Machine Learning to Estimate Workload and Balance Resources with Live Migration and VM Placement
Abstract
:1. Introduction
- The authors propose a novel hybrid machine learning model that combines the Markov Decision Process (MDP), genetic algorithm (GA), and random forest (RF) algorithms to estimate the pre-copy live migration of virtual machines (VMs) in a data center.
- The proposed model can predict which virtual machines (VMs) will be moved first and determine the optimal host machine target to optimize VM placement and minimize downtime.
- The authors compare the proposed model with the existing state-of-the-art machine learning algorithms, such as K-nearest neighbor, decision tree classification, support vector machines, logistic regression, and neural networks. The results show that the proposed model achieves 99% accuracy with faster training times than previous studies.
- The authors suggest further research using a deep learning approach (DL) to address other issues related to data center performance.
2. Related Works
Previous Studies on Live Migration Technology
3. Methods
Evaluation Model for Machine Learning
4. Results
The Result of the Virtual Machine on the Dataset
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Benbrahim, S.E.; Quintero, A.; Bellaïche, M. Live Placement of Interdependent Virtual Machines to Optimize Cloud Service Profits and Penalties on SLAs. IEEE Trans. Cloud Comput. 2019, 7, 237–249. [Google Scholar] [CrossRef]
- Zhuang, F.; Lin, G.; He, H.; Zhang, Y.; Li, Y.; Gu, H. Improved t-SNE in Anomaly Detection of Cloud Virtual Machine. Enterp. Inf. Syst. 2023, 17, 1995784. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Rama Krishna, C. A Container-Based Technique to Improve Virtual Machine Migration in Cloud Computing. IETE J. Res. 2022, 68, 401–416. [Google Scholar] [CrossRef]
- Imran, M.; Ibrahim, M.; Din, M.S.U.; Rehman, M.A.U.; Kim, B.S. Live virtual machine migration: A survey, research challenges, and future directions. Comput. Electr. Eng. 2022, 103, 108297. [Google Scholar] [CrossRef]
- Sun, G.; Liao, D.; Zhao, D.; Xu, Z.; Yu, H. Live Migration for Multiple Correlated Virtual Machines in Cloud-Based Data Centers. IEEE Trans. Serv. Comput. 2018, 11, 279–291. [Google Scholar] [CrossRef]
- Kaur, A.; Kumar, S.; Gupta, D.; Hamid, Y.; Hamdi, M.; Ksibi, A.; Elmannai, H.; Saini, S. Algorithmic Approach to Virtual Machine Migration in Cloud Computing with Updated SESA Algorithm. Sensors 2023, 23, 6117. [Google Scholar] [CrossRef] [PubMed]
- Bashir, S.; Mustafa, S.; Ahmad, R.W.; Shuja, J.; Maqsood, T.; Alourani, A. Multi-factor nature inspired SLA-aware energy efficient resource management for cloud environments. Clust. Comput. 2022, 26, 1643–1658. [Google Scholar] [CrossRef]
- Pyda, P.; Przywuski, M.; Dalecki, T.; Sliwa, J. Efficiency of Virtual Machine Replication in the Data Center. Procedia Comput. Sci. 2022, 205, 208–217. [Google Scholar] [CrossRef]
- Rana, N.; Abd Latiff, M.S.; Abdulhamid, S.i.M.; Misra, S. A hybrid whale optimization algorithm with differential evolution optimization for multi-objective virtual machine scheduling in cloud computing. Eng. Optim. 2022, 54, 1999–2016. [Google Scholar] [CrossRef]
- Thomas, V.; Sundaramoorthy, K.; Ashok, S. Fuzzy Controller-Based Self-Adaptive Virtual Synchronous Machine for Microgrid Application. IEEE Trans. Energy Convers. 2021, 36, 2427–2437. [Google Scholar] [CrossRef]
- Kadu, N.B.; Jadhav, P.P. High performance computing with inter-virtual-machine communication. J. Cyber Secur. Technol. 2023, 1–13. [Google Scholar] [CrossRef]
- Haris, R.M.; Khan, K.M.; Nhlabatsi, A. Live migration of virtual machine memory content in networked systems. Comput. Netw. 2022, 209, 108898. [Google Scholar] [CrossRef]
- Ding, Z.; Tian, Y.-C.; Wang, Y.-G.; Zhang, W.; Yu, Z.-G. Progressive-fidelity computation of the genetic algorithm for energy-efficient virtual machine placement in cloud data centers. Appl. Soft Comput. 2023, 146, 110681. [Google Scholar] [CrossRef]
- Satpathy, A.; Addya, S.K.; Turuk, A.K.; Majhi, B.; Sahoo, G. Crow search based virtual machine placement strategy in cloud data centers with live migration. Comput. Electr. Eng. 2018, 69, 334–350. [Google Scholar] [CrossRef]
- Srinivas, B.V.; Mandal, I.; Keshavarao, S. Virtual Machine Migration-Based Intrusion Detection System in Cloud Environment Using Deep Recurrent Neural Network. Cybern. Syst. 2024, 55, 450–470. [Google Scholar] [CrossRef]
- Kumar, Y.; Kaul, S.; Hu, Y.-C. Machine learning for energy-resource allocation, workflow scheduling and live migration in cloud computing: State-of-the-art survey. Sustain. Comput. Inform. Syst. 2022, 36, 100780. [Google Scholar] [CrossRef]
- Haris, R.M.; Khan, K.M.; Nhlabatsi, A.; Barhamgi, M. A machine learning-based optimization approach for pre-copy live virtual machine migration. Clust. Comput. 2023, 27, 1293–1312. [Google Scholar] [CrossRef]
- Guo, J.; Shi, Y.; Chen, Z.; Yu, T.; Shirinzadeh, B.; Zhao, P. Improved SP-MCTS-Based Scheduling for Multi-Constraint Hybrid Flow Shop. Appl. Sci. 2020, 10, 6220. [Google Scholar] [CrossRef]
- Ajmal, M.S.; Iqbal, Z.; Khan, F.Z.; Ahmad, M.; Ahmad, I.; Gupta, B.B. Hybrid ant genetic algorithm for efficient task scheduling in cloud data centers. Comput. Electr. Eng. 2021, 95, 107419. [Google Scholar] [CrossRef]
- Ghorbani, R.; Ghousi, R.; Makui, A.; Atashi, A. A New Hybrid Predictive Model to Predict the Early Mortality Risk in Intensive Care Units on a Highly Imbalanced Dataset. IEEE Access 2020, 8, 141066–141079. [Google Scholar] [CrossRef]
- Addya, S.K.; Turuk, A.K.; Satpathy, A.; Sahoo, B.; Sarkar, M. A Strategy for Live Migration of Virtual Machines in a Cloud Federation. IEEE Syst. J. 2019, 13, 2877–2887. [Google Scholar] [CrossRef]
- Rejiba, Z.; Masip-Bruin, X.; Marín-Tordera, E. A Survey on Mobility-Induced Service Migration in the Fog, Edge, and Related Computing Paradigms. ACM Comput. Surv. 2019, 52, 90. [Google Scholar] [CrossRef]
- Deylami, H.; Gutierrez, J.; Sinha, R. Kororā: A secure live virtual machine job migration framework for cloud systems integrity. Array 2023, 19, 100312. [Google Scholar] [CrossRef]
- Ghobaei-Arani, M.; Khorsand, R.; Ramezanpour, M. An autonomous resource provisioning framework for massively multiplayer online games in cloud environment. J. Netw. Comput. Appl. 2019, 142, 76–97. [Google Scholar] [CrossRef]
- Cerroni, W.; Esposito, F. Optimizing Live Migration of Multiple Virtual Machines. IEEE Trans. Cloud Comput. 2018, 6, 1096–1109. [Google Scholar] [CrossRef]
- Satpathy, A.; Sahoo, M.N.; Mishra, A.; Majhi, B.; Rodrigues, J.J.P.C.; Bakshi, S. A Service Sustainable Live Migration Strategy for Multiple Virtual Machines in Cloud Data Centers. Big Data Res. 2021, 25, 100213. [Google Scholar] [CrossRef]
- Alashaikh, A.; Alanazi, E.; Al-Fuqaha, A. A Survey on the Use of Preferences for Virtual Machine Placement in Cloud Data Centers. ACM Comput. Surv. 2021, 54, 96. [Google Scholar] [CrossRef]
- Pietri, I.; Sakellariou, R. Mapping Virtual Machines onto Physical Machines in Cloud Computing: A Survey. ACM Comput. Surv. 2016, 49, 49. [Google Scholar] [CrossRef]
- Choudhary, A.; Govil, M.C.; Singh, G.; Awasthi, L.K.; Pilli, E.S.; Kapil, D. A critical survey of live virtual machine migration techniques. J. Cloud Comput. 2017, 6, 23. [Google Scholar] [CrossRef]
- Singh, S.; Singh, D. A Bio-inspired VM Migration using Re-initialization and Decomposition Based-Whale Optimization. ICT Express 2023, 9, 92–99. [Google Scholar] [CrossRef]
- Duggan, M.; Shaw, R.; Duggan, J.; Howley, E.; Barrett, E. A multitime-steps-ahead prediction approach for scheduling live migration in cloud data centers. Softw. Pract. Exp. 2018, 49, 617–639. [Google Scholar] [CrossRef]
- Arif, M.; Kiani, A.K.; Qadir, J. Machine learning based optimized live virtual machine migration over WAN links. Telecommun. Syst. 2017, 64, 245–257. [Google Scholar] [CrossRef]
- Mangalampalli, A.; Kumar, A. WBATimeNet: A deep neural network approach for VM Live Migration in the cloud. Future Gener. Comput. Syst. 2022, 135, 438–449. [Google Scholar] [CrossRef]
- Wu, Q.; Ishikawa, F.; Zhu, Q.; Xia, Y. Energy and Migration Cost-Aware Dynamic Virtual Machine Consolidation in Heterogeneous Cloud Datacenters. IEEE Trans. Serv. Comput. 2019, 12, 550–563. [Google Scholar] [CrossRef]
- Paulraj, G.J.L.; Francis, S.A.J.; Peter, J.D.; Jebadurai, I.J. A combined forecast-based virtual machine migration in cloud data centers. Comput. Electr. Eng. 2018, 69, 287–300. [Google Scholar] [CrossRef]
- Talwani, S.; Singla, J.; Mathur, G.; Malik, N.; Jhanjhi, N.; Masud, M.; Aljahdali, S. Machine-Learning-Based Approach for Virtual Machine Allocation and Migration. Electronics 2022, 11, 3249. [Google Scholar] [CrossRef]
- De Giacomo, G.; Favorito, M.; Leotta, F.; Mecella, M.; Silo, L. Digital twins composition in smart manufacturing via Markov decision processes. Comput. Ind. 2023, 149, 103916. [Google Scholar] [CrossRef]
- Elmezain, M.; Alwateer, M.M.; El-Agamy, R.; Atlam, E.; Ibrahim, H.M. Forward Hand Gesture Spotting and Prediction Using HMM-DNN Model. Informatics 2023, 10, 1. [Google Scholar] [CrossRef]
- Chen, W.; Chen, Y.; Liu, J. Service migration for mobile edge computing based on partially observable Markov decision processes. Comput. Electr. Eng. 2023, 106, 108552. [Google Scholar] [CrossRef]
- Aghasi, A.; Jamshidi, K.; Bohlooli, A.; Javadi, B. A decentralized adaptation of model-free Q-learning for thermal-aware energy-efficient virtual machine placement in cloud data centers. Comput. Netw. 2023, 224, 109624. [Google Scholar] [CrossRef]
- Younes, S.; Idi, M.; Robbana, R. Discrete-time Markov decision process for performance analysis of virtual machine allocation schemes in C-RAN. J. Netw. Comput. Appl. 2024, 225, 103859. [Google Scholar] [CrossRef]
- Iwendi, C. Innovative augmented and virtual reality applications for disease diagnosis based on integrated genetic algorithms. Int. J. Cogn. Comput. Eng. 2023, 4, 266–276. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, X.; Wang, H. Virtual machine placement strategy using cluster-based genetic algorithm. Neurocomputing 2021, 428, 310–316. [Google Scholar] [CrossRef]
- Guler, E.; Karakus, M.; Ayaz, F. Genetic algorithm enabled virtual multicast tree embedding in Software-Defined Networks. J. Netw. Comput. Appl. 2023, 209, 103538. [Google Scholar] [CrossRef]
- Pang, S.; Li, W.; He, H.; Shan, Z.; Wang, X. An EDA-GA Hybrid Algorithm for Multi-Objective Task Scheduling in Cloud Computing. IEEE Access 2019, 7, 146379–146389. [Google Scholar] [CrossRef]
- Gkikas, D.C.; Theodoridis, P.K.; Theodoridis, T.; Gkikas, M.C. Finding Good Attribute Subsets for Improved Decision Trees Using a Genetic Algorithm Wrapper; a Supervised Learning Application in the Food Business Sector for Wine Type Classification. Informatics 2023, 10, 63. [Google Scholar] [CrossRef]
- Wang, X.; Lou, H.; Dong, Z.; Yu, C.; Lu, R. Decomposition-based multi-objective evolutionary algorithm for virtual machine and task joint scheduling of cloud computing in data space. Swarm Evol. Comput. 2023, 77, 101230. [Google Scholar] [CrossRef]
- Hung, L.H.; Wu, C.H.; Tsai, C.H.; Huang, H.C. Migration-Based Load Balance of Virtual Machine Servers in Cloud Computing by Load Prediction Using Genetic-Based Methods. IEEE Access 2021, 9, 49760–49773. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, Y.; Dong, B.; Tian, F.; Zheng, Q. A Genetic Algorithm-Based Energy-Efficient Container Placement Strategy in CaaS. IEEE Access 2019, 7, 121360–121373. [Google Scholar] [CrossRef]
- Ali, K.B.; Telmoudi, A.J.; Gattoufi, S. Improved Genetic Algorithm Approach Based on New Virtual Crossover Operators for Dynamic Job Shop Scheduling. IEEE Access 2020, 8, 213318–213329. [Google Scholar] [CrossRef]
- Li, X.; Su, C.; Ghobaei-Arani, M.; Albaghdadi, M.F. Dynamic service function chain placement with instance reuse in Fog–Cloud Computing. ICT Express 2023, 9, 847–853. [Google Scholar] [CrossRef]
- Alrajeh, O.; Forshaw, M.; Thomas, N. Using Virtual Machine live migration in trace-driven energy-aware simulation of high-throughput computing systems. Sustain. Comput. Inform. Syst. 2021, 29, 100468. [Google Scholar] [CrossRef]
- Alrajeh, O.; Forshaw, M.; Thomas, N. Machine Learning Models for Predicting Timely Virtual Machine Live Migration. In Proceedings of the Computer Performance Engineering, Berlin, Germany, 7–8 September 2017; Reinecke, P., Di Marco, A., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 169–183. [Google Scholar]
- Rezazadeh, A.; Abednezhad, D.; Lutfiyya, H. MiGrror: Mitigating Downtime in Mobile Edge Computing, An Extension to Live Migration. Procedia Comput. Sci. 2022, 203, 41–50. [Google Scholar] [CrossRef]
- Gkikas, D.C.; Theodoridis, P.K.; Beligiannis, G.N. Enhanced Marketing Decision Making for Consumer Behaviour Classification Using Binary Decision Trees and a Genetic Algorithm Wrapper. Informatics 2022, 9, 45. [Google Scholar] [CrossRef]
- Kumar, J.; Singh, A.K.; Buyya, R. Ensemble learning based predictive framework for virtual machine resource request prediction. Neurocomputing 2020, 397, 20–30. [Google Scholar] [CrossRef]
- Kim, B.; Han, J.; Jang, J.; Jung, J.; Heo, J.; Min, H.; Rhee, D.S. A Dynamic Checkpoint Interval Decision Algorithm for Live Migration-Based Drone-Recovery System. Drones 2023, 7, 286. [Google Scholar] [CrossRef]
- Patel, M.; Chaudhary, S.; Garg, S. Machine Learning Based Statistical Prediction Model for Improving Performance of Live Virtual Machine Migration. J. Eng. 2016, 2016, 3061674. [Google Scholar] [CrossRef]
- Abdelaziz, A.; Elhoseny, M.; Salama, A.S.; Riad, A.M. A machine learning model for improving healthcare services on cloud computing environment. Measurement 2018, 119, 117–128. [Google Scholar] [CrossRef]
- Iosup, A.; Li, H.; Jan, M.; Anoep, S.; Dumitrescu, C.; Wolters, L.; Epema, D.H.J. The Grid Workloads Archive. Future Gener. Comput. Syst. 2008, 24, 672–686. [Google Scholar] [CrossRef]
- Shen, S.; Beek, V.V.; Iosup, A. Statistical Characterization of Business-Critical Workloads Hosted in Cloud Datacenters. In Proceedings of the 2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, Shenzhen, China, 4–7 May 2015; pp. 465–474. [Google Scholar] [CrossRef]
Authors | Research Methods | Workload | Prediction Targets | Key Findings |
---|---|---|---|---|
[12] | The pre-copy method | CPU | Memory Content migration | There were no selection techniques for VM migration based on workloads. |
[30] | Re-initialization and decomposition-whale optimization algorithm | CPU and memory | Resource utilization | Only energy usage and migration costs; no specific virtual machine workloads were used. |
[31] | Support vector regression | Memory, bandwidth, and CPU | Host utilization | It was limited to evaluating host usage; it was not suitable for evaluating the performance of VM migrations, although its precision was higher than that of the other models. |
[32] | Machine learning-based downtime optimization (MLDOM) | CPU, memory, and network utilization | Downtime | This process conducted to reduce the downtime only applied to VM migration over the network environment. |
[33] | Artificial neural network | A large number of factors | Bandwidth usage and CPU Utilization | Performance prediction for pre-copy migration was not affected by increasing data center efficiency. |
[34] | Genetic algorithm | CPU, memory, and network | CPU utilization and bandwidth | Fast VM placement was implemented. |
[35] | Forecasting technique | Disk, memory, and CPU | Disk, memory, and CPU | Workload prediction was obtained to minimize VM migration. |
[36] | Machine learning | CPU | CPU utilization | The K-nearest neighbor (KNN) is the approach and method in the decision of tree classification algorithms, which were compared to determine the number of VMs migrating with an accuracy level of 90.9%. |
Predicted Positive | Predicted Negative |
---|---|
True positives (TPs) | False negatives (FNs) |
False positives (FPs) | True negatives (TNs) |
ML Model | Accuracy Rate | F1 Score | Time Taken |
---|---|---|---|
SVM | 92 | 92 | 989.72 s |
KNN | 91 | 91 | 30.05 s |
DT | 91 | 91 | 17.64 s |
Logistic regression | 89 | 89 | 0.41 s |
Random forest | 93 | 93 | 335.57 s |
Authors | Algorithm of Machine Learning | Allocation Scenario Test | Result Test Accuracy (%) |
---|---|---|---|
[17] | K-nearest neighbors (KNNs) | The optimization of pre-copy migration | 95.00 |
[36] | Decision tree classification and K-nearest neighbors (KNNs) | The forecast of the workload of VM migration | 90.90 |
[58] | SVR (support vector regression) model | The optimization of VM live migration | 94.61 |
[59] | Linear regression (LR) and neural network (NN) | The optimal Selection of VM performance | 97.80 |
Model | Accuracy | Precision | Recall | F1 Score |
---|---|---|---|---|
MDP + GA + RF | 99 | 99 | 96 | 98 |
HM Allocation | Status | ||
---|---|---|---|
Migration of Virtual Machines | No Migration of VM | Total | |
HM 1 | 4901 | 85,739 | 90,640 |
HM 2 | 28,942 | 78,402 | 107,344 |
HM 3 | 71 | 86,190 | 86,261 |
HM Allocation | Status | ||
---|---|---|---|
Predicted Migration Decision | No Migration of VM | Total | |
HM 1 | 4648 | 85,992 | 90,640 |
HM 2 | 28,752 | 78,592 | 107,344 |
HM 3 | 60 | 86,190 | 86,250 |
Authors | Algorithm of Machine Learning | Allocation Scenario Test | Result Test Accuracy (%) |
---|---|---|---|
This paper follows | MDP + GA + RF | Live migration of VM placement | 99.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hidayat, T.; Ramli, K.; Thereza, N.; Daulay, A.; Rushendra, R.; Mahardiko, R. Machine Learning to Estimate Workload and Balance Resources with Live Migration and VM Placement. Informatics 2024, 11, 50. https://doi.org/10.3390/informatics11030050
Hidayat T, Ramli K, Thereza N, Daulay A, Rushendra R, Mahardiko R. Machine Learning to Estimate Workload and Balance Resources with Live Migration and VM Placement. Informatics. 2024; 11(3):50. https://doi.org/10.3390/informatics11030050
Chicago/Turabian StyleHidayat, Taufik, Kalamullah Ramli, Nadia Thereza, Amarudin Daulay, Rushendra Rushendra, and Rahutomo Mahardiko. 2024. "Machine Learning to Estimate Workload and Balance Resources with Live Migration and VM Placement" Informatics 11, no. 3: 50. https://doi.org/10.3390/informatics11030050
APA StyleHidayat, T., Ramli, K., Thereza, N., Daulay, A., Rushendra, R., & Mahardiko, R. (2024). Machine Learning to Estimate Workload and Balance Resources with Live Migration and VM Placement. Informatics, 11(3), 50. https://doi.org/10.3390/informatics11030050