Evaluation of the Efficiency of Regional Airports Using Data Envelopment Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Regional Air Transportation Industry
2.2. Data Envelopment Analysis
3. Results and Discussion
- NempleadosR4 = 19 workers of R5 × 0.58 + 27 workers R14 × 0.06.
- NempleadosR4 = 12.64 = 13 workers for R4 if you want to reach 100% in relation to the 10 workers you have today. The decision is to hire 3 workers.
4. Validation
- Constant: The percentage increase in Output is equal to the percentage increase in productive resources (Inputs).
- Increasing: The percentage increase of the Output is greater than the percentage increase of the Inputs.
- Decreasing: The percentage increase of the Output is less than the percentage increase of the Inputs.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Olariaga, D.; Álvarez, J. Evolution of the airport and air transport industry in Colombia and its impact on the economy. J. Airl. Airpt. Manag. 2015, 5, 39–66. [Google Scholar] [CrossRef] [Green Version]
- Özsoy, V.; Örkcü, H. Structural and operational management of Turkish airports: A bootstrap data envelopment analysis of efficiency. Util. Policy 2021, 69, 101180. [Google Scholar] [CrossRef]
- Mahmoudi, R.; Emrouznejad, A.; Shetab, S.; Hejazi, S. The origins, development and future directions of data envelopment analysis approach in transportation systems. Socio-Econ. Plan. Sci. 2020, 69, 100672. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, R.; Li, Q.; Cassandras, C.; Xie, L. Distributed flight routing and scheduling for air traffic flow management. IEEE Trans. Intell. Transp. Syst. 2017, 18, 2681–2692. [Google Scholar] [CrossRef]
- Chutiphongdech, T.; Vongsaroj, R. Technical efficiency and productivity change analysis: A case study of the regional and local airports in Thailand. Case Stud. Transp. Policy 2022, 2, 774–792. [Google Scholar] [CrossRef]
- Chen, Y.; Cook, W.; Du, J.; Hu, H.; Zhu, J. Bounded and discrete data and Likert scales in data envelopment analysis: Application to regional energy efficiency in China. Ann. Oper. Res. 2017, 255, 347–366. [Google Scholar] [CrossRef]
- Cai, K.; Zhang, J.; Xiao, M.; Tang, K.; Du, W. Simultaneous optimization of airspace congestion and flight delay in air traffic network flow management. IEEE Trans. Intell. Transp. Syst. 2017, 18, 3072–3082. [Google Scholar] [CrossRef]
- Zeng, Z.; Yang, W.; Zhang, S.; Witlox, F. Analysing airport efficiency in East China using a three-stage data envelopment analysis. Transport 2020, 35, 255–272. [Google Scholar] [CrossRef]
- Omer, J. Comparison of mixed-integer linear models for fuel-optimal air conflict resolution with recovery. IEEE Trans. Intell. Transp. Syst. 2015, 16, 3126–3137. [Google Scholar] [CrossRef] [Green Version]
- Yen, B.; Li, J. Route-based performance evaluation for airlines–A metafrontier data envelopment analysis approach. Transp. Res. Part E Logist. Transp. Rev. 2022, 162, 102748. [Google Scholar] [CrossRef]
- Costa, J.; Alves, T.; Andrade, A.; Kalakou, S. Assessing efficiency in public service obligations in European air transport using Data Envelopment Analysis. Case Stud. Transp. Policy 2021, 9, 1783–1809. [Google Scholar] [CrossRef]
- Jardim, J.; Baltazar, M.; Silva, J.; Vaz, M. Airports’ operational performance and efficiency evaluation based on multicriteria decision analysis (MCDA) and data envelopment analysis (DEA) tools. J. Spat. Organ. Dyn. 2015, 3, 296–310. [Google Scholar] [CrossRef] [Green Version]
- Maghbouli, M.; Eini, M.; Taher, F. Efficiency evaluation in presence of undesirable and negative factors. Iran. J. Optim. 2020, 12, 241–248. [Google Scholar]
- Skorupski, J.; Uchroński, P. A fuzzy model for evaluating airport security screeners’ work. J. Air Transp. Manag. 2015, 48, 42–51. [Google Scholar] [CrossRef]
- Khoshroo, A.; Izadikhah, M.; Emrouznejad, A. Energy efficiency and congestion considering data envelopment analysis and bounded adjusted measure: A case of tomato production. J. Clean. Prod. 2021, 328, 129639. [Google Scholar] [CrossRef]
- Färe, R.; Fukuyama, H.; Grosskopf, S.; Zelenyuk, V. Decomposing profit efficiency using a slack-based directional distance function. Eur. J. Oper. Res. 2015, 247, 335–337. [Google Scholar] [CrossRef] [Green Version]
- Olariaga, O.; Moreno, L. Measurement of airport efficiency. The case of Colombia. Transp. Telecommun. J. 2019, 20, 40–51. [Google Scholar] [CrossRef] [Green Version]
- Aerocivil. Plan de Navegación Aérea Para Colombia. Available online: www.aerocivil.gov.co (accessed on 10 September 2022).
- IATA. International Air Transport Association IATA 2022, Economics Chart of the Week. 2022. Available online: www.iata.org (accessed on 10 September 2022).
- Zhou, H.; Yang, Y.; Chen, Y.; Zhu, J. Data envelopment analysis application in sustainability: The origins, development and future directions. Eur. J. Oper. Res. 2018, 264, 1–16. [Google Scholar] [CrossRef]
- Tsironis, L.; Toskas, M.; Madas, M. Measuring the efficiency of Greek regional airports prior to privatization using Data Envelopment Analysis. J. Econ. Manag. Syst. 2021, 6, 547–559. [Google Scholar]
- Izadikhah, M. Development of the BAM model for ranking decision-making units. J. Oper. Res. Its Appl. (Appl. Math.) 2021, 18, 91–105. [Google Scholar] [CrossRef]
- Villarreal, F.; Tohmé, F. Análisis envolvente de datos. Un caso de estudio para una universidad argentina. Estud. Gerenc. 2017, 33, 302–308. [Google Scholar] [CrossRef]
- Lepchak, A.; Voese, S. Evaluation of the efficiency of logistics activities using Data Envelopment Analysis (DEA). Gestão Produção 2020, 27, 1–20. [Google Scholar] [CrossRef]
- Xiao, Q.; Tian, Z.; Ren, F. Efficiency assessment of electricity generation in China using meta-frontier data envelopment analysis: Cross-regional comparison based on different electricity generation energy sources. Energy Strategy Rev. 2022, 39, 100767. [Google Scholar] [CrossRef]
- Liu, D. Measuring aeronautical service efficiency and commercial service efficiency of East Asia airport companies: An application of network data envelopment analysis. J. Air Transp. Manag. 2016, 52, 11–22. [Google Scholar] [CrossRef]
- Simsek, B.; Tüysüz, F. An application of network data envelopment analysis with fuzzy data for the performance evaluation in cargo sector. J. Enterp. Inf. Manag. 2018, 31, 492–509. [Google Scholar] [CrossRef]
- Abdullah, D.; Erliana, C.; Fikry, M. Data envelopment analysis with lower bound on input to measure efficiency performance of Department in Universitas Malikussaleh. Int. J. Artif. Intell. Res. 2020, 4, 58–64. [Google Scholar] [CrossRef]
- Zhang, B.; Feng, C.; Yang, M.; Xie, J.; Chen, Y. Bounded and discrete data in data envelopment analysis with assurance regions: Application to design performance evaluation of gear shaping machines. J. Model. Manag. 2020, 15, 1017–1036. [Google Scholar] [CrossRef]
- Abdullah, D.; Suwilo, S.; Efendi, S.; Zarlis, M.; Mawengkang, H. A research framework for data envelopment analysis with upper bound on output to measure efficiency performance of higher learning institution in Aceh province. Int. J. Adv. Sci. Eng. Inf. Technol. 2018, 8, 336–341. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J. DEA under big data: Data enabled analytics and network data envelopment analysis. Ann. Oper. Res. 2020, 309, 761–783. [Google Scholar] [CrossRef]
- Jiang, B.; Li, Y.; Lio, W.; Li, J. Sustainability efficiency evaluation of seaports in China: An uncertain data envelopment analysis approach. Soft Comput. 2020, 24, 2503–2514. [Google Scholar] [CrossRef]
- Lozano, S.; Soltani, N. Efficiency assessment using a multidirectional DDF approach. Int. Trans. Oper. Res. 2020, 27, 2064–2080. [Google Scholar] [CrossRef]
- Taleb, M.; Khalid, R.; Ramli, R.; Ghasemi, M.; Ignatius, J. An integrated bi-objective data envelopment analysis model for measuring returns to scale. Eur. J. Oper. Res. 2022, 296, 967–979. [Google Scholar] [CrossRef]
- Matulová, M.; Rejentová, J. Efficiency of European airports: Parametric versus non-parametric approach. Croat. Oper. Res. Rev. 2021, 12, 1–14. [Google Scholar] [CrossRef]
Runway Length | Number of Employees | Operation Cost | Passengers | Cargo Ton | |
---|---|---|---|---|---|
Runway Length | 1 | 0.67 | 0.78 | 0.54 | 0.62 |
Number of employees | 0.67 | 1 | 0.56 | 0.47 | 0.52 |
Operation Cost | 0.78 | 0.56 | 1 | 0.58 | 0.68 |
Passengers | 0.54 | 0.47 | 0.58 | 1 | 0.88 |
Cargo ton | 0.62 | 0.52 | 0.68 | 0.88 | 1 |
Small Regional Airport | 2020 | 2019 | 2018 | Scale Effects |
---|---|---|---|---|
R1 | 0.5531 | 0.5938 | 0.5698 | Decreasing |
R2 | 0.8720 | 0.9218 | 0.9218 | Decreasing |
R3 | 1.0000 | 1.0000 | 1.0000 | Constant |
R4 | 0.7023 | 0.7023 | 0.7500 | Decreasing |
R5 | 1.0000 | 1.0000 | 1.0000 | Constant |
R6 | 0.7725 | 0.8417 | 0.7718 | Increasing |
R7 | 0.6943 | 0.7108 | 0.7108 | Decreasing |
R8 | 0.5645 | 0.6557 | 0.6077 | Decreasing |
R9 | 0.6748 | 0.6432 | 0.6945 | Increasing |
R10 | 0.6362 | 0.7317 | 0.6352 | Decreasing |
R11 | 0.7906 | 0.7906 | 0.8444 | Increasing |
R12 | 0.5661 | 0.5555 | 0.5835 | Decreasing |
R13 | 0.6480 | 0.6515 | 0.6841 | Decreasing |
R14 | 1.0000 | 1.0000 | 1.0000 | Constant |
R15 | 0.8974 | 0.8102 | 0.9184 | Increasing |
R16 | 0.5618 | 0.5685 | 0.5602 | Decreasing |
R17 | 0.9381 | 0.9135 | 0.9400 | Increasing |
R18 | 0.6781 | 0.6058 | 0.6508 | Increasing |
R19 | 0.8283 | 0.8009 | 0.8356 | Decreasing |
R20 | 0.6802 | 0.7038 | 0.7088 | Decreasing |
R21 | 0.6324 | 0.5859 | 0.6322 | Increasing |
R22 | 1.0000 | 0.7501 | 1.0000 | Increasing |
R23 | 1.0000 | 1.0000 | 1.0000 | Constant |
R24 | 0.6444 | 0.6047 | 0.7096 | Increasing |
R25 | 0.5969 | 0.8327 | 0.5966 | Decreasing |
R26 | 1.0000 | 1.0000 | 1.0000 | Constant |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Montoya-Quintero, D.M.; Larrea-Serna, O.L.; Jiménez-Builes, J.A. Evaluation of the Efficiency of Regional Airports Using Data Envelopment Analysis. Informatics 2022, 9, 90. https://doi.org/10.3390/informatics9040090
Montoya-Quintero DM, Larrea-Serna OL, Jiménez-Builes JA. Evaluation of the Efficiency of Regional Airports Using Data Envelopment Analysis. Informatics. 2022; 9(4):90. https://doi.org/10.3390/informatics9040090
Chicago/Turabian StyleMontoya-Quintero, Diana María, Olga Lucía Larrea-Serna, and Jovani Alberto Jiménez-Builes. 2022. "Evaluation of the Efficiency of Regional Airports Using Data Envelopment Analysis" Informatics 9, no. 4: 90. https://doi.org/10.3390/informatics9040090
APA StyleMontoya-Quintero, D. M., Larrea-Serna, O. L., & Jiménez-Builes, J. A. (2022). Evaluation of the Efficiency of Regional Airports Using Data Envelopment Analysis. Informatics, 9(4), 90. https://doi.org/10.3390/informatics9040090