Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = marine radiochemistry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3702 KiB  
Article
Sorbents Based on Polyacrylonitrile Fiber for Complex Recovery of Artificial 137Cs and Natural Radionuclides from Natural Media
by Iuliia G. Shibetskaia, Viktoriia A. Razina, Nikolay A. Bezhin, Eduard A. Tokar’, Vladislav A. Turyanskiy, Natalia V. Zarubina, Oleg O. Shichalin, Sofia B. Yarusova and Ivan G. Tananaev
Water 2025, 17(2), 147; https://doi.org/10.3390/w17020147 - 8 Jan 2025
Viewed by 983
Abstract
Sorbents based on polyacrylonitrile fiber, containing ferrocyanides of transition metals and manganese oxides (CoMn-PAN and FeMn-PAN) or iron(III) hydroxide (CoFe-PAN) in their structure were obtained, as confirmed by the results of X-ray diffraction and energy-dispersive analyses. The selectivity of the obtained sorbents was [...] Read more.
Sorbents based on polyacrylonitrile fiber, containing ferrocyanides of transition metals and manganese oxides (CoMn-PAN and FeMn-PAN) or iron(III) hydroxide (CoFe-PAN) in their structure were obtained, as confirmed by the results of X-ray diffraction and energy-dispersive analyses. The selectivity of the obtained sorbents was investigated, along with their ability to sorb Cs, Ba (as an analog of Ra), P, and Be from various natural media, including river water and seawater with varying salinity of 18.2 and 33.8 ‰. The data show that the sorbents are universal for the recovery of artificial 137Cs and natural radionuclides from the natural environments, including complex salt composition (seawater). Researching the obtained sorbents during marine expeditions confirmed the efficiency of the obtained materials based on transition metal ferrocyanides and manganese oxides (CoMn-PAN and FeMn-PAN) for the sorption of 137Cs, 7Be, 210Pb, 210Po, 226Ra, 228Ra, and 234Th. Additionally, the sorbent based on transition metal ferrocyanides and iron(III) hydroxide (CoFe-PAN) was effective for the sorption of 137Cs, 7Be, 32P, 33P, 210Pb, 210Po, and 234Th. Based on the obtained results, methods for comprehensively determining artificial 137Cs and natural radionuclides using these sorbents were developed. Full article
Show Figures

Figure 1

15 pages, 517 KiB  
Article
Oxidative Cleavage of 9,10-Dihydroxystearic Acid on Supported Au, Pd and PdAu Nanoparticle-Based Catalysts
by Dmitrii German, Vladislav Turyanskiy, Julia Schroeder, Mohammed Al-Yusufi, Katja Neubauer, Angela Köckritz, Sónia A. C. Carabineiro, Ekaterina Kolobova and Alexey Pestryakov
Reactions 2024, 5(1), 120-134; https://doi.org/10.3390/reactions5010006 - 27 Jan 2024
Viewed by 2439
Abstract
The oxidative C-C cleavage of a C18 substrate is an important transformation in synthetic organic chemistry, facilitating the synthesis of valuable C8-C9 acids widely used in many industries. Through a comparative analysis of the catalytic and physicochemical properties of [...] Read more.
The oxidative C-C cleavage of a C18 substrate is an important transformation in synthetic organic chemistry, facilitating the synthesis of valuable C8-C9 acids widely used in many industries. Through a comparative analysis of the catalytic and physicochemical properties of catalysts, comprising mono- (Pd or Au) and bimetallic (PdAu) nanoparticles deposited on oxides, oxyhydroxides and graphite-like carbon material Sibunit (Cp), it was shown that the efficiency of the catalyst in the oxidative cleavage of 9,10-dihydroxystearic acid relies on the nature of the active component, the support and the average size of metal nanoparticles (NPs). The dependency of 9,10-DSA conversion on the average size of metal NPs shows the structural sensitivity of the oxidative cleavage reaction. Notably, catalysts with an average size of gold particles less than 3 nm exhibit the highest activity. The nature of the active component and the support material are crucial factors determining the process selectivity. Among the catalysts studied, the most effective for the oxidative cleavage of 9,10-DSA is a material based on Au NPs deposited on Cp. Full article
Show Figures

Figure 1

20 pages, 6768 KiB  
Article
New Sorbents Based on Polyacrylonitrile Fiber and Transition Metal Ferrocyanides for 137Cs Recovery from Various Composition Solutions
by Iuliia G. Shibetskaia, Victoria A. Razina, Nikolay A. Bezhin, Eduard A. Tokar’, Vitaly V. Milyutin, Natalya A. Nekrasova, Victoria S. Yankovskaya and Ivan G. Tananaev
Appl. Sci. 2024, 14(2), 627; https://doi.org/10.3390/app14020627 - 11 Jan 2024
Cited by 3 | Viewed by 1585
Abstract
For the first time, new sorbents based on polyacrylonitrile (PAN) fiber and transition metal ferrocyanides were obtained. The main difference between the obtained sorbents and the existing ones is the stage of preliminary preparation of the initial support by converting it into the [...] Read more.
For the first time, new sorbents based on polyacrylonitrile (PAN) fiber and transition metal ferrocyanides were obtained. The main difference between the obtained sorbents and the existing ones is the stage of preliminary preparation of the initial support by converting it into the forms PAN-Fe(OH)3 or PAN-MnO2, due to which additional ion exchange groups (carboxyl, carbonyl, etc.) are formed, which increases the amount of ferrocyanide fixed to the support. The best components and conditions for the synthesis of new sorbents were determined (concentration (0.1–0.2 mol/L), as well as pH (1 for sorbents based on PAN-Fe(OH)3, and 1–5—PAN-MnO2) of potassium ferrocyanide solution, concentration of transition metal salts (0.02 mol/L), temperature conditions). The influence of the studied solution composition (pH, concentration of Na+, K+, NH4+ ions) on the cesium distribution coefficients during its recovery by the obtained sorbents was assessed. The possibility of cesium recovery from solutions with pH 1–9 containing macro quantities of cations was demonstrated. The sorbents derived were characterized by modern structural methods such as infrared spectroscopy, thermogravimetric analysis, and scanning electron microscopy with EDS analysis. A study of the trace amount sorption of 137Cs was carried out in comparison with commercially available highly efficient sorbents (FNS-10 and Termoksid-35), and it was shown that the resulting sorbents are not inferior to industrial ferrocyanide sorbents and can be used for 137Cs selective sorption from technological solutions and natural waters. Full article
(This article belongs to the Special Issue Application of Carbon Fibers in Adsorption)
Show Figures

Figure 1

10 pages, 1727 KiB  
Article
Physical and Chemical Regularities of Phosphorus and Beryllium Recovery by the Sorbents Based on Acrylic Fiber Impregnated by Iron Hydroxide (III)
by Nikolay A. Bezhin, Mariya A. Frolova, Ol’ga N. Kozlovskaia, Evgeniy V. Slizchenko, Iuliia G. Shibetskaia and Ivan G. Tananaev
Processes 2022, 10(10), 2010; https://doi.org/10.3390/pr10102010 - 5 Oct 2022
Cited by 8 | Viewed by 1759
Abstract
The paper investigates the physicochemical regularities (kinetics and isotherm) of phosphorus and beryllium recovery by sorbents based on polyacrylonitrile (PAN) fiber and Fe(OH)3 obtained by various methods: PAN or pre-hydrolyzed PAN with precipitation of FeCl3 with ammonia, using ready-made or electrochemically [...] Read more.
The paper investigates the physicochemical regularities (kinetics and isotherm) of phosphorus and beryllium recovery by sorbents based on polyacrylonitrile (PAN) fiber and Fe(OH)3 obtained by various methods: PAN or pre-hydrolyzed PAN with precipitation of FeCl3 with ammonia, using ready-made or electrochemically generated Na2FeO4, pre-hydrolyzed PAN treated with an alkaline solution of Na2FeO4, as well as their comparison with granular aluminum oxide. The Langmuir, Freudlich and Dubinin–Radushkevich models show high performance of materials for sorption of stable P and Be used as tracers for the release of 7Be, 32P, and 33P from seawater. The obtained kinetic data are processed using kinetic models of intraparticle diffusion and the pseudo-first-order, pseudo-second-order, and Elovich models. Optimal conditions for obtaining sorbents are established, namely, the effect of NaOH concentration at the stages of preparation on the properties of sorbents based on the PAN fiber and Fe(OH)3 obtained by various methods. Full article
Show Figures

Figure 1

18 pages, 7356 KiB  
Article
The Sorbents Based on Acrylic Fiber Impregnated by Iron Hydroxide (III): Production Methods, Properties, Application in Oceanographic Research
by Nikolay A. Bezhin, Mariya A. Frolova, Illarion I. Dovhyi, Ol’ga N. Kozlovskaia, Evgenii V. Slizchenko, Iuliia G. Shibetskaia, Vasiliy A. Khlystov, Eduard A. Tokar’ and Ivan G. Tananaev
Water 2022, 14(15), 2303; https://doi.org/10.3390/w14152303 - 24 Jul 2022
Cited by 12 | Viewed by 2612
Abstract
Sorbents based on Fe(OH)3 and aluminum oxide are widely used in oceanology for the recovery of cosmogenic radionuclides 7Be, 32Si, 32P, and 33P from the seawater. It is also possible to use them for the recovery of the [...] Read more.
Sorbents based on Fe(OH)3 and aluminum oxide are widely used in oceanology for the recovery of cosmogenic radionuclides 7Be, 32Si, 32P, and 33P from the seawater. It is also possible to use them for the recovery of the natural radionuclides 210Pb, 234Th. A comparative study of the sorbents based on Fe(OH)3 and acrylic fiber obtained through various impregnation methods was carried out, and their comparison with granulated aluminum oxide. The possibility of extracting trace amounts of phosphorus and beryllium under laboratory and field conditions with these sorbents was studied. The sorption of 7Be, 210Pb, and 234Th on the natural content by the two-column method was investigated. It is shown that fiber samples obtained by oxidation with sodium ferrate and the “classical” method have the highest sorption characteristics. Full article
(This article belongs to the Special Issue Solid/Liquid Adsorption in Water and Wastewater Treatment)
Show Figures

Figure 1

Back to TopTop