Non-Invasive Diagnostic Approach for Diabetes Using Pulse Wave Analysis and Deep Learning
Abstract
:1. Introduction
2. Materials and Methods
2.1. Inclusion Criteria
2.2. Exclusion Criteria
2.3. Sample Size
2.4. Data Collection
2.5. Data Preprocessing
2.6. Model Development and Evaluation
2.7. Refining CNN Model Architecture
2.8. Pre-Trained Models
3. Results
3.1. Presentation of Pulse Waveform Data
3.2. Comparative Performance of Neural Network Models
3.3. Statistical Analysis
4. Discussion
4.1. Analysis of Model Efficacy
4.2. Superiority of ResNet18
4.3. Implications for Diabetes Diagnosis
4.4. Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poleszczuk, J.; Debowska, M.; Dabrowski, W.; Wojcik-Zaluska, A.; Zaluska, W.; Waniewski, J. Subject-specific pulse wave propagation modeling: Towards enhancement of cardiovascular assessment methods. PLoS ONE 2018, 13, e0190972. [Google Scholar] [CrossRef]
- Proença, M.; Renevey, P.; Braun, F.; Bonnier, G.; Delgado-Gonzalo, R.; Lemkaddem, A.; Verjus, C.; Ferrario, D.; Lemay, M. Pulse Wave Analysis Techniques. In The Handbook of Cuffless Blood Pressure Monitoring; Springer: Cham, Switzerland, 2019; pp. 107–137. [Google Scholar] [CrossRef]
- Kouz, K.; Scheeren, T.W.L.; De Backer, D.; Saugel, B. Pulse Wave Analysis to Estimate Cardiac Output. Anesthesiology 2021, 134, 119–126. [Google Scholar] [CrossRef]
- Wu, H.T.; Wu, H.K.; Wang, C.L.; Yang, Y.-L.; Wu, W.-H.; Tsai, T.-H.; Chang, H.-H. Modeling the Pulse Signal by Wave-Shape Function and Analyzing by Synchrosqueezing Transform. PLoS ONE 2016, 11, e0157135. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.; Chen, J.; Liu, Y. Micro-piezoelectric pulse diagnoser and frequency domain analysis of human pulse signals. J. Tradit. Chin. Med. Sci. 2018, 5, 35–42. [Google Scholar] [CrossRef]
- Qiao, L.J.; Qi, Z.; Tu, L.P.; Zhang, Y.-H.; Zhu, L.-P.; Xu, J.-T.; Zhang, Z.-F. The Association of Radial Artery Pulse Wave Variables with the Pulse Wave Velocity and Echocardiographic Parameters in Hypertension. Evid. Based Complement. Altern. Med. 2018, 2018, 5291759. [Google Scholar] [CrossRef]
- Mekov, E.; Miravitlles, M.; Petkov, R. Artificial intelligence and machine learning in respiratory medicine. Expert Rev. Respir. Med. 2020, 14, 559–564. [Google Scholar] [CrossRef] [PubMed]
- Ratwani, R.M.; Bates, D.W.; Classen, D.C. Patient Safety and Artificial Intelligence in Clinical Care. JAMA Health Forum. 2024, 5, e235514. [Google Scholar] [CrossRef]
- Jin, J.; Geng, X.; Zhang, Y.; Zhang, H.; Ye, T. Pulse Wave Analysis Method of Cardiovascular Parameters Extraction for Health Monitoring. Int. J. Environ. Res. Public Health 2023, 20, 2597. [Google Scholar] [CrossRef] [PubMed]
- Gajdova, J.; Karasek, D.; Goldmannova, D.; Krystynik, O.; Schovanek, J.; Vaverkova, H.; Zadrazil, J. Pulse wave analysis and diabetes mellitus. A systematic review. Biomed. Pap. 2017, 161, 223–233. [Google Scholar] [CrossRef]
- López-Díez, R.; Egaña-Gorroño, L.; Senatus, L.; Shekhtman, A.; Ramasamy, R.; Schmidt, A.M. Diabetes and Cardiovascular Complications: The Epidemics Continue. Curr. Cardiol. Rep. 2021, 23, 74. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee; ElSayed, N.A.; Aleppo, G.; Bannuru, R.R.; Beverly, E.A.; Bruemmer, D.; Collins, B.S.; Cusi, K.; Darville, A.; Das, S.R.; et al. Summary of Revisions: Standards of Care in Diabetes—2024. Diabetes Care 2024, 47 (Suppl. S1), S5–S10. [Google Scholar] [CrossRef]
- Fan, Z.; Zhang, G.; Liao, S. Pulse Wave Analysis. In Advanced Biomedical Engineering; IntechOpen: London, UK, 2011. [Google Scholar] [CrossRef]
- Spinetti, G.; Mutoli, M.; Greco, S.; Riccio, F.; Ben-Aicha, S.; Kenneweg, F.; Jusic, A.; de Gonzalo-Calvo, D.; Nossent, A.Y.; Novella, S.; et al. Cardiovascular complications of diabetes: Role of non-coding RNAs in the crosstalk between immune and cardiovascular systems. Cardiovasc. Diabetol. 2023, 22, 122. [Google Scholar] [CrossRef]
- Chan, M. Global Report on Diabetes. Available online: https://www.who.int/publications/i/item/9789241565257 (accessed on 1 February 2024).
- Song, D.K.; Hong, Y.S.; Sung, Y.A.; Lee, H. Risk factor control and cardiovascular events in patients with type 2 diabetes mellitus. PLoS ONE 2024, 19, e0299035. [Google Scholar] [CrossRef] [PubMed]
- Saugel, B.; Kouz, K.; Scheeren, T.W.; Greiwe, G.; Hoppe, P.; Romagnoli, S.; de Backer, D. Cardiac output estimation using pulse wave analysis—Physiology, algorithms, and technologies: A narrative review. Br. J. Anaesth. 2021, 126, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Quanyu, E. Pulse Signal Analysis Based on Deep Learning Network. BioMed Res. Int. 2022, 2022, 6256126. [Google Scholar] [CrossRef]
- Bavkar, V.C.; Shinde, A.A. Machine learning algorithms for Diabetes prediction and neural network method for blood glucose measurement. Indian J. Sci. Technol. 2021, 14, 869–880. [Google Scholar] [CrossRef]
- Ouyoung, T.; Weng, W.L.; Hu, T.Y.; Lee, C.C.; Wu, L.W.; Hsiu, H. Machine-Learning Classification of Pulse Waveform Quality. Sensors 2022, 22, 8607. [Google Scholar] [CrossRef]
- Sun, Y.; Thakor, N. Photoplethysmography Revisited: From Contact to Noncontact, From Point to Imaging. IEEE Trans. Biomed. Eng. 2016, 63, 463–477. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Seok, H.S.; Kim, S.S.; Shin, H. Photoplethysmogram Analysis and Applications: An Integrative Review. Front. Physiol. 2022, 12, 808451. [Google Scholar] [CrossRef]
- Ferizoli, R.; Karimpour, P.; May, J.M.; Kyriacou, P.A. Arterial stiffness assessment using PPG feature extraction and significance testing in an in vitro cardiovascular system. Sci. Rep. 2024, 14, 2024. [Google Scholar] [CrossRef]
- von Wowern, E.; Östling, G.; Nilsson, P.M.; Olofsson, P. Digital Photoplethysmography for Assessment of Arterial Stiffness: Repeatability and Comparison with Applanation Tonometry. PLoS ONE 2015, 10, e0135659. [Google Scholar] [CrossRef] [PubMed]
- Lovisotto, G.; Turner, H.; Eberz, S.; Martinovic, I. Seeing Red: PPG biometrics using smartphone cameras. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 3565–3574. [Google Scholar] [CrossRef]
- Hettiarachchi, C.; Chitraranjan, C. A Machine Learning Approach to Predict Diabetes Using Short Recorded Photoplethysmography and Physiological Characteristics. In Artificial Intelligence in Medicine; Springer: Cham, Switzerland, 2019; pp. 322–327. [Google Scholar] [CrossRef]
- Robinson, M.R. Pulse Photoplethysmogram System for Diabetes Assessment. U.S. Patent 14/470,927, 3 March 2016. [Google Scholar]
- Zanelli, S.; Yacoubi, M.A.; Hallab, M.; Ammi, M. Type 2 Diabetes Detection with Light CNN from Single Raw PPG Wave. IEEE Access 2023, 11, 57652–57665. [Google Scholar] [CrossRef]
- Susana, E.; Ramli, K.; Murfi, H.; Apriantoro, N.H. Non-Invasive Classification of Blood Glucose Level for Early Detection Diabetes Based on Photoplethysmography Signal. Information 2022, 13, 59. [Google Scholar] [CrossRef]
- Oikonomou, E.K.; Khera, R. Machine learning in precision diabetes care and cardiovascular risk prediction. Cardiovasc. Diabetol. 2023, 22, 259. [Google Scholar] [CrossRef] [PubMed]
- Goutte, C.; Gaussier, E. A Probabilistic Interpretation of Precision, Recall and F-Score, with Implication for Evaluation. In Proceedings of the 27th European conference on Advances in Information Retrieval Research, Santiago de Compostela, Spain, 21–23 March 2005; pp. 345–359. [Google Scholar] [CrossRef]
- Borawar, L.; Kaur, R. ResNet: Solving Vanishing Gradient in Deep Networks. In Proceedings of International Conference on Recent Trends in Computing; Springer Nature: Singapore, 2023; pp. 235–247. [Google Scholar] [CrossRef]
Group | Total Number of Pulses | Training Portion | Validation Portion | Testing Portion |
---|---|---|---|---|
Healthy | 1000 | 600 | 200 | 200 |
With only type 2 diabetes | 1000 | 600 | 200 | 200 |
Model | Training Accuracy (%) | Overall Testing Accuracy (%) | Overall Precision (%) | Overall Recall (%) | Overall F1 Score (%) |
---|---|---|---|---|---|
CNN | 82.09 | 80.6 | 80.63 | 80.6 | 80.59 |
VGG16 | 90.2 | 86.57 | 90.66 | 81.68 | 85.94 |
ResNet18 | 92.50 | 92.00 | 93.20 | 91.43 | 92.31 |
Variable | Diabetic Group (n = 115) | Control Group (n = 61) | p-Value |
---|---|---|---|
Age (years) | 52.4 ± 9.8 | 49.6 ± 8.7 | 0.12 |
Gender (Male/Female) | 45/70 | 19/42 | 0.38 |
BMI (kg/m2) | 25.3 ± 3.9 | 24.4 ± 3.6 | 0.15 |
SBP (mmHg) | 132.8 ± 22.9 | 111.1 ± 9.9 | <0.001 |
DBP (mmHg) | 72.8 ± 11.4 | 67.7 ± 8.5 | <0.001 |
PP (mmHg) | 60.0 ± 15.0 | 43.4 ± 6.7 | <0.001 |
MAP (mmHg) | 93.0 ± 13.1 | 82.2 ± 7.6 | <0.001 |
Pulse rate (bpm) | 76.7 ± 10.3 | 76.6 ± 10.1 | 0.993 |
Oxygen saturation (%) | 98.4 ± 0.9 | 99.1 ± 0.4 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gunathilaka, H.; Rajapaksha, R.; Kumarika, T.; Perera, D.; Herath, U.; Jayathilaka, C.; Liyanage, J.; Kalingamudali, S. Non-Invasive Diagnostic Approach for Diabetes Using Pulse Wave Analysis and Deep Learning. Informatics 2024, 11, 51. https://doi.org/10.3390/informatics11030051
Gunathilaka H, Rajapaksha R, Kumarika T, Perera D, Herath U, Jayathilaka C, Liyanage J, Kalingamudali S. Non-Invasive Diagnostic Approach for Diabetes Using Pulse Wave Analysis and Deep Learning. Informatics. 2024; 11(3):51. https://doi.org/10.3390/informatics11030051
Chicago/Turabian StyleGunathilaka, Hiruni, Rumesh Rajapaksha, Thosini Kumarika, Dinusha Perera, Uditha Herath, Charith Jayathilaka, Janitha Liyanage, and Sudath Kalingamudali. 2024. "Non-Invasive Diagnostic Approach for Diabetes Using Pulse Wave Analysis and Deep Learning" Informatics 11, no. 3: 51. https://doi.org/10.3390/informatics11030051
APA StyleGunathilaka, H., Rajapaksha, R., Kumarika, T., Perera, D., Herath, U., Jayathilaka, C., Liyanage, J., & Kalingamudali, S. (2024). Non-Invasive Diagnostic Approach for Diabetes Using Pulse Wave Analysis and Deep Learning. Informatics, 11(3), 51. https://doi.org/10.3390/informatics11030051