Modal Analysis on MVG Controlled Supersonic Flow at Different Mach Numbers
Abstract
:1. Introduction
2. Case Setup and Numerical Methods
2.1. Case Setup
2.2. Numerical Methods
3. Revisiting Proper Orthogonal Decomposition
4. Flow Structures from the Numerical Solution
5. POD Analysis on Ring-like Vortical Structures
5.1. POD Analysis behind the MVG
5.1.1. Mode Energy Distribution
5.1.2. Mode Vortical Structures
5.1.3. Mode Time Coefficient and Spectrum Analysis
5.2. POD Analysis for SWBLI
5.2.1. Mode Energy Distribution
5.2.2. Mode Vortical Structures
5.2.3. Mode Time Coefficient and Spectrum Analysis
6. Conclusions
- 1.
- The streamwise vortical modes and the ring-like vortical modes are disparate in many properties:
- a.
- The streamwise vortical modes have higher energy (11.83% on average behind MVG and 20.36% in SWBLI region) and the ring-like vortical modes have lower energy (3.36% on average behind MVG and 2.23% in SWBLI region).
- b.
- The streamwise vortical modes have disordered structure and the ring-like vortical modes have relatively regular structures.
- c.
- The time coefficients of streamwise vortical modes have greater amplitude (138.21 behind MVG and 100.28 in SWBLI region) and the ring-like ones have smaller amplitude (77.67 behind MVG and 29.53 in SWBLI region).
- d.
- The frequency of ring-like vortical modes (15.54 on average behind MVG and 15.34 in SWBLI region) are higher than the streamwise modes (3.33 on average behind MVG and in SWBLI region).
- 2.
- As Mach number increases:
- a.
- The energy increases for streamwise vortical modes, and vice versa for ring-like vortical modes;
- b.
- The structures of streamwise vortical modes are altered significantly, but ring-like vortical modes have robust structures;
- c.
- The dominant frequency of each mode scarcely varies.
- 3.
- As the vortices travel from the MVG down to the SWBLI region:
- a.
- Streamwise vortices absorb the energy from the ring-like vortices;
- b.
- The amplitude of the time coefficient decreases;
- c.
- The dominant frequency of each mode rarely changes.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Nomenclature
MVG | Micro-vortex generator |
SWBLI | Shock wave/boundary-layer interaction |
DNS | Direct numerical simulation |
LES | Large eddy simulation |
POD | Proper orthogonal decomposition |
Ma | Mach |
Re | Reynolds number based on momentum thickness |
h | Micro ramp height |
x, y, z | Spanwise, normal and streamwise coordinate axes |
u, v, w | Spanwise, normal and streamwise velocity |
References
- Ashill, P.R.; Fulker, J.L.; Hackett, K.C. A review of recent developments in flow control. Aeronaut. J. 2005, 109, 205–232. [Google Scholar] [CrossRef]
- Babinsky, H.; Li, Y.; Ford, C.P. Microramp control of supersonic oblique shock-wave/boundary-layer interactions. AIAA J. 2009, 47, 668–675. [Google Scholar] [CrossRef]
- Dussauge, J.P.; Dupont, P.; Debiève, J.F. Unsteadiness in shock wave boundary layer interaction with separation. Aerosp. Sci. Technol. 2006, 10, 85–91. [Google Scholar] [CrossRef]
- Estruch-Samper, D.; Vanstone, L.; Hillier, R.; Ganapathisubramani, B. Micro vortex generator control of axisymmetric high-speed laminar boundary layer separation. Shock Waves 2015, 25, 521–533. [Google Scholar] [CrossRef]
- Lin, J.C. Review of research on low-profile vortex generators to control boundary-layer separation. Prog. Aerosp. Sci. 2002, 38, 389–420. [Google Scholar] [CrossRef]
- Ma, S.; Chu, W.; Zhang, H.; Li, X.; Kuang, H. A combined application of micro-vortex generator and boundary layer suction in a high load compressor cascade. Chin. J. Aeronaut. 2019, 32, 1171–1183. [Google Scholar] [CrossRef]
- Sun, Z.; Scarano, F.; van Oudheusden, B.W.; Schrijer, F.F.; Yan, Y.; Liu, C. Numerical and experimental investigations of the supersonic microramp wake. AIAA J. 2014, 52, 1518–1527. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Al-Dujaly, H.; Yan, Y.; Zhao, N.; Liu, C. Physics of multiple level hairpin vortex structures in turbulence. Sci. China Phys. Mech. Astron. 2016, 59, 624703. [Google Scholar] [CrossRef]
- Rizzetta, D.P.; Visbal, M.R. Application of large-eddy simulation to supersonic compression ramps. AIAA J. 2002, 40, 1574–1581. [Google Scholar] [CrossRef]
- Von Kaenel, R.; Kleiser, L.; Adams, N.A.; Vos, J.B. Large-eddy simulation of shock-turbulence interaction. AIAA J. 2004, 42, 2516–2528. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Choi, J.; Edwards, J.R. RANS and Hybrid LES/RANS Simulations of the Effects of Micro Vortex Generators Using Immersed Boundary Methods. In Proceedings of the 38th Fluid Dynamics Conference and Exhibit, Seattle, WA, USA, 23–26 June 2008; pp. 2008–3726. [Google Scholar]
- Lee, S.; Loth, E.; Wang, C. LES of Supersonic Turbulent Boundary Layers with mVG’s. In Proceedings of the 25th AIAA Applied Aerodynamics Conference, Miami, FL, USA, 25–28 June 2007; pp. 2007–3916. [Google Scholar]
- Lee, S.; Loth, E. Supersonic Boundary Layer Interactions with Various Micro-Vortex Generator Geometries. In Proceedings of the 39th AIAA Fluid Dynamics Conference, San Antonio, TX, USA, 22–25 June 2009; pp. 2009–3712. [Google Scholar]
- John, B.; Emerson, D.R.; Gu, X.J. Parallel Navier–Stokes simulations for high speed compressible flow past arbitrary geometries using FLASH. Comput. Fluids 2015, 110, 27–35. [Google Scholar] [CrossRef]
- John, B.; Emerson, D.R.; Gu, X.J. Parallel compressilbe viscous flow simulations using FLASH code: Implementation for arbitrary 3D geometries. Procedia Eng. 2013, 61, 52–56. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Zhao, Q.; Xiang, X.; Xu, J. An improved micro-vortex generator in supersonic flows. Aerosp. Sci. Technol. 2015, 47, 210–215. [Google Scholar] [CrossRef]
- Said, I.; Poonaesparan, M.K.; Bohari, B.; Idiris, A.C.; Rahman MR, A.; Saad, M. The Effect of Streamwise Location of Micro Vortex Generator on Airfoil Aerodynamic Performance in Subsonic Flow. J. Aeronaut. Astronaut. Aviat. 2020, 53, 173–178. [Google Scholar]
- Khare, A.; Khurana, S. Effect of Micro Vortex Generator Width on Vortex Characteristics. In Proceedings of the AIAA Aviation 2022 Forum, Chicago, IL, USA, 27 June–1 July 2022; pp. 2022–3388. [Google Scholar]
- Yan, Y.; Yang, Y.; Chen, C.; Cotton, H.A.; Serrano, A. Numerical study on the ring-like vortex structure generated by MVG in high-speed flows with different Mach numbers. Jpn. J. Ind. Appl. Math. 2022, 39, 3–18. [Google Scholar] [CrossRef]
- Yan, Y.; Chen, L.; Li, Q.; Liu, C. Numerical study on microramp vortex generation for supersonic ramp flow control at Mach 2.5. Shock Waves 2016, 27, 79–96. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, Y.; Liu, C. ILES for mechanism of ramp-type MVG reducing shock induced flow separation. Sci. China Phys. Mech. Astron. 2016, 59, 1–12. [Google Scholar] [CrossRef]
- Volkwein, S. Proper Orthogonal Decomposition: Theory and Reduced-Order Modelling; University of Konstanz: Konstanz, Germany, 2013. [Google Scholar]
- Martın, M.P.; Taylor, E.M.; Wu, M.; Weirs, V.G. A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence. J. Comput. Phys. 2006, 220, 270–289. [Google Scholar] [CrossRef]
- Adams, N.A. Direct simulation of the turbulent boundary layer along a compression ramp at M = 3 and Req = 1685. J. Fluid Mech. 2000, 420, 47–83. [Google Scholar] [CrossRef]
- Yan, Y.; Tang, J.; Liu, C.; Yang, F. DNS study on the formation of Lambda rotational core and the role of TS wave in boundary layer transition. J. Turbul. 2016, 17, 572–601. [Google Scholar] [CrossRef]
- Liu, C.; Gao, Y.S.; Dong, X.R.; Wang, Y.Q.; Liu, J.M.; Zhang, Y.N.; Cai, X.S.; Gui, N. Third generation of vortex identification methods: Omega and Liutex/Rortex based systems. J. Hydrodyn. 2019, 31, 774–781. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Yan, Y.; Chen, C.; Wu, Q.; Kwembe, T.A.; Wu, R. Modal Analysis on MVG Controlled Supersonic Flow at Different Mach Numbers. Processes 2022, 10, 1456. https://doi.org/10.3390/pr10081456
Yang Y, Yan Y, Chen C, Wu Q, Kwembe TA, Wu R. Modal Analysis on MVG Controlled Supersonic Flow at Different Mach Numbers. Processes. 2022; 10(8):1456. https://doi.org/10.3390/pr10081456
Chicago/Turabian StyleYang, Yong, Yonghua Yan, Caixia Chen, Qingquan Wu, Tor A. Kwembe, and Ryan Wu. 2022. "Modal Analysis on MVG Controlled Supersonic Flow at Different Mach Numbers" Processes 10, no. 8: 1456. https://doi.org/10.3390/pr10081456
APA StyleYang, Y., Yan, Y., Chen, C., Wu, Q., Kwembe, T. A., & Wu, R. (2022). Modal Analysis on MVG Controlled Supersonic Flow at Different Mach Numbers. Processes, 10(8), 1456. https://doi.org/10.3390/pr10081456