenolic antioxidants on exercise-induced oxidative stress. Clin. Nutr. 2006, 25, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Bajgai, J.; Kim, C.-S.; Rahman, M.; Jeong, E.-S.; Jang, H.-Y.; Kim, K.-E.; Choi, J.; Cho, I.-Y.; Lee, K.-J.; Lee, M. Effects of alkaline-reduced water on gastrointestinal diseases. Processes 2022, 10, 87. [Google Scholar] [CrossRef]
- Delos Reyes, F.S.L.G.; Mamaril, A.C.C.; Matias, T.J.P.; Tronco, M.K.V.; Samson, G.R.; Javier, N.D.; Fadriquela, A.; Antonio, J.M.; Sajo, M.E. The search for the elixir of life: On the therapeutic potential of alkaline reduced water in metabolic syndromes. Processes 2021, 9, 1876. [Google Scholar] [CrossRef]
- Ignacio, R.M.C.; Joo, K.-B.; Lee, K.-J. Clinical effect and mechanism of alkaline reduced water. J. Food Drug Anal. 2012, 20, 394–397. [Google Scholar] [CrossRef]
- Hamasaki, T.; Harada, G.; Nakamichi, N.; Kabayama, S.; Teruya, K.; Fugetsu, B.; Gong, W.; Sakata, I.; Shirahata, S. Electrochemically reduced water exerts superior reactive oxygen species scavenging activity in ht1080 cells than the equivalent level of hydrogen-dissolved water. PLoS ONE 2017, 12, e0171192. [Google Scholar] [CrossRef]
- Shirahata, S.; Hamasaki, T.; Teruya, K. Advanced research on the health benefit of reduced water. Trends Food Sci. Technol. 2012, 23, 124–131. [Google Scholar] [CrossRef] [Green Version]
- Sahlin, K. Intracellular ph and energy metabolism in skeletal muscle of man with special reference to exercise. Acta Physiol. Scand. Suppl. 1978, 455, 1–56. [Google Scholar]
- Zajac, A.; Cholewa, J.; Poprzecki, S.; Waskiewicz, Z.; Langfort, J. Effects of sodium bicarbonate ingestion on swim performance in youth athletes. J. Sports Sci. Med. 2009, 8, 45–50. [Google Scholar]
- Chycki, J.; Kurylas, A.; Maszczyk, A.; Golas, A.; Zajac, A. Alkaline water improves exercise-induced metabolic acidosis and enhances anaerobic exercise performance in combat sport athletes. PLoS ONE 2018, 13, e0205708. [Google Scholar] [CrossRef]
- Kurylas, A.; Zajac, T.; Chycki, J.; Maszczyk, A.Z.A.; Zajac, A. naerobic performance and acid-base balance in basketball players after the consumption of highly alkaline water. Trends Food Sci. Technol. 2018, 5, 134–139. [Google Scholar]
- Ostojic, S.M.; Stojanovic, M.D. Hydrogen-rich water affected blood alkalinity in physically active men. Res. Sports Med. 2014, 22, 49–60. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G * power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Riebe, D.; Ehrman, J.K.; Liguori, G.; Magal, M. ACSM’s guidelines for exercise testing and prescription. In American College of Sports Medicine; Wolters Kluwer: Alphen aan den Rijn, The Netherlands, 2018. [Google Scholar]
- Eruslanov, E.; Kusmartsev, S. Identification of ros using oxidized dcfda and flow-cytometry. In Advanced Protocols in Oxidative Stress II; Springer: Berlin/Heidelberg, Germany, 2010; pp. 57–72. [Google Scholar]
- Poveda, J.; Riestra, A.; Salas, E.; Cagigas, M.; López-Somoza, C.; Amado, J.; Berrazueta, J. Contribution of nitric oxide to exercise-induced changes in healthy volunteers: Effects of acute exercise and long-term physical training. Eur. J. Clin. Investig. 1997, 27, 967–971. [Google Scholar] [CrossRef]
- Flohé, L.; Günzler, W.A. [12] assays of glutathione peroxidase. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1984; Volume 105, pp. 114–120. [Google Scholar]
- Buege, J.A.; Aust, S.D. [30] Microsomal lipid peroxidation. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1978; Volume 52, pp. 302–310. [Google Scholar]
- Bonet, J.B.; Javierre, C.; Guimarães, J.T.; Martins, S.; Rizo-Roca, D.; Beleza, J.; Viscor, G.; Pagès, T.; Magalhães, J.; Torrella, J.R. Benefits on hematological and biochemical parameters of a high-intensity interval training program for a half-marathon in recreational middle-aged women runners. Int. J. Environ. Health Res. 2022, 19, 498. [Google Scholar] [CrossRef]
- Bruce, R.A.; Kusumi, F.; Hosmer, D. Maximal oxygen intake and nomographic assessment of functional aerobic impairment in cardiovascular disease. Am. Heart J. 1973, 85, 546–562. [Google Scholar] [CrossRef]
- Chen, Q.; Wei, P. Biotechnology. Icariin supplementation protects mice from exercise-induced oxidant stress in liver. Food Sci. Biotechnol. 2013, 22, 1–5. [Google Scholar]
- Dillard, C.; Litov, R.; Savin, W.; Dumelin, E.; Tappel, A.L. Effects of exercise, vitamin e, and ozone on pulmonary function and lipid peroxidation. J. Appl. Physiol. 1978, 45, 927–932. [Google Scholar] [CrossRef]
- Yan, F.; Wang, B.; Zhang, Y. Polysaccharides from cordyceps sinensis mycelium ameliorate exhaustive swimming exercise-induced oxidative stress. Pharm. Biol. 2014, 52, 157–161. [Google Scholar] [CrossRef]
- Zhonghui, Z.; Xiaowei, Z.; Fang, F. Ganoderma lucidum polysaccharides supplementation attenuates exercise-induced oxidative stress in skeletal muscle of mice. Saudi J. Biol. Sci. 2014, 21, 119–123. [Google Scholar] [CrossRef] [Green Version]
- Shirahata, S.; Kabayama, S.; Nakano, M.; Miura, T.; Kusumoto, K.; Gotoh, M.; Hayashi, H.; Otsubo, K.; Morisawa, S.; Katakura, Y. Electrolyzed–reduced water scavenges active oxygen species and protects DNA from oxidative damage. Biochem. Biophys. Res. Commun. 1997, 234, 269–274. [Google Scholar] [CrossRef]
- Powers, S.K.; Criswell, D.; Lawler Martin, D.; Herb, R.A.; Dudley, G. Influence of exercise and fiber type on antioxidant enzyme activity in rat skeletal muscle. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1994, 266, R375–R380. [Google Scholar] [CrossRef]
- Ji, L.L.; Fu, R.; Mitchell, E.W. Glutathione and antioxidant enzymes in skeletal muscle: Effects of fiber type and exercise intensity. J. Appl. Physiol. 1992, 73, 1854–1859. [Google Scholar] [CrossRef]
- Ji, L.L.; Fu, R. Responses of glutathione system and antioxidant enzymes to exhaustive exercise and hydroperoxide. J. Appl. Physiol. 1992, 72, 549–554. [Google Scholar] [CrossRef]
- Weidman, J.; Holsworth, R.E.; Brossman, B.; Cho, D.J.; Cyr, J.S.; Fridman, G.J. Effect of electrolyzed high-pH alkaline water on blood viscosity in healthy adults. J. Int. Soc. Sports Nutr. 2016, 13, 45. [Google Scholar] [CrossRef] [Green Version]
- Rias, Y.A.; Kurniawan, A.L.; Chang, C.W.; Gordon, C.J.; Tsai, H.T.J.A. Synergistic effects of regular walking and alkaline electrolyzed water on decreasing inflammation and oxidative stress, and increasing quality of life in individuals with type 2 diabetes: A community based randomized controlled trial. Antioxidants 2020, 9, 946. [Google Scholar] [CrossRef]
- Dobashi, S.; Takeuchi, K.; Koyama, K. Hydrogen-rich water suppresses the reduction in blood total antioxidant capacity induced by 3 consecutive days of severe exercise in physically active males. Med. Gas Res. 2020, 10, 21–26. [Google Scholar]
- Kayatekin, B.; Gönenç, S.; Açikgöz, O.; Uysal, N.; Dayi, A. Effects of sprint exercise on oxidative stress in skeletal muscle and liver. Eur. J. Appl. Physiol. 2002, 87, 141–144. [Google Scholar] [CrossRef]
- Vetharaniam, I.; Thomson, R.A.; Devine, C.; Daly, C. Modelling muscle energy-metabolism in anaerobic muscle. Meat Sci. 2010, 85, 134–148. [Google Scholar] [CrossRef]
- Duan, F.-F.; Guo, Y.; Li, J.-W.; Yuan, K. Antifatigue effect of luteolin-6-c-neohesperidoside on oxidative stress injury induced by forced swimming of rats through modulation of nrf2/are signaling pathways. Oxidative Med. Cell. Longev. 2017, 2017, 3159358. [Google Scholar] [CrossRef]
- Liu, J.; Du, C.; Wang, Y.; Yu, Z. Anti-fatigue activities of polysaccharides extracted from hericium erinaceus. Exp. Ther. Med. 2015, 9, 483–487. [Google Scholar] [CrossRef] [Green Version]
- Wan, J.-J.; Qin, Z.; Wang, P.-Y.; Sun, Y.; Liu, X. Muscle fatigue: General understanding and treatment. Exp. Mol. Med. 2017, 49, e384. [Google Scholar] [CrossRef] [Green Version]
- Allen, D.G.; Lamb, G.D.; Westerblad, H. Impaired calcium release during fatigue. J. Appl. Physiol. 2008, 104, 296–305. [Google Scholar] [CrossRef]
- Ratel, S.; Duche, P.; Hennegrave, A.; Van Praagh, E.; Bedu, M. Acid-base balance during repeated cycling sprints in boys and men. J. Appl. Physiol. 2002, 92, 479–485. [Google Scholar] [CrossRef] [Green Version]
- Russell, M.; Kingsley, M.I.C. Changes in acid-base balance during simulated soccer match play. J. Strength Cond. Res. 2012, 26, 2593–2599. [Google Scholar] [CrossRef]
Variables | Unit | Median | Minimum | Maximum |
---|---|---|---|---|
Age | year | 22.0 | 18.0 | 25.0 |
Height | cm | 175.1 | 164.4 | 185.6 |
Weight | kg | 70.5 | 61.5 | 83.9 |
BMI | kg/m2 | 23.4 | 19.5 | 27.1 |
Lean mass | kg | 33.1 | 29.1 | 42.2 |
Body fat | % | 16.4 | 12.2 | 21.8 |
RPE max | 19.0 | 17.0 | 20.0 | |
HR max | beats·min−1 | 200.0 | 186.0 | 214.0 |
Exercise time | seconds | 826.0 | 717.0 | 1037.0 |
VO2 max * | mL·kg·min−1 | 50.1 | 44.0 | 62.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, M.; Fadriquela, A.; Antonio, J.M.; Kim, C.-S.; Cho, I.-Y.; Kim, K.-E.; An, W.-S.; Jang, H.-Y.; Bajgai, J.; Lee, K.-J. Effects of Alkaline-Reduced Water on Exercise-Induced Oxidative Stress and Fatigue in Young Male Healthy Adults. Processes 2022, 10, 1543. https://doi.org/10.3390/pr10081543
Lee M, Fadriquela A, Antonio JM, Kim C-S, Cho I-Y, Kim K-E, An W-S, Jang H-Y, Bajgai J, Lee K-J. Effects of Alkaline-Reduced Water on Exercise-Induced Oxidative Stress and Fatigue in Young Male Healthy Adults. Processes. 2022; 10(8):1543. https://doi.org/10.3390/pr10081543
Chicago/Turabian StyleLee, Mihyun, Ailyn Fadriquela, Jayson M. Antonio, Cheol-Su Kim, Il-Young Cho, Ka-Eun Kim, Wan-Sik An, Hong-Young Jang, Johny Bajgai, and Kyu-Jae Lee. 2022. "Effects of Alkaline-Reduced Water on Exercise-Induced Oxidative Stress and Fatigue in Young Male Healthy Adults" Processes 10, no. 8: 1543. https://doi.org/10.3390/pr10081543
APA StyleLee, M., Fadriquela, A., Antonio, J. M., Kim, C.-S., Cho, I.-Y., Kim, K.-E., An, W.-S., Jang, H.-Y., Bajgai, J., & Lee, K.-J. (2022). Effects of Alkaline-Reduced Water on Exercise-Induced Oxidative Stress and Fatigue in Young Male Healthy Adults. Processes, 10(8), 1543. https://doi.org/10.3390/pr10081543