Interactive Spatiotemporal Analysis of Oil Spills Using Comap in North Dakota
Abstract
:1. Introduction
Research Motivation, Objectives and Organization of the Current Study
2. Study Area and Data Description
3. Methodology
- Comparison of the temporal distribution of environmental incidents to all types of incidents and contaminants according to time of the day.
- Identification of the temporal distribution of environmental incident frequency according to the day of the week, month, season, and year.
4. Results
4.1. Environmental Incident Analysis
4.2. Temporal Analysis
4.3. Spatial Analysis
4.4. Spatiotemporal Analysis
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
KDE: | Kernel density estimation |
GIS: | geographic information systems |
References
- Duan, W.; Chen, G.; Ye, Q. The situation of hazardous chemical accidents in China between 2000 and 2006. J. Hazard. Mater. 2011, 186, 1489–1494. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Brimicombe, A.; Ralphs, M.P. Spatial data quality and sensitivity analysis in GIS and environmental modelling: the case of coastal oil spills, Computer. Environ. Urban Syst. 2000, 24, 95–108. [Google Scholar] [CrossRef]
- Shorten, C.; Galloway, J.; Krebs, J.; Fleming, R. A 12-year history of hazardous materials incidents in Chester County, Pennsylvania. J. Hazard. Mater. 2002, 89, 29–40. [Google Scholar] [CrossRef]
- United States Coast Guard, National Response Center. 2014. Available online: http://www.nrc.uscg.mil/ (accessed on 5 May 2015).
- Gunster, D.; Gillis, C.; Bonnevie, N.; Abel, T. Petroleum and hazardous chemical spills in Newark Bay, New Jersey, USA from 1982 to 1991. Environ. Pollut. 1993, 82, 245–253. [Google Scholar] [CrossRef]
- Winder, C.; Tottszer, A.; Navratil, J.; Tondon, R. Hazardous materials incidents reporting: Results of nationwide trial. J. Hazard. Mater. 1992, 31, 119–134. [Google Scholar]
- Burgess, J.; Pappas, G.; Robertson, W. Hazardous materials incidents: The Washington Poison Center experience and approach to exposure assessment. J. Occup. Environ. Med. 1997, 39, 760–766. [Google Scholar] [CrossRef] [PubMed]
- Ianc, C. Factors affecting the cost of oil spills. In Proceedings of the GAOCMAO Conference, Muscat, Oman, 12–14 May 2002.
- Giesppe, S.; Helfried, O.; Pietro, P.; Kalliopi, R. Forests of the Mediterranean region: Gaps in knowledge and research needs. For. Ecol. Manag. 2000, 132, 97–109. [Google Scholar]
- Asgary, A.; Ghaffari, J.; Levy, J. Spatial and temporal analyses of structural fire incidents and their causes: A case of Toronto, Canada. Fire Saf. J. 2010, 45, 44–57. [Google Scholar] [CrossRef]
- Plug, C.; Xia, J.; Caulfield, C. Spatial and temporal visualisation techniques for crash analysis. Accid. Anal. Prev. 2011, 43, 1937–1946. [Google Scholar] [CrossRef] [PubMed]
- Pew, K.; Larsen, C. GIS analysis of spatial and temporal patterns of human-caused wildfires in the temperate rainforest of Vancouver Island, Canada. For. Ecol. Manag. 2001, 140, 1–18. [Google Scholar] [CrossRef]
- Jaiswal, R.; Mukherjee, S.; Raju, K.; Saxena, R. Forest fire risk zone mapping from satellite imagery and GIS. Int. J. Appl. Earth Obs. Geoinf. 2002, 4, 1–10. [Google Scholar] [CrossRef]
- Chainey, S.; Tompson, L.; Uhlig, S. The utility of hotspotmapping for predicting spatial patterns of crime. Secur. J. 2008, 21, 4–28. [Google Scholar] [CrossRef]
- Laurian, L.; Funderburg, R. Environmental justice in France? A spaio-temporal analysis of incinerator location. J. Envrion. Plan. Manag. 2014, 53, 424–446. [Google Scholar] [CrossRef]
- Wang, D.; Ding, W.; Lo, H.; Stepinski, T.; Salazar, J.; Morabito, M. Crime hotspot mapping using the crime related factors—A spatial data mining approach. Appl. Intell. 2013, 39, 772–782. [Google Scholar] [CrossRef]
- Bowers, K. Book Review. In Mapping and Analysing Crime Data: Lessons from Research and Practice; CRC Press: Boca Raton, FL, USA, 2004; p. 47. [Google Scholar]
- Gerber, M. Predicting crime using Twitter and Kernel density estimation. Decis. Support Syst. 2014, 61, 115–125. [Google Scholar] [CrossRef]
- Cao, G.; Wang, S.; Hwang, M.; Padmanabhan, A.; Zhang, Z.; Soltani, K. A scalable framework for spatiotemporal analysis of location-based social media data. Environ. Urban Syst. 2015, 51, 70–82. [Google Scholar] [CrossRef]
- Corcoran, J.; Higgs, G.; Brunsdon, C. The use of spatial analytical techniques to explore patterns of fire incidence: A South Wales case study. Comput. Environ. Urban Syst. 2007, 31, 623–647. [Google Scholar] [CrossRef]
- Maher, M.; Mountain, L. The identification of accident blackspots: A comparison of current methods. Accid. Anal. Prev. 1988, 20, 143–151. [Google Scholar] [CrossRef]
- Liang, L.; Hua, L.; Ma’som, D. Traffic accident application using geographic information system. J. East. Asia Soc. Transp. Stud. 2005, 6, 3474–3589. [Google Scholar]
- Oliveira, E.; Silveira, B.; Alves, F. Support mechanisms for oil spill accident response in costal lagoon areas (Ria de Aveiro, Portugal). J. Sea Res. 2014, 93, 112–117. [Google Scholar] [CrossRef]
- North Dakota Department of Health. North Dakota Hazardous Waste Compliance Guide; Division of Waste Management: Bismarck, ND, USA, 2012.
- Boba, R. Crime Analysis and Crime Mapping; Sage: Beverly Hills, CA, USA, 2005. [Google Scholar]
- Haining, R. Spatial Data Analysis: Theory and Practice; University of Cambridge Press: Cambridge, UK, 2003. [Google Scholar]
- Levin, N.; Kim, K.; Nitz, L. Spatial analysis of Honolulu motor vehicle crashes: I. spatial patterns. Accid. Anal. Prev. 1995, 27, 663–674. [Google Scholar] [CrossRef]
- Prasannakumar, V.; Vijith, H.; Charutha, R.; Geetha, N. Spatio-temporal clustering of road accidents: GIS based analysis and assessment. Procedia Soc. Behav. Sci. 2011, 21, 317–325. [Google Scholar] [CrossRef]
- Haggett, P.; Cliff, A.; Frey, A. Locational Analysis in Human Geography; Edward Arnold: London, UK, 1997. [Google Scholar]
- Gatrell, A.; Bailey, T.; Diggle, P. Spatial point pattern analysis and its application in geographical epidemiology. Trans. Inst. Br. Geogr. 1996, 21, 256–274. [Google Scholar] [CrossRef]
- Mitchell, A. Guide to GIS Analysis; ESRI Press: Redlands, CA, USA, 2005; Volume 2. [Google Scholar]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis. Number 26 in Monographs on Statistics and Applied Probability; Chapman & Hall: London, UK, 1986. [Google Scholar]
- Bailey, T.C.; Gatrell, A.C. Interactive Spatial Data Analysis; Routledge: Abingdon-on-Thames, UK, 1995. [Google Scholar]
- Ord, J.; Getis, A. Local Spatial Autocorrelation Statistics: Distribution Issues and an Application. Geogr. Anal. 1995, 27, 286–306. [Google Scholar] [CrossRef]
- Getis, O.J. Testing for local spatial autocorrelation in the presence of global autocorrelation. J. Reg. Sci. 2001, 41, 411–432. [Google Scholar]
- DeGroote, J.; Sugumaran, R.; Brend, S.; Tucker, B.; Bartholomay, L. Landscape, demographic, entomological, and climatic associations with human disease incidence of West Nile virus in the state of Iowa. Int. J. Health Geogr. 2008, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Finkenstadt, B.; Held, L.; Ishan, V. Statistical Methods for Spatiotemporal Systems; Chapman and Hall/CRC: Boca Raton, FL, USA, 2007. [Google Scholar]
- Ugarte, M. Statistical methods for Spatio-temporal systems. J. R. Stat. Soc. Ser. A 2007, 170, 1182. [Google Scholar] [CrossRef]
- Curtis, A.; Leiner, M.; Hanlon, C. Using hierarchical nearest neighbor analysis and animation to investigate the spatial and temporal patterns of raccoon rabies in West Virgina, PA, USA. In Geographic Information Systems and Health Applications; Idea Group Publishing: Hershey, PA, USA, 2002; pp. 155–171. [Google Scholar]
- Brunsdon, C. The comap: Exploring spatial pattern via conditional distributions. Comput. Environ. Urban Syst. 2001, 25, 53–68. [Google Scholar] [CrossRef]
- Jenks, G.F. The data model concept in statistical mapping. Int. Yearbook Cartogr. 1967, 7, 186–190. [Google Scholar]
- U.S. Department of Energy. North Dakota Field Production of Crude Oil (Thousdands Barrels Per Day); Energy Information Administration: Washington, DC, USA, 2014.
- UGPTI. Infrastructure Needs: North Dakota’s County, Township and Tribal Roads and Bridges: 2015–2034; Upper Great Plains Transportation Institute: Fargo, ND, USA, 2014. [Google Scholar]
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Park, Y.S.; Al-Qublan, H.; Lee, E.; Egilmez, G. Interactive Spatiotemporal Analysis of Oil Spills Using Comap in North Dakota. Informatics 2016, 3, 4. https://doi.org/10.3390/informatics3020004
Park YS, Al-Qublan H, Lee E, Egilmez G. Interactive Spatiotemporal Analysis of Oil Spills Using Comap in North Dakota. Informatics. 2016; 3(2):4. https://doi.org/10.3390/informatics3020004
Chicago/Turabian StylePark, Yong Shin, Hamad Al-Qublan, EunSu Lee, and Gokhan Egilmez. 2016. "Interactive Spatiotemporal Analysis of Oil Spills Using Comap in North Dakota" Informatics 3, no. 2: 4. https://doi.org/10.3390/informatics3020004
APA StylePark, Y. S., Al-Qublan, H., Lee, E., & Egilmez, G. (2016). Interactive Spatiotemporal Analysis of Oil Spills Using Comap in North Dakota. Informatics, 3(2), 4. https://doi.org/10.3390/informatics3020004