Innovative and Green Extraction Techniques for the Optimal Recovery of Phytochemicals from Saudi Date Fruit Flesh
Abstract
:1. Introduction
2. Materials and Methods
2.1. Date Flesh Sample Preparation
2.2. Moisture Content Determination
2.3. Date Flesh Antioxidants’ Extraction
2.3.1. Conventional Extraction
2.3.2. Supercritical Fluid CO2 Extraction (SFE)
2.3.3. Subcritical CO2 Extraction (SubCO2)
2.4. Date Flesh Bioactive Compounds
2.4.1. Analysis of Total Phenolic Contents (TPC)
2.4.2. Analysis of Total Flavonoids Contents (TFC)
2.4.3. Analysis of Total Anthocyanins
2.4.4. Analysis of Total Carotenoids
2.5. Biological Properties of Date Flesh Extracts
2.5.1. Phosphomolybdenum Complex Method for the Antioxidant Activity
2.5.2. Free Radical Scavenging Activity
2.5.3. Ferric Reducing Antioxidant Power (FRAP)
2.5.4. Cation Radical Scavenging Assay
2.6. Statistical Analyses
3. Results and Discussion
3.1. Date Flesh Extraction Using Supercritical Fluid Technique, Optimization and Modelling of the Method
3.2. Compairson of Different Techniques for the Extraction Yields from Date Flesh
3.3. Phytochemicals and Their Contents in Date Flesh Extracts
3.3.1. Total Phenolics and Total Flavonoids
3.3.2. Total Anthocyanins and Total Carotenoids
3.4. Biological Activities of Date Flesh Extracts
3.4.1. Antioxidant Activity Using Phosphomolybdenum Complex
3.4.2. Scavenging Activity against DPPH Radicals
3.4.3. Reducing Ferric to Ferrous Ions
3.4.4. Antiradical Activity against ABTS Cations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, I.A.; Ahmed, A.W.K.; Robinson, R.K. Chemical composition of date varieties as influenced by the stage repining. Food Chem. 1995, 54, 305–309. [Google Scholar] [CrossRef]
- Ghnimi, S.; Umer, S. Date fruit (Phoenix dactylifera L.): An underutilized food seeking industrial valorization. NFS J. 2017, 6, 1–10. [Google Scholar] [CrossRef] [Green Version]
- 25 February 2021/13, Rajab, 1442. Available online: https://saudigazette.com.sa (accessed on 1 October 2022).
- Abdullahi, M.H.; Garko, M. Medicinal value of date palm (Phoenix dactylifera L.). In Proceedings of the Agricultural Society of Nigeria Conference, Nsukka, Nigeria, 11–14 March 2012. [Google Scholar]
- Al-Farsi, M.A.; Lee, C.Y. Nutritional and functional properties of dates: A review. Crit. Rev. Food Sci. Nutr. 2008, 48, 877–887. [Google Scholar] [CrossRef]
- Al-Alawi, R.A.; Al-Mashiqri, J.H.; Al-Nadabi, J.S.M.; Al-Shihi, B.I.; Baqi, Y. Date palm tree (Phoenix dactylifera L.): Natural products and therapeutic options. Front. Plant Sci. 2017, 8, 845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khalid, S.; Khalid, N.; Khan, R.S.; Ahmed, H.; Ahmad, A. A review on chemistry and pharmacology of Ajwa date fruit and pit. Trends Food Sci. Tech. 2017, 63, 60–69. [Google Scholar] [CrossRef]
- Nasir, M.U.; Hussain, S.; Jabbar, S.; Rahid, F.; Khalid, N.; Mehmood, A. A review on the nutritional content, functional properties and medicinal potential of dates. Sci. Lett. 2014, 3, 17–22. [Google Scholar]
- Saafi, E.B.; El Arem, A.; Issaoui, M.; Hammami, M. Phenolic content and antioxidant activity of four date palm (Phoenix dactylifera L.) fruit varieties grown in Tunisia. Food Sci. Technol. 2009, 56, 2314–2319. [Google Scholar]
- Spigno, G.; Tramelli, L.; De-Faveri, D.M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. J. Food Eng. 2008, 81, 200–208. [Google Scholar] [CrossRef]
- Ghafoor, K.; Al-Juhaimi, F.Y.; Choi, Y.H. Supercritical fluid extraction of phenolic compounds and antioxidants from grape (Vitis labrusca B.) seeds. Plant Foods Hum. Nutr. 2012, 67, 407–414. [Google Scholar] [CrossRef]
- Babovic, N.; Djilas, S.; Jadranin, M.; Vajs, V.; Ivanovic, J.; Petrovic, S.; Zizovic, I. Supercritical carbon dioxide extraction of antioxidant fractions from selected Lamiaceae herbs and their antioxidant capacity. Innov. Food Sci. Emerg. Technol. 2010, 11, 98–107. [Google Scholar] [CrossRef]
- Ferdosh, S.; Sarker, M.Z.I.; Ab Rahman, N.N.N.; Akand, M.J.H.; Ghafoor, K.; Awang, M.B.; Ab Kadir, M.O. Supercritical carbon dioxide extraction of oil from Thunnus tonggol head by optimization of process parameters using response surface methodology. Kor. J. Chem. Eng. 2013, 30, 1466–1472. [Google Scholar] [CrossRef]
- Easmin, S.; Zaidul, I.S.M.; Ghafoor, K.; Sahena, F.; Juliana, M.J.; Jahurul, M.H.A.; AL-Juhaimi, F.Y.; Fauzi, M.B.; Alfi, K. Extraction of α-glucosidase inhibitory compounds from Phaleria macrocarpa fruit flesh using solvent, sonication, and subcritical carbon dioxide soxhlet methods. J. Food Biochem. 2017, 41, e12399. [Google Scholar] [CrossRef]
- Leitner, W. Green chemistry: Designed to dissolve. Nature 2000, 405, 129–130. [Google Scholar] [CrossRef] [PubMed]
- AOAC. Official Method of Analysis, 5th ed.; Association of Official Agricultural Chemists: Washington, DC, USA, 1998. [Google Scholar]
- Ghafoor, K.; Park, J.; Choi, Y.H. Optimization of supercritical carbon dioxide extraction of bioactive compounds from grape peel (Vitis labrusca B.) by using response surface methodology. Innov. Food Sci. Emerg. Technol. 2010, 11, 485–490. [Google Scholar] [CrossRef]
- Ghafoor, K.; Sarker, M.Z.I.; Al-Juhaimi, F.Y.; Babiker, E.E.; Alkaltham, M.S.; Almubarak, A.K. Extraction and evaluation of bioactive compounds from date (Phoenix dactylifera) seed using supercritical and subcritical CO2 techniques. Foods 2022, 11, 1806. [Google Scholar] [CrossRef] [PubMed]
- Arumugham, T.; Rambabu, K.; Hasan, S.W.; Show, P.L.; Rinklebe, J.; Banat, F. Supercritical carbon dioxide extraction of plant phytochemicals for biological and environmental applications—A review. Chemosphere 2021, 271, 129525. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Biglari, F.; AlKarkhi, A.F.; Easa, A.M. Antioxidant activity and phenolic content of various date palm (Phoenix dactylifera) fruits from Iran. Food Chem. 2008, 107, 1636–1641. [Google Scholar] [CrossRef]
- Ghafoor, K.; Hui, T.; Choi, Y.H. Optimization of ultrasound-assisted extraction of total anthocyanins from grape peel. J. Food Biochem. 2011, 35, 735–746. [Google Scholar] [CrossRef]
- Ranjith, A.; Kumar, K.S.; Venugopalan, V.V.; Arumughan, C.; Sawhney, R.C.; Singh, V. Fatty acids, tocols, and carotenoids in pulp oil of three sea buckthorn species (Hippophae rhamnoides, H. salicifolia, and H. tibetana) grown in the Indian Himalayas. J. Am. Oil Chem. Soc. 2006, 83, 359–364. [Google Scholar] [CrossRef]
- Prieto, P.; Pineda, M.; Aguilar, M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Anal. Biochem. 1999, 269, 337–341. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.K.; Mbwambo, Z.H.; Chung, H.; Luyengi, L.; Gamez, E.J.; Mehta, R.G.; Pezzuto, J.M. Evaluation of the antioxidant potential of natural products. Comb. Chem. High Throughput Screen. 1998, 1, 35–46. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Szeto, Y.T. Total antioxidant capacity of teas by the ferric reducing/antioxidant power assay. J. Agric. Food Chem. 1999, 47, 633–636. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Vafaei, N.; Rempel, C.B.; Scanlon, M.G.; Jones, P.J.H.; Eskin, M.N.A. Application of supercritical fluid extraction (SFE) of tocopherols and carotenoids (Hydrophobic Antioxidants) compared to non-SFE methods. Appl. Chem. 2022, 2, 68–92. [Google Scholar] [CrossRef]
- Kashaninejad, M.; Blanco, B.; Benito-Román, O.; Beltrán, S.; Mehdi Niknam, S.; Sanz, M.T. Maximizing the freeze-dried extract yield by considering the solvent retention index: Extraction kinetics and characterization of Moringa oleifera leaves extracts. Food Bioprod. Process. 2021, 130, 132–142. [Google Scholar] [CrossRef]
- Arumugham, T.; AlYammahi, J.; Rambabu, K.; Hassan, S.W.; Banat, F. Supercritical CO2 pretreatment of date fruit biomass for enhanced recovery of fruit sugars. Sustain. Energy Technol. Assess. 2022, 52, 102231. [Google Scholar] [CrossRef]
- Kumar, S.; Prasad, S.R.; Banerjee, R.; Agarwal, D.K.; Kulkarni, K.S.; Ramesh, K.V. Green solvents and technologies for oil extraction from oilseeds. Chem. Cent. J. 2017, 11, 9. [Google Scholar] [CrossRef] [Green Version]
- Ghafoor, K.; Choi, Y.H.; Jeon, J.Y.; Jo, I.H. Optimization of ultrasound-assisted extraction of phenolic compounds, antioxidants and anthocyanins from grape (Vitis vinifera) seeds. J. Agric. Food Chem. 2009, 57, 4988–4994. [Google Scholar] [CrossRef]
- Santos, P.H.; Kammers, J.C.; Silva, A.P.; Oliveira, J.V.; Hense, H. Antioxidant and antibacterial compounds from feijoa leaf extracts obtained by pressurized liquid extraction and supercritical fluid extraction. Food Chem. 2021, 344, 128620. [Google Scholar] [CrossRef]
- de la Rosa, L.A.; Moreno-Escamilla, J.O.; Rodrigo-García, J.; Alvarez-Parrilla, E. Phenolic compounds. In Postharvest Physiology and Biochemistry of Fruits and Vegetables; Yahia, E.M., Ed.; Woodhead Publishing: Sawston, UK, 2019; pp. 253–271. [Google Scholar]
- Shen, N.; Wang, T.; Gan, Q.; Liu, S.; Wang, L.; Jin, B. Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 2022, 383, 132531. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Akram, M.; Al-Zuhair, S.; Elnajjar, E.; Munir, M.J. Subcritical water extraction of phenolics, antioxidants and dietary fibres from waste date pits. J. Environ. Chem. Eng. 2020, 8, 104490. [Google Scholar] [CrossRef]
- Rambabu, K.; AlYammahi, J.; Thanigaivelan, A.; Bharath, G.; Sivarajasekar, N.; Velu, S.; Banat, F. Sub-critical water extraction of reducing sugars and phenolic compounds from date palm fruit. Biomass Conv. Bioref. 2022. [Google Scholar] [CrossRef]
- Todd, R.; Baroutian, S. A techno-economic comparison of subcritical water, supercritical CO2 and organic solvent extraction of bioactives from grape marc. J Clean. Prod. 2017, 158, 349–358. [Google Scholar] [CrossRef]
- Mesquita, P.C.; Rodrigues, L.G.G.; Mazzutt, S.; da Silva, M.; Vitali, L.; Lanza, M. Intensified green-based extraction process as a circular economy approach to recover bioactive compounds from soursop seeds (Annona muricata L.). Food Chem. X 2021, 12, 100164. [Google Scholar] [CrossRef]
- Vinitha, U.G.; Sathasivam, R.; Muthuraman, M.S.; Park, S.U. Intensification of supercritical fluid in the extraction of flavonoids: A comprehensive review. Physiol. Mol. Plant Path. 2022, 118, 101815. [Google Scholar] [CrossRef]
- Mazza, G.; Kay, C.D. Bioactivity, absorption and metabolism of anthocyanins. In Recent Advances in Polyphenols Research; Daayf, F., Lattanzio, V., Eds.; Blackwell Publishing Ltd.: West Sussex, UK, 2008. [Google Scholar]
- Padayachee, A.; Netzel, G.; Netzel, M.; Day, L.; Zabaras, D.; Mikkelsen, D.; Gidley, M.J. Binding of polyphenols to plant cell wall analogues—Part 1: Anthocyanins. Food Chem. 2012, 134, 155–161. [Google Scholar] [CrossRef]
- Murillo, E.; Deli, J.; Nagy, V.; Molinar-Toribio, E.; Sandor, V.; Marton, K.; Agocs, A. Carotenoid profile of two capsorubin-rich tropical plants. J. Food Compos. Anal. 2021, 97, 103798. [Google Scholar] [CrossRef]
- Al-Farsi, M.; Alasalvar, C.; Morris, N.; Baron, M.; Shahidi, F. Comparison of antioxidant activity, anthocyanins, carotenoids, and phenolics of three native fresh and sun-dried date (Phoenix dactylifera L.) varieties grown in Oman. J. Agric. Food Chem. 2005, 53, 7592–7599. [Google Scholar] [CrossRef] [PubMed]
- Babova, O.; Occhipinti, A.; Capuzzo, A.; Maffei, M.E. Extraction of bilberry (Vaccinium myrtillus) antioxidants using supercritical/subcritical CO2 and ethanol as co-solvent. J. Supercrit. Fluids 2016, 107, 358–363. [Google Scholar] [CrossRef] [Green Version]
- Munteanu, I.G.; Apetrei, C. Analytical methods used in determining antioxidant activity: A review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Al Juhaimi, F.; Ozcan, M.M.; Adiamo, O.Q.; Alsawmahi, O.N.; Ghafoor, K.; Babiker, E.E. Effect of date varieties on physico-chemical properties, fatty acid composition, tocopherol contents, and phenolic compounds of some date seed and oils. J. Food Process. Preserv. 2018, 42, e13584. [Google Scholar] [CrossRef]
- Al Juhaimi, F.; Ghafoor, K.; Ozcan, M.M. Physical and chemical properties, antioxidant activity, total phenol and mineral profile of seeds of seven different date fruit (Phoenix dactylifera L.) varieties. Int. J. Food Sci. Nutr. 2012, 63, 84–89. [Google Scholar] [CrossRef]
- Hamzah, N.N.; Ferdosh, S.; Sarker, M.Z.I.; Ghafoor, K.; Yunus, K.; Chowdhury, A.J.K.; Bari, N.A.A. Biological activities and extraction technologies of Pheonix dactylifera: A review. Nat. Prod. J. 2019, 9, 3–13. [Google Scholar]
- Siddeeg, A.; AlKehayez, N.M.; Abu-Hiamed, H.A.; Al-Sanea, E.A.; AL-Farga, A.M. Mode of action and determination of antioxidant activity in the dietary sources: An overview. Saudi J. Biol. Sci. 2021, 28, 1633–1644. [Google Scholar] [CrossRef] [PubMed]
- Sak, K. Site-specific anticancer effects of dietary flavonoid quercetin. Nutr. Cancer 2014, 66, 177–193. [Google Scholar] [CrossRef] [PubMed]
- Seo, B.N.; Ryu, J.M.; Yun, S.P.; Jeon, J.H.; Park, S.S.; Oh, K.B.; Park, J.K.; Han, H.J. Delphinidin prevents hypoxia-induced mouse embryonic stem cell apoptosis through reduction of intracellular reactive oxygen species-mediated activation of JNK and NF-kappa B, and Akt inhibition. Apoptosis 2013, 18, 811–824. [Google Scholar] [CrossRef] [PubMed]
- Gharib, A.; Faezizadeh, Z.; Godarzee, M. Treatment of diabetes in the mouse model by delphinidin and cyanidin hydrochloride in free and liposomal forms. Planta Med. 2013, 79, 1599–1604. [Google Scholar] [CrossRef]
- Im, N.K.; Jang, W.J.; Jeong, C.H.; Jeong, G.S. Delphinidin suppresses PMA-induced MMP-9 expression by blocking the NF-kappa B activation through MAPK signaling pathways in MCF-7 human breast carcinoma cells. J. Med. Food 2014, 17, 855–861. [Google Scholar] [CrossRef]
- Sirisena, S.; Ng, K.; Ajlouni, S. The emerging Australian date palm industry: Date fruit nutritional and bioactive compounds and valuable processing by-products. Compr. Rev. Food Sci. Food Saf. 2015, 14, 813–823. [Google Scholar] [CrossRef]
- Wrona, O.; Rafińska, K.; Walczak-Skierska, J.; Możeński, C.; Buszewski, B. Extraction and determination of polar bioactive compounds from alfalfa (Medicago sativa L.) using supercritical techniques. Molecules 2019, 24, 4608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Luong, D.; Sephton, M.A.; Watson, J.S. Subcritical water extraction of organic matter from sedimentary rocks. Anal. Chim. Acta 2015, 879, 48–57. [Google Scholar] [CrossRef] [PubMed]
Run | SFE Process Variables | Response Variable (Yield %) | |||||
---|---|---|---|---|---|---|---|
Temperature °C (X1) | Pressure MPa (X2) | CO2 Flow mL/min (X3) | Sukari Flesh (Y1) | Ambara Flesh (Y2) | Majdool Flesh (Y3) | Sagai Flesh (Y4) | |
1 | 62.91 | 20.07 | 4.09 | 4.85 ± 0.58 | 4.32 ± 0.41 | 6.11 ± 0.42 | 6.14 ± 0.47 |
2 | 62.91 | 34.93 | 4.09 | 4.74 ± 0.62 | 4.61 ± 0.18 | 6.23 ± 0.35 | 5.61 ± 0.25 |
3 | 52.50 | 27.50 | 2.75 | 7.62 ± 0.75 | 9.94 ± 0.71 | 8.64 ± 0.42 | 8.74 ± 0.92 |
4 | 52.50 | 40.00 | 2.75 | 7.61 ± 0.51 | 10.01 ± 0.68 | 10.83 ± 0.78 | 9.18 ± 0.35 |
5 | 52.50 | 27.50 | 2.75 | 8.62 ± 0.72 | 9.59 ± 0.45 | 9.59 ± 0.92 | 9.72 ± 0.45 |
6 | 52.50 | 27.50 | 2.75 | 9.81 ± 0.55 | 9.71 ± 0.64 | 9.72 ± 0.34 | 9.45 ± 0.62 |
7 | 52.50 | 27.50 | 0.50 | 5.93 ± 0.66 | 8.94 ± 0.63 | 6.24 ± 0.47 | 5.62 ± 0.374 |
8 | 62.91 | 20.07 | 1.41 | 4.96 ± 0.34 | 4.72 ± 0.24 | 5.45 ± 0.24 | 4.45 ± 0.28 |
9 | 52.50 | 27.50 | 2.75 | 8.79 ± 0.49 | 9.70 ± 0.57 | 9.84 ± 0.44 | 8.78 ± 0.34 |
10 | 62.91 | 34.93 | 1.41 | 5.28 ± 0.64 | 4.91 ± 0.72 | 6.53 ± 0.36 | 5.65 ± 0.62 |
11 | 70.00 | 27.50 | 2.75 | 2.10 ± 0.21 | 1.2 ± 0.49 | 1.1 ± 0.08 | 1.54 ± 0.09 |
12 | 52.50 | 15.00 | 2.75 | 7.60 ± 0.48 | 9.09 ± 0.45 | 8.75 ± 0.78 | 6.86 ± 0.52 |
13 | 42.09 | 20.07 | 1.41 | 5.91 ± 0.35 | 5.87 ± 0.35 | 6.84 ± 0.35 | 5.80 ± 0.37 |
14 | 42.09 | 34.93 | 4.09 | 8.97 ± 0.43 | 6.90 ± 0.40 | 7.61 ± 0.38 | 7.72 ± 0.62 |
15 | 42.09 | 20.07 | 4.09 | 8.55 ± 0.68 | 6.77 ± 0.27 | 10.98 ± 0.62 | 10.78 ± 0.66 |
16 | 42.09 | 34.93 | 1.41 | 5.92 ± 0.71 | 6.53 ± 0.42 | 6.24 ± 0.47 | 6.74 ± 0.28 |
17 | 35.00 | 27.50 | 2.75 | 5.86 ± 0.19 | 3.32 ± 0.12 | 3.66 ± 0.19 | 3.41 ± 0.18 |
18 | 52.50 | 27.50 | 5.00 | 11.13 ± 1.65 | 10.23 ± 0.46 | 11.86 ± 0.89 | 10.90 ± 0.95 |
Sample | Extract Yields (%) | ||
---|---|---|---|
Soxhlet (70 °C for 12 h, n-Hexane) | SubCO2 (250 Cycles, 29 °C, 6.8 MPa, Ethanol (95%) as Co-Solvent) | SFE (52.5 °C, 27.50 MPa, 5 mL CO2/min) | |
Sukari seed | 1.92± 0.08 bC | 3.68 ± 0.76 abB | 11.13 ± 1.65 abA |
Ambara seed | 2.17 ± 0.16 aC | 4.19 ± 0.57 aB | 10.23 ± 0.46 bA |
Majdool seed | 0.44 ± 0.05 dC | 2.75 ± 0.67 cB | 11.86 ± 0.89 aA |
Sagai seed | 1.46 ± 0.13 cC | 3.52 ± 0.52 bB | 10.90 ± 0.95 abA |
Extraction Technique | Date Extract | Total Phenolics (mgGAE/100 g) | Total Flvonoids (mgQE/100 g) | Total Anthocyanins (mg/100 g) | Total Carotenoids (mgBCE/100 g) |
---|---|---|---|---|---|
Soxhlet | SKFE | 198.24 ± 1.77 i | 98.67 ± 1.49 h | 0.41 ± 0.01 i | 1.33 ± 0.04 j |
AMFE | 204.37 ± 1.04 i | 82.12 ± 0.98 i | 0.62 ± 0.02 f | 1.40 ± 0.03 i | |
MJFE | 221.06 ± 2.94 h | 123.94 ± 2.19 g | 0.52 ± 0.02 g | 1.24 ± 0.03 k | |
SGFE | 186.37 ± 1.05 j | 85.83 ± 0.70 i | 0.48 ± 0.02 g | 1.48 ± 0.03 h | |
SubCO2 | SKFE | 426.14 ± 5.30 b | 199.01 ± 4.04 b | 0.92 ± 0.02 e | 2.15 ± 0.06 g |
AMFE | 316.01 ± 3.34 f | 157.50 ± 2.24 e | 1.38 ± 0.03 a | 2.85 ± 0.04 a | |
MJFE | 447.32 ± 4.43 a | 215.28 ± 4.53 a | 0.98 ± 0.03 d | 2.59 ± 0.03 c | |
SGFE | 335.51 ± 5.72 e | 166.32 ± 4.07 d | 1.29 ± 0.05 b | 2.67 ± 0.03 b | |
SFE CO2 | SKFE | 346.35 ± 2.32 d | 180.31 ± 2.03 c | 0.98 ± 0.04 d | 2.26 ± 0.02 f |
AMFE | 300.77 ± 1.77 g | 152.88 ± 2.53 e | 1.34 ± 0.03 ab | 2.36 ± 0.01 e | |
MJFE | 375.25 ± 5.06 c | 137.45 ± 2.04 f | 1.02 ± 0.05 d | 2.53 ± 0.03 d | |
SGFE | 325.71 ± 1.34 ef | 123.13 ± 1.98 g | 1.22 ± 0.03 c | 2.39 ± 0.05 e |
Extraction Techniques | Date Extract | Antioxidant (µgAAE/mL) | DPPH IC50 (µg/mL) | FRAP (mmolTE/100 g) | ABTS (μmolTE/100 g) |
---|---|---|---|---|---|
Soxhlet | SKFE | 23.90 ± 1.50 f | 158.41 ± 3.05 d | 2.41 ± 0.05 j | 474.64 ± 13.08 g |
AMFE | 17.79 ± 0.69 g | 179.48 ± 1.51 b | 2.57 ± 0.03 i | 486.37 ± 9.84 g | |
MJFE | 27.59 ± 1.60 e | 170.09 ± 1.48 c | 2.93 ± 0.03 h | 574.22 ± 6.63 f | |
SGFE | 22.44 ± 1.70 f | 191.36 ± 2.10 a | 2.18 ± 0.04 k | 444.75 ± 4.92 h | |
SubCO2 | SKFE | 38.91 ± 2.89 bc | 44.65 ± 1.25 h | 5.01 ± 0.07 a | 789.04 ± 13.65 c |
AMFE | 30.24 ± 2.58 e | 63.15 ± 1.56 f | 3.79 ± 0.06 f | 669.10 ± 11.33 e | |
MJFE | 45.08 ± 1.53 a | 34.66 ± 1.68 j | 4.66 ± 0.16 b | 883.96 ± 10.58 a | |
SGFE | 36.72 ± 1.60 cd | 53.20 ± 1.67 g | 3.8 ± 0.14 f | 594.16 ± 7.26 f | |
SFE CO2 | SKFE | 29.17 ± 1.69 e | 86.14 ± 1.56 e | 3.61 ± 0.03 g | 715.76 ± 6.24 d |
AMFE | 35.56 ± 2.51 d | 46.43 ± 1.33 h | 3.95 ± 0.04 e | 655.85 ± 12.31 e | |
MJFE | 40.17 ± 1.01 b | 40.18 ± 0.44 i | 4.25 ± 0.04 c | 848.31 ± 22.16 b | |
SGFE | 34.40 ± 0.73 d | 54.60 ± 1.45 g | 4.10 ± 0.06 d | 584.31 ± 9.87 f |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghafoor, K.; Sarker, M.Z.I.; Al-Juhaimi, F.Y.; Babiker, E.E.; Alkaltham, M.S.; Almubarak, A.K.; Ahmed, I.A.M. Innovative and Green Extraction Techniques for the Optimal Recovery of Phytochemicals from Saudi Date Fruit Flesh. Processes 2022, 10, 2224. https://doi.org/10.3390/pr10112224
Ghafoor K, Sarker MZI, Al-Juhaimi FY, Babiker EE, Alkaltham MS, Almubarak AK, Ahmed IAM. Innovative and Green Extraction Techniques for the Optimal Recovery of Phytochemicals from Saudi Date Fruit Flesh. Processes. 2022; 10(11):2224. https://doi.org/10.3390/pr10112224
Chicago/Turabian StyleGhafoor, Kashif, Md. Zaidul Islam Sarker, Fahad Y. Al-Juhaimi, Elfadil E. Babiker, Mohammed S. Alkaltham, Abdullah K. Almubarak, and Isam A. Mohamed Ahmed. 2022. "Innovative and Green Extraction Techniques for the Optimal Recovery of Phytochemicals from Saudi Date Fruit Flesh" Processes 10, no. 11: 2224. https://doi.org/10.3390/pr10112224
APA StyleGhafoor, K., Sarker, M. Z. I., Al-Juhaimi, F. Y., Babiker, E. E., Alkaltham, M. S., Almubarak, A. K., & Ahmed, I. A. M. (2022). Innovative and Green Extraction Techniques for the Optimal Recovery of Phytochemicals from Saudi Date Fruit Flesh. Processes, 10(11), 2224. https://doi.org/10.3390/pr10112224