Research on Technology of Medicinal Functional Food
Abstract
:1. Introduction
2. Coating Method
2.1. Sugar Coating
2.1.1. Sealing the Particle Core
2.1.2. Subcoating
2.1.3. Smoothing
2.1.4. Coloring
2.1.5. Polishing
2.2. Film Coating
2.3. Enteric Coating
3. Coating Techniques
3.1. Pan Coating Method
3.2. Fluidized Bed Coating Method
3.3. Compression Coating Method
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sastry, S.V.; Nyshadham, J.R.; Fix, J.A. Recent technological advances in oral functional food delivery—A review. Pharm. Sci. Technol. Today 2000, 3, 138–145. [Google Scholar] [CrossRef]
- Siyuan, C.; Min, L.; Lina, Z.; Yue, H.; Dan, R.; Xiyu, W.; Dan, X. Addition of montmorillonite to improve the barrier and wetting properties of chitosan-based coatings and the application on the preservation of Shatang mandarin. Food Packag. Shelf Life 2022, 33, 2214–2894. [Google Scholar]
- Kim, B.K.; Lee, J.S.; Lee, C.H.; Park, D.J. Preparation of low-fat uptake frying batter composite by dry particle coating of microparticulated soybean hull. LWT Food Sci. Technol. 2008, 41, 34–41. [Google Scholar] [CrossRef]
- Dimantov, A.; Greenberg, M.; Kesselman, E.; Shimoni, E. Study of high amylose corn starch as food grade enteric coating in a microcapsule model system. Innov. Food Sci. Emerg. Technol. 2004, 5, 93–100. [Google Scholar] [CrossRef]
- Fu, G.N.; Yi, X.D.; Qiu, P.Z.; Bin, Z.; Demei, H.; Shuang, M.; Feina, G.; Weichun, P. Ovalbumin/carboxymethylcellulose colloids: Particle compactness and interfacial stability. Food Chem. 2022, 372, 131223. [Google Scholar]
- Nina, F.; Lozhechnikova, A.; Khakalo, A.; Johansson, L.S.; Vartiainen, J.; Österberg, M. Layer-by-layer assembled hydrophobic coatings for cellulose nanofibril films and textiles, made of polylysine and natural wax particles. Carbohydr. Polym. 2017, 173, 392–402. [Google Scholar]
- Kamble, N.D.; Chaudhari, P.S.; Oswal, R.J.; Kshirsagar, S.S.; Antre, R.V.; Wagholi, P. Innovations in particle coating technology: A review. Int. J. Appl. Biol. Pharm. Technol. 2011, 2, 214–218. [Google Scholar]
- Zhang, W.; Jiang, H.; Rhim, J.W.; Cao, J.; Jiang, W. Effective strategies of sustained release and retention enhancement of essential oils in active food packaging films/coatings. Food Chem. 2021, 367, 130671. [Google Scholar] [CrossRef]
- Sahraee, S.; Milani, J.M.; Regenstein, J.M.; Kafil, H.S. Protection of foods against oxidative deterioration using edible films and coatings: A review. Food Biosci. 2019, 32, 100451. [Google Scholar] [CrossRef]
- Gaur, P.K.; Mishra, S.; Gautam, R.; Singh, A.P.; Yasir, M. Film Coating Technology: Past, Present and Future. J. Pharm. Sci. Pharmacol. 2014, 1, 57–67. [Google Scholar] [CrossRef]
- Shirai, Y.; Sogo, K.; Yamamoto, K.; Kojima, K.; Fujioka, H.; Makita, H.; Nakamura, Y. A Novel Fine Granule System for Masking Bitter Taste. Biol. Pharm. Bull. 1993, 16, 172–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olthoff, M.; De Boer, L.; Akkerboom, P. Pharmaceutical Composition, Pharmaceutical Granulate and Process of Their Preparation. European Patent EP0281200B1, 7 September 1988. [Google Scholar]
- Prakash, I.; Chudasama, J.; Gupta, P.; Dev, R.; Shekhar, S.; Kumar, M. Formulation and In Vitro Bioequivalence Study of Amoxycillin & Potassium Clavulanate Fast Dispersible Tablet. Pharm. Tutor. 2014, 11, 102–111. [Google Scholar]
- Sauer, D.; Zheng, W.; Coots, L.B.; McGinity, J.W. Influence of processing parameters and formulation factors on the functional food release from particles powder-coated with Eudragit® L 100-55. Eur. J. Pharm. Biopharm. 2007, 67, 464–475. [Google Scholar] [CrossRef] [PubMed]
- Cerea, M.; Zheng, W.; Young, C.R.; McGinity, J.W. A novel powder coating process for attaining taste masking and moisture protective films applied to particles. Int. J. Pharm. 2004, 279, 127–139. [Google Scholar] [CrossRef]
- Kayumba, P.C.; Huyghebaert, N.; Cordella, C.B.Y.; Ntawukuliryayo, J.D.; Vervaet, C.; Remon, J. Quinine sulphate pellets for flexible pediatric drug dosing: Formulation development and evaluation of taste-masking efficiency using the electronic tongue. Eur. J. Pharm. Biopharm. 2007, 66, 460–465. [Google Scholar] [CrossRef]
- Randale, S.A.; Dabhi, C.S.; Tekade, A.R.; Belgamwar, V.S.; Gattani, S.G.; Surana, S.J. Rapidly disintegrating particles containing taste masked metoclopramide hydrochloride prepared by extrusion-precipitation method. Chem. Pharm. Bull. 2010, 58, 443–448. [Google Scholar] [CrossRef] [Green Version]
- Shahzad, Y.; Shah, S.N.H.; Atique, S.; Ansari, M.T.; Bashir, F.; Hussain, T. The evaluation of coated granules to mask the bitter taste of dihydroartemisinin. Braz. J. Pharm. Sci. 2011, 47, 323–330. [Google Scholar] [CrossRef] [Green Version]
- Pearnchob, N.; Siepmann, J. Pharmaceutical Applications of Shellac: Moisture-Protective and Taste-Masking Coatings and Extended-Release Matrix Tablets. Drug Develop. Ind. Pharm. 2003, 29, 925–938. [Google Scholar] [CrossRef]
- Block, J.; Cassiere, A.; Christens, M. Galenicals Form. German Offen DE3900811, 19 July 1990. [Google Scholar]
- Sharma, S.; Lewis, S. Taste masking technologies: A review. Int. J. Pharm. Pharm. Sci. 2010, 2, 6–13. [Google Scholar]
- Gandhi, R.; Issa, C.; Malik, R. Coating Composition for Taste Masking Coating and Methods for Their Application and Use. U.S. Patent US20060159758A1, 11 December 2003. [Google Scholar]
- Nichols, W.; Lee, W.; Kulkarni, N. Multi-Layered Coating Technology for Taste Masking. Google Patents WO2007052121, 5 October 2007. [Google Scholar]
- Hussan, S.D.; Santanu, R.; Verma, P.; Bhandari, V. A review on recent advances of enteric coating. IOSR J. Pharm. 2012, 2, 5–11. [Google Scholar] [CrossRef]
- Tong, H.H.Y.; Chow, A.S.F.; Chan, H.M.; Chow, A.H.L.; Wan, Y.K.Y.; Williams, I.D.; Shek, F.L.Y.; Chan, C.K. Process-Induced Phase Transformation of Berberine Chloride Hydrates. J. Pharm. Sci. 2010, 99, 1942–1954. [Google Scholar] [CrossRef] [PubMed]
- Thakral, S.; Thakral, N.K.; Majumdar, D.K. Eudragit®: A technology evaluation. Exp. Opin. Drug Deliv. 2013, 10, 131–149. [Google Scholar] [CrossRef] [PubMed]
- Nagesh, C.; Venkatesh, J.S.; Santhosh, R.M.; Jagadish, R.; Sindhu, P.; Shankraiah, M. Intragastric Floating Drug Delivery System of Levofloxacin: Formulation and Evaluation. J. Pharm.Sci. Res. 2011, 3, 1265–1268. [Google Scholar]
- Yuan, Y.; He, N.; Dong, L.Y.; Guo, Q.Y.; Zhang, X.; Li, B.; Li, L. Multiscale Shellac-Based Delivery Systems: From Macro- to Nanoscale. ACS Nano 2021, 15, 18794–18821. [Google Scholar] [CrossRef]
- Yu, A.B.C.; John, P.M. Sustained-release pharmaceutical tablet and process for preparation thereof. U.S. Patent US4415547A, 15 November 1982. [Google Scholar]
- Wilson, A.K.; Posey-Dowty, J.; Kelley, S.S. Controlled Release Matrix System Using Cellulose Acetate/Polyvinylpyrrolidone Blends. U.S. Patent US5523095A, 3 June 1996. [Google Scholar]
- Nayak, A.K.; Manna, K. Current developments in orally disintegrating particle technology. J. Pharm. Educ. Res. 2011, 2, 21–34. [Google Scholar]
- Malik, K.; Arora, G.; Singh, I. Taste masked microspheres of ofloxacin: Formulation and evaluation of orodispersible particles. Sci. Pharm. 2011, 79, 653. [Google Scholar] [CrossRef] [Green Version]
- Mafi, I.R.; Dehghanian, C. Comparison of the coating properties and corrosion rates in electroless ni–p/ptfe composites prepared by different types of surfactants. Appl. Surf. Sci. 2011, 257, 8653–8658. [Google Scholar] [CrossRef]
- Mehra, D.K.; Chittamuru, R.; Li-Juan, T.; Porter, S.C. Enteric Film Coating Compositions, Method of Coating Therewith, and Coated Forms. U.S. Patent US6039976 A, 21 March 2000. [Google Scholar]
- Zaid, A.N. A Comprehensive Review on Pharmaceutical Film Coating: Past, Present, and Future. Drug Design, Development and Therapy. Volume 2020, 14, 4613–4623. [Google Scholar]
- Sohi, H.; Sultana, Y.; Khar, R.K. Taste masking technologies in oral pharmaceuticals: Recent developments and approaches. Funct. Food Dev. Ind. Pharm. 2004, 30, 429–448. [Google Scholar] [CrossRef] [Green Version]
- Zaghloul, A.; Vaithiyalingam, S.; Faltinek, J.; Reddy, I.; Khan, M. Response surface methodology to obtain naproxen controlled release particles from its microspheres with Eudragit L100-55. J. Microencapsul. 2001, 18, 651–662. [Google Scholar]
- Jagdale, S.C.; Agavekar, A.J.; Pandya, S.V.; Kuchekar, B.S.; Chabukswar, A.R. Formulation and evaluation of gastroretentive functional food delivery system of propranolol hydrochloride. AAPS PharmSciTech 2009, 10, 1071–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, R.; Fanda, A.K.; Verma, R.K. Extended Release Tablets of Nisoldipine. U.S. Patent US20100247646A1, 30 September 2010. [Google Scholar]
- Dreu, R.; Luštrik, M.; Perpar, M.; Zun, I.; Srcic, S. Fluid-bed coater modifications and study of their influence on the coating process of pellets. Funct. Food Dev. Ind. Pharm. 2012, 38, 501–511. [Google Scholar] [CrossRef] [PubMed]
- Barkouti, A.; Turchiuli, C.; Carcel, A. Milk powder agglomerate growth and properties in fluidized bed agglomeration. Dairy Sci. Technol. 2013, 93, 523–535. [Google Scholar] [CrossRef]
- Sharma, V.; Chopra, H. Role of taste and taste masking of bitter functional foods in pharmaceutical industries an overview. Int. J. Pharm. Pharm. Sci. 2010, 2, 123–125. [Google Scholar]
- Hu, X.; Li, Y.; Zhang, E.; Wang, X.; Xing, M.; Wang, Q.; Lei, J.; Huang, H. Preparation and evaluation of orally disintegrating particles containing taste-masked microcapsules of berberine hydrochloride. AAPS PharmSciTech 2013, 14, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Watano, S.; Nakamura, H.; Hamada, K.; Wakamatsu, Y.; Tanabe, Y.; Dave, R.N.; Pfeffer, R. Fine particle coating by a novel rotating fluidized bed coater. Powder Technol. 2004, 141, 172–176. [Google Scholar] [CrossRef]
- Akhgari, A.; Garekani, H.A.; Sadeghi, F.; Azimaie, M. Statistical optimization of indomethacin pellets coated with pH-dependent methacrylic polymers for possible colonic functional food delivery. Int. J. Pharm. 2005, 305, 22–30. [Google Scholar] [CrossRef]
- Siew, L.F.; Basit, A.W.; Newton, J.M. The potential of organic-based amylose-ethylcellulose film coatings as oral colon-specific functional food delivery systems. AAPS PharmSciTech 2000, 1, 53–61. [Google Scholar] [CrossRef]
- Breitkreutz, J.; El-Saleh, F.; Kiera, C.; Kleinebudde, P.; Wiedey, W. Pediatric functional food formulations of sodium benzoate: II. Coated granules with a lipophilic binder. Eur. J. Pharm. Biopharm. 2003, 56, 255–260. [Google Scholar] [CrossRef]
- Douroumis, D.D.; Gryczke, A.; Schminke, S. Development and evaluation of cetirizine HCl taste-masked oral disintegrating particles. AAPS PharmSciTech 2011, 12, 141–151. [Google Scholar] [CrossRef] [Green Version]
- Stange, U.; Führling, C.; Gieseler, H. Taste masking of naproxen sodium granules by fluid-bed coating. Pharm. Dev. Technol. 2013, 19, 137–147. [Google Scholar] [CrossRef]
- Sharma, D.; Chopra, R.; Bedi, N. Development and evaluation of paracetamol taste masked orally disintegrating particles using polymer coating technique. Int. J. Pharm. Pharm. Sci. 2012, 4, 129–134. [Google Scholar]
- Gao, J.Z.; Jain, A.; Motheram, R.; Gray, D.; Hussain, M. Fluid bed granulation of a poorly water soluble, low density, micronized functional food: Comparison with high shear granulation. Int. J. Pharm. 2002, 237, 1–14. [Google Scholar] [CrossRef]
- Dabre, R.; Nagaprasad, V.; Malik, R. Taste Masked Compositions of Erythromycin a and Derivatives Thereof. Google Patents INDE04262002, 3 April 2003. [Google Scholar]
- Sona, P.S.; Muthulingam, C. Effect of particle size distribution of polymer coated granules on the release profile of Lamotrigine sustained release matrix tablets. Sch. Res. Libr. 2011, 3, 305–316. [Google Scholar]
- Behzadi, S.S.; Toegel, S.; Viernstein, H. Innovations in coating technology. Recent Pat. Drug Deliv. Formul. 2008, 2, 209–230. [Google Scholar] [CrossRef]
- He, W.; Fan, L.-F.; Du, Q.; Xiang, B.; Li, C.-L.; Bai, M.; Chang, Y.-Z.; Cao, D.-Y. Design and in vitro/in vivo evaluation of multi-layer film coated pellets for omeprazole. Chem. Pharm. Bull. 2009, 57, 122–128. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Liu, S.; Dai, Q. Design and evaluation of pH-independent pulsatile release pellets containing isosorbide-5-mononitrate. Chem. Pharm. Bull. 2009, 57, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Ji, C.; Xu, H.; Wu, W. In vitro evaluation and pharmacokinetics in dogs of guar gum and Eudragit FS30D-coated colon-targeted pellets of indomethacin. J. Funct. Food Target. 2007, 15, 123–131. [Google Scholar]
- Blubaugh, F.; Zapapas, J.; Sparks, M. An enteric compression coating I. In vitro studies. J. Am. Pharm. Assoc. 1958, 47, 857–862. [Google Scholar] [CrossRef]
- Law, D.; Zhang, Z. Stabilization and target delivery of nattokinase using compression coating. Funct. Food Dev. Ind. Pharm. 2007, 33, 495–503. [Google Scholar] [CrossRef]
- Sinha, V.; Singh, A.; Singh, S.; Bhinge, J. Compression coated systems for colonic delivery of 5-fluorouracil. J. Pharm. Pharmacol. 2007, 59, 359–365. [Google Scholar] [CrossRef]
- Am, E.M.; Berchielli, A. A thermodynamic model for organic and aqueous tablet film coating. Pharm. Dev. Technol. 2005, 10, 47–58. [Google Scholar]
- Anwar, S.H.; Weissbrodt, J.; Kunz, B. Microencapsulation of fish oil by spray granulation and fluid bed film coating. J. Food Sci. 2010, 75, E359–E371. [Google Scholar] [CrossRef]
- Grosser, T.; Fries, S.; Lawson, J.A.; Kapoor, S.C.; Grant, G.R.; Fitzgerald, G.A. Drug resistance and pseudoresistance: An unintended consequence of enteric coating aspirin. Circulation 2013, 127, 377–385. [Google Scholar] [CrossRef]
- Ketterhagen, W.R. Modeling the motion and orientation of various pharmaceutical tablet shapes in a film coating pan using dem. Int. J. Pharm. 2011, 409, 137–149. [Google Scholar] [CrossRef]
Film Coating | Sugar Coating | Enteric Coating | References |
---|---|---|---|
single-stage process can be automated, small weight increase | low cost of materials, aesthetically pleasing, simple device | strong gastric acid resistance, high safety | [33,34] |
the core material properties are consistent with the formula | operation cannot be automated, multistage process | low dissolution, a certain amount of pollution | [33,34] |
Fluid Bed Coating | Pan Coating | Enteric Coating | References |
---|---|---|---|
good controllability | applicable to many types | strong gastric acid resistance, Security is strong | [62,63,64] |
affected by operation and equipment, etc., poor functional food loading capacity | the range of functional foods is limited, slow-release effect is not good | low dissolution, a certain amount of pollution | [62,63,64] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuang, H.; Chen, X.; Feng, T. Research on Technology of Medicinal Functional Food. Processes 2022, 10, 1509. https://doi.org/10.3390/pr10081509
Zhuang H, Chen X, Feng T. Research on Technology of Medicinal Functional Food. Processes. 2022; 10(8):1509. https://doi.org/10.3390/pr10081509
Chicago/Turabian StyleZhuang, Haining, Xingyu Chen, and Tao Feng. 2022. "Research on Technology of Medicinal Functional Food" Processes 10, no. 8: 1509. https://doi.org/10.3390/pr10081509
APA StyleZhuang, H., Chen, X., & Feng, T. (2022). Research on Technology of Medicinal Functional Food. Processes, 10(8), 1509. https://doi.org/10.3390/pr10081509