Healthcare and the Internet of Medical Things: Applications, Trends, Key Challenges, and Proposed Resolutions
Abstract
:1. Introduction
1.1. Research Aims and Objectives
- Objective 1: to identify different IoMT applications in use within the healthcare industry.
- Objective 2: to identify the key challenges faced by end-users of IoMT applications in healthcare.
- Objective 3: to identify the proposed resolutions/mitigations to overcome the key challenges encountered when using IoMT applications.
1.2. Research Methodology
1.3. Data Selection
1.4. Data Thematic Analysis
2. Discussion and Results
2.1. IoMT Applications
2.1.1. Mobile Health (mHealth) Applications
2.1.2. Remote Biomarker Detection
2.1.3. Hybrid RFID-IoT Scrub Distribution Solutions in Operating Rooms
2.1.4. IoT-Based Disease Prediction Using Machine Learning
2.1.5. Efficient Personal-Health-Records Sharing in Internet of Medical Things Using Searchable Symmetric Encryption, Blockchain, and IPFS
2.1.6. Remote Healthcare Management Systems Built on IoT
2.1.7. Internet of Medical Things (IoMT)-Based Wearable Device for Non-Invasive and Real-Time Measurement of Blood Glucose
2.1.8. Internet of Medical Things (IoMT)-Based Wearable Device for Non-Invasive and Real-Time Measurement of Blood Glucose
2.1.9. The Phonendo 1.0 Distributed Ledger Technology (DLT) IoT-Based Platform
2.1.10. Flexible Triboelectric Sensors for Intelligent Medical Internet of Things (IoMT)
2.1.11. Ultra-Wideband (UWB) Radar-Based Internet-of-Medical-Things (IoMT) System
2.1.12. Federated Learning (FL)-Based Safe Patient Monitoring System in Internet of Medical Things
2.1.13. Emotion-Aware Internet-of-Things (WBAN) System
2.1.14. IoT-Based Pulse Oximeter for Remote Health Assessment
2.1.15. Accident and Emergency Informatics (A&EI)
2.1.16. Integrated Wearable Smart Patch-Based Sensor System with Kirigami-Inspired Strain-Free Deformable Structures
2.2. Case Studies of Healthcare IoMT Implementations
2.3. Critical Factors for a Successful IoMT Implementation
2.4. Key Challenges of Healthcare IoMT Implementation and Proposed Resolutions
2.4.1. Challenge and Resolution 1: Lack of Sustainable Power Source, Sensor Intelligence, and Human Adaption in Sensors
2.4.2. Challenge and Resolution 2: Lack of Privacy Protection in IoMT Healthcare Applications
2.4.3. Challenge and Resolution 3: Reduced Data Speed and Device Reliability
2.4.4. Challenge and Resolution 4: Redundant Healthcare Data Decreasing Storage Efficiency
2.4.5. IoMT Influence on Healthcare Risk Management
2.5. Comparative Analysis
2.6. User Experience and Acceptance of IoMT Technologies
2.6.1. Usability and Accessibility
2.6.2. Potential Resistance and Concerns
2.6.3. User-Centric Design Principles
3. Practical Implications
4. Research Limitation and Future Areas of Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Correction Statement
References
- Laal, M. Innovation in medicine; health information technology. In Proceedings of the 2nd World Conference on Innovation and Computer Sciences, Izmır, Turkey, 10–12 May 2017. [Google Scholar]
- Ajagbe, S.A.; Awotunde, J.B.; Adesina, A.O.; Achimugu, P.; Kumar, T.A. Internet of Medical Things (IoMT): Applications, Challenges, and Prospects in a Data-Driven Technology. In Intelligent Healthcare Infrastructure, Algorithms and Management; Chakraborty, C.K.M., Ed.; Springer: Singapore, 2022; pp. 299–319. [Google Scholar]
- Askar, N.A.; Habbal, A.; Mohammed, A.H.; Sajat, M.S.; Yusupov, Z.Y.Z.; Kodirov, D. Architecture, Protocols, and Applications of the Internet of Medical Things (IoMT). J. Commun. 2022, 17, 900–918. [Google Scholar] [CrossRef]
- Mishra, P.; Singh, G. Internet of Medical Things Healthcare for Sustainable Smart Cities: Current Status and Future Prospects. Appl. Sci. 2023, 13, 8869. [Google Scholar] [CrossRef]
- Huang, C.; Wang, J.; Wang, S.; Zhang, Y. Internet of medical things: A systematic review. Neurocomputing 2023, 557, 126719. [Google Scholar] [CrossRef]
- Page, M.; Moher, D.; Bossuyt, P.; Boutron, I.; Hoffmann, T.; Mulrow, C.; Shamseer, L.; Tetzlaff, J.; Akl, E.; Brennan, S.; et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef] [PubMed]
- Page, M.; McKenzie, J.; Bossuyt, P.; Boutron, I.; Hoffmann, T.; Mulrow, C.; Shamseer, L.; Tetzlaff, J.; Akl, E.; Brennan, S.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 372, n71. [Google Scholar]
- Taylor, K.S.; Mahtani, K.R.; Aronson, J.K. Summarising good practice guidelines for data extraction for systematic reviews and meta-analysis. BMJ Evid.-Based Med. 2021, 26, 88–90. [Google Scholar] [CrossRef] [PubMed]
- Joffe, H.; Yardley, L. Content and thematic analysis. In Content and Thematic Analysis; Sage: London, UK, 2004; pp. 56–68. [Google Scholar]
- Humble, N.; Mozelius, P. Content analysis or thematic analysis: Similarities, differences and applications in qualitative research. In Proceedings of the European Conference on Research Methodology for Business and Management Studies, Aveiro, Portugal, 2–3 June 2022. [Google Scholar]
- Vaghefi, I.; Tulu, B. The Continued Use of Mobile Health Apps: Insights from a Longitudinal Study. JMIR mHealth uHealth 2019, 7, e12983. [Google Scholar] [CrossRef] [PubMed]
- Lakhan, A.; Mohammed, M.A.; Rashid, A.N.; Kadry, S.; Abdulkareem, K.H.; Nedoma, J.; Martinek, R.; Razzak, I. Restricted Boltzmann Machine Assisted Secure Serverless Edge System for Internet of Medical Things. IEEE J. Biomed. Health Inform. 2023, 27, 673–683. [Google Scholar] [CrossRef] [PubMed]
- Labbaf, S.; Abbasian, M.; Azimi, I.; Dutt, N.; Rahmani, A.M. ZotCare: A flexible, personalizable, and affordable mhealth service provider. Front. Digit. Health 2023, 5, 1253087. [Google Scholar] [CrossRef]
- Hernandez-Jaimes, M.L.; Martinez-Cruz, A.; Ramírez-Gutiérrez, K.A.; Feregrino-Uribe, C. Artificial intelligence for IoMT security: A review of intrusion. Internet Things 2023, 23, 100887. [Google Scholar] [CrossRef]
- Yaacoub, J.A.; Noura, M.; Noura, H.; Chehab, A.; Salman, O.; Yaacoub, E.; Couturier, R. Securing internet of medical things systems: Limitations, issues and recommendations. Future Gener. Comput. Syst. 2020, 105, 581–606. [Google Scholar] [CrossRef]
- Huang, W.; Ding, Q.; Wang, H.; Wu, Z.; Luo, Y.; Shi, W.; Yang, L.; Liang, Y.; Liu, C.; Wu, J. Design of stretchable and self-powered sensing device for portable and remote trace biomarkers detection. Nat. Commun. 2023, 14, 5221. [Google Scholar] [CrossRef] [PubMed]
- National Academies of Sciences, Engineering, and Medicine. Biomarker Tests for Molecularly Targeted Therapies: Key to Unlocking Precision Medicine; National Academies Press: Washington, DC, USA, 2016. [Google Scholar]
- Maïzi, Y.; Bendavid, Y. Hybrid RFID-IoT simulation modeling approach for analyzing scrubs’ distribution solutions in operating rooms. Bus. Process Manag. J. 2023, 29, 1734–1761. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Ahmad, A.; Fatim, N. IoT-based disease prediction using machine learning. Comput. Electr. Eng. 2023, 108, 108675. [Google Scholar] [CrossRef] [PubMed]
- Dhanda, S.S.; Singh, B.; Jindal, P.; Sharma, T.K.; Panwar, D. 6G-enabled internet of medical things. Expert Syst. 2023, 41, e13472. [Google Scholar] [CrossRef]
- Kumar, M.; Chand, S. A Secure and Efficient Cloud-Centric Internet-of-Medical-Things-Enabled Smart Healthcare System with Public Verifiability. IEEE Internet Things J. 2020, 7, 10650–10659. [Google Scholar] [CrossRef]
- Bisht, A.; Das, A.K.; Niyato, D.; Park, Y. Efficient Personal-Health-Records Sharing in Internet of Medical Things Using Searchable Symmetric Encryption, Blockchain, and IPFS. IEEE Open J. Commun. Soc. 2023, 4, 2225–2244. [Google Scholar] [CrossRef]
- Osman, R.A. Internet of Medical Things (IoMT) optimization for healthcare: A deep learning-based interference avoidance model. Comput. Netw. 2024, 248, 110491. [Google Scholar] [CrossRef]
- Alshamrani, M. IoT and artificial intelligence implementations for remote healthcare monitoring systems: A survey. J. King Saud Univ. Comput. Inf. Sci. 2022, 34 Pt A, 4687–4701. [Google Scholar] [CrossRef]
- Musen, M.A.; Middleton, B.; Greenes, R.A. Clinical Decision-Support Systems. In Biomedical Informatics; Shortliffe, E.C.J., Ed.; Springer: Cham, Switzerland, 2021; pp. 795–840. [Google Scholar]
- Philip, J.; Gandhimathi, S.K.; Chalichalamala, S.; Karnam, B.; Chandanapalli, S.B.; Chennupalli, S. Smart Health Monitoring Using Deep Learning and Artificial Intelligence. Rev. d’Intell. Artif. 2023, 37, 451–464. [Google Scholar] [CrossRef]
- Chenthara, S.; Ahmed, K.; Wang, H.; Whittaker, F. Security and Privacy-Preserving Challenges of e-Health Solutions in Cloud Computing. IEEE Access 2019, 7, 74361–74382. [Google Scholar] [CrossRef]
- Upadrista, V.; Nazir, S.; Tianfield, H. Secure data sharing with blockchain for remote health monitoring applications: A review. J. Reliab. Intell. Environ. 2023, 9, 349–368. [Google Scholar] [CrossRef] [PubMed]
- Bolla, A.S.; Priefer, R. Blood glucose monitoring- an overview of current and future non-invasive devices. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 739–751. [Google Scholar] [CrossRef]
- Dahiya, R.; Arunkumar, B.; Dahiya, V.K.; Agarwal, N. Facilitating Healthcare Sector through IoT: Issues, Challenges, and Its Solutions. EAI Endorsed Trans. Ind. Netw. Intell. Syst. 2023, 9, e5. [Google Scholar] [CrossRef]
- Saleem, S.N. Fetal Magnetic Resonance Imaging (MRI): A Tool for a Better Understanding of Normal and Abnormal Brain Development. J. Child Neurol. 2013, 28, 890–908. [Google Scholar] [CrossRef] [PubMed]
- Attallah, O.; Sharkas, M.A.; Gadelkarim, H. Deep Learning Techniques for Automatic Detection of Embryonic Neurodevelopmental Disorders. Diagnostics 2020, 10, 27. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Silambarasan, K. Enhancing the Performance of Healthcare Service in IoT and Cloud Using Optimized Techniques. IETE J. Res. 2022, 68, 1475–1484. [Google Scholar] [CrossRef]
- Priya, M.; Nandhini, M. Detection of fetal brain abnormalities using data augmentation and convolutional neural network in internet of things. Meas. Sensors 2023, 28, 100808. [Google Scholar] [CrossRef]
- Moya, F.; Quesada, F.J.; Martínez, L.; Estrella, F.J. Phonendo: A platform for publishing wearable data on distributed ledger technologies. Wirel. Netw. 2023, 1–15. [Google Scholar] [CrossRef]
- Moya, F.; Quesada, F.J.; Martínez, L.; Estrella, F.J. CertifIoT: An IoT and DLT-Based Solution for Enhancing Trust and Transparency in Data Certification. In Proceedings of the 15th International Conference on Ubiquitous Computing & Ambient Intelligence (UCAmI 2023), Riviera Maya, Mexico, 28–29 November 2023. [Google Scholar]
- Rezaee, K.; Khosravi, M.R.; Neshat, N.; Moghimi, M.K. Deep Transfer Learning-Based Fall Detection Approach Using IoMT-Enabled Thermal Imaging-Assisted Pervasive Surveillance and Big Health Data. J. Circuits Syst. Comput. 2022, 31, 2240005. [Google Scholar] [CrossRef]
- Mao, J.; Zhou, P.; Wang, X.; Yao, H.; Liang, L.; Zhao, Y.; Zhang, J.; Ban, D.; Zheng, H. A health monitoring system based on flexible triboelectric sensors for intelligence medical internet of things and its applications in virtual reality. Nano Energy 2023, 118, 108984. [Google Scholar] [CrossRef]
- Li, Q.; Liu, J.; Gravina, R.; Zang, W.; Li, Y.; Fortino, G. A UWB-Radar-Based Adaptive Method for In-Home Monitoring of Elderly. IEEE Internet Things J. 2024, 11, 6241–6252. [Google Scholar] [CrossRef]
- Dwivedi, R.; Mehrotra, D.; Chandra, S. Potential of Internet of Medical Things (IoMT) applications in building a smart healthcare system: A systematic review. J. Oral Biol. Craniofacial Res. 2022, 12, 302–318. [Google Scholar] [CrossRef] [PubMed]
- Hämäläinen, M.; Mucchi, L.; Caputo, S.; Biotti, L.; Ciani, L.; Marabissi, D.; Patrizi, G. Ultra-Wideband Radar-Based Indoor Activity Monitoring for Elderly Care. Sensors 2021, 21, 3158. [Google Scholar] [CrossRef] [PubMed]
- Wagan, S.A.; Koo, J.; Siddiqui, I.F.; Attique, M.; Shin, D.R.; Qureshi, N.M.F. Internet of medical things and trending converged technologies: A comprehensive review on real-time applications. J. King Saud Univ. Comput. Inf. Sci. 2022, 34, 9228–9251. [Google Scholar] [CrossRef]
- Garg, N.; Wazid, M.; Singh, J.; Singh, D.P.; Das, A.K. Security in IoMT-driven smart healthcare: A comprehensive review and open challenges. Secur. Priv. 2022, 5, e235. [Google Scholar] [CrossRef]
- Singh, C.; Mishra, R.; Gupta, H.P.; Banga, G. A Federated Learning-Based Patient Monitoring System in Internet of Medical Things. IEEE Trans. Comput. Soc. Syst. 2023, 10, 1622–1628. [Google Scholar] [CrossRef]
- Bhuiyan, M.N.; Rahman, M.M.; Billah, M.M.; Saha, D. Internet of Things (IoT): A Review of Its Enabling Technologies in Healthcare Applications, Standards Protocols, Security, and Market Opportunities. IEEE Internet Things J. 2021, 8, 10474–10498. [Google Scholar] [CrossRef]
- Olatinwo, D.D.; Abu-Mahfouz, A.; Hancke, G.; Myburgh, H. IoT-Enabled WBAN and Machine Learning for Speech Emotion Recognition in Patients. Sensors 2023, 23, 2948. [Google Scholar] [CrossRef]
- McAloon, C.; Osman, F.; Glennon, P.; Lim, P.; Hayat, S. Chapter 4—Global Epidemiology and Incidence of Cardiovascular Disease. In Cardiovascular Diseases Genetic Susceptibility, Environmental Factors and Their Interaction; Academic Press: Cambridge, MA, USA, 2016; pp. 57–96. [Google Scholar]
- Revathi, K.; Tamilselvi, T.; Gomathi, G.; Divya, R. IoT Based Pulse Oximeter for Remote Health Assessment: Design, Challenges and Futuristic Scope. Int. J. Electr. Electron. Res. 2022, 10, 557–563. [Google Scholar] [CrossRef]
- Srivastava, M.; Siddiqui, A.T.; Srivastava, V. Application of Artificial Intelligence of Medical Things in Remote Healthcare Delivery. In Handbook of Security and Privacy of AI-Enabled Healthcare Systems and Internet of Medical Things, 1st ed.; CRC Press: Boca Raton, FL, USA, 2023; p. 22. [Google Scholar]
- Haghi, M.; Benis, A.; Deserno, T.M. Accident & Emergency Informatics and One Digital Health. Yearb. Med. Inform. 2022, 31, 40–46. [Google Scholar] [PubMed]
- Lee, S.; Gandla, S.; Naqi, M.; Jung, U.; Youn, H.; Pyun, D.; Rhee, Y.; Kang, S.; Kwon, H.-J.; Kim, H.; et al. All-Day Mobile Healthcare Monitoring System Based on Heterogeneous Stretchable Sensors for Medical Emergency. IEEE Trans. Ind. Electron. 2019, 67, 8808–8816. [Google Scholar] [CrossRef]
- Broderick, A. Partners HealthCare: Connecting Heart Failure Patients to Providers through Remote Monitoring; The Commonwealth Fund: New York, NY, USA, 2013. [Google Scholar]
- Harris, S.; Paynter, K.; Guinn, M.; Fox, J.; Moore, N.; Maddox, T.M.; Lyons, P.G. Post-hospitalization remote monitoring for patients with heart failure or chronic obstructive pulmonary disease in an accountable care organization. BMC Health Serv. Res. 2024, 24, 69. [Google Scholar] [CrossRef] [PubMed]
- Hamine, S.; Gerth-Guyette, E.; Faulx, D.; Green, B.B.; Ginsburg, A.S. Impact of mHealth Chronic Disease Management on Treatment Adherence and Patient Outcomes: A Systematic Review. J. Med. Internet Res. 2015, 17, e52. [Google Scholar] [CrossRef] [PubMed]
- Polisena, J.; Coyle, D.; Coyle, K.; McGill, S. Home telehealth for chronic disease management: A systematic review and an analysis of economic evaluations. Int. J. Technol. Assess. Health Care 2009, 25, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Patterson, H.; Nissenbaum, H. Context-Dependent Expectations of Privacy in Self-Generated Mobile Health Data; Privacy Law Scholars Conference (PLSC): Berkeley, CA, USA, 2013. [Google Scholar]
- Attaway, A.H.; Alshabani, K.; Bender, B.; Hatipoğlu, U.S. The Utility of Electronic Inhaler Monitoring in COPD Management Promises and Challenges. Chest 2020, 157, 1466–1477. [Google Scholar] [CrossRef] [PubMed]
- Thomas, M.; Bateman, E. Asthma attacks: How can we reduce the risks? NPJ Prim. Care Respir. Med. 2015, 25, 14105. [Google Scholar] [CrossRef] [PubMed]
- van de Hei, S.J.; Stoker, N.; Blok, B.M.J.F.-D.; Poot, C.C.; Meijer, E.; Postma, M.J.; Chavannes, N.H.; Kocks, J.W.H.; van Boven, J.F.M. Anticipated barriers and facilitators for implementing smart inhalers in asthma medication adherence management. NPJ Prim. Care Respir. Med. 2023, 33, 22. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, R. Implementation of the Internet of Medical Things (IoMT): Clinical and Policy Implications. In Efficient Data Handling for Massive Internet of Medical Things; Springer: Cham, Switzerland, 2021; pp. 313–338. [Google Scholar]
- Arthi, K.; Chidhambararajan, B.; Revathi, A.R. A Deep Investigation of Architectural Elements and Computing Technologies for Internet of Medical Things. In Proceedings of the 2022 6th International Conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India, 1–3 December 2022; pp. 556–563. [Google Scholar]
- Malik, H.; Anees, T.; Faheem, M.; Chaudhry, M.U.; Ali, A.; Asghar, M.N. Blockchain and Internet of Things in smart cities and drug supply management: Open issues, opportunities, and future directions. Internet Things 2023, 23, 100860. [Google Scholar] [CrossRef]
- Monteiro, A.C.B.; França, R.P.; Arthur, R.; Iano, Y. 5—An overview of the Internet of medical things (IoMT): Applications, benefits, and challenges. In Security and Privacy Issues in Internet of Medical Things; Academic Press: Cambridge, MA, USA, 2023; pp. 83–98. [Google Scholar]
- Raj, K.; Raj, K. International Journal of Creative Research Thoughts (IJCRT). AI Enabled Internet Med. Things 2021, 9, d578–d602. [Google Scholar]
- Rodríguez-Rodríguez, I.; Campo-Valera, M.; Rodríguez, J.-V.; Woo, W.L. IoMT innovations in diabetes management: Predictive models using wearable data. Expert Syst. Appl. 2024, 238 Pt C, 121994. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, I.; Campo-Valera, M.; Rodríguez, J.-V. Forecasting glycaemia for type 1 diabetes mellitus patients by means of IoMT devices. Internet Things 2023, 24, 100945. [Google Scholar] [CrossRef]
- Prasad, S.J.S.; Devi, R.M.; Keerthika, P.; Suresh, P.; Arokiaraj, A.R.M.; Sangeetha, M. From Remote Monitoring to Personalized Care: A Review of IoT-Based Patient Engagement Solutions in Healthcare. In Convergence of Blockchain and Internet of Things in Healthcare; Rana, A.K., Sharma, V., Rana, A., Alam, M., Tripathi, S.L., Eds.; CRC Press: Boca Raton, FL, USA, 2024; p. 26. [Google Scholar]
- Wang, A.; Redington, L.; Steinmetz, V.; Lindeman, D. The ADOPT Model: Accelerating Diffusion of Proven Technologies for Older Adults. Ageing Int. 2011, 36, 29–45. [Google Scholar] [CrossRef]
- Hicks, L.L.; Fleming, D.A.; Desaulnier, A. The Application of Remote Monitoring to Improve Health Outcomes to a Rural Area. Telemed. e-Health 2009, 15, 664–671. [Google Scholar] [CrossRef] [PubMed]
- Botsis, T.; Demiris, G.; Pedersen, S.; Hartvigsen, G. Home telecare technologies for the elderly. J. Telemed. Telecare 2008, 14, 333–337. [Google Scholar] [CrossRef]
- Chiang, L.-C.; Chen, W.-C.; Dai, Y.-T.; Ho, Y.-L. The effectiveness of telehealth care on caregiver burden, mastery of stress, and family function among family caregivers of heart failure patients: A quasi-experimental study. Int. J. Nurs. Stud. 2012, 49, 1230–1242. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.S.; Kothari, S.M.; Agrawal, S.K. The Role of IoMT Technologies in Revolutionizing Healthcare. In WSN and IoT, 1st ed.; CRC Press: Boca Raton, FL, USA, 2024; p. 16. [Google Scholar]
- Fuior, R.; Sălceanu, A.; Luca, C.; Corciovă, C. Application of Internet of Things (IoT) in Biomedicine: Challenges and Future Directions; IntechOpen: London, UK, 2023. [Google Scholar]
- Jolfaei, A.A.; Aghili, S.F.; Singelee, D. A Survey on Blockchain-Based IoMT Systems: Towards Scalability. IEEE Access 2021, 9, 148948–148975. [Google Scholar] [CrossRef]
- Firouzi, F.; Jiang, S.; Chakrabarty, K.; Farahani, B.; Daneshmand, M.; Song, J.S.; Mankodiya, K. Fusion of IoT, AI, Edge–Fog–Cloud, and Blockchain: Challenges, Solutions, and a Case Study in Healthcare and Medicine. IEEE Internet Things J. 2023, 10, 3686–3705. [Google Scholar] [CrossRef]
- Kumar, M.; Chand, S. MedHypChain: A patient-centered interoperability hyperledger-based medical healthcare system: Regulation in COVID-19 pandemic. J. Netw. Comput. Appl. 2021, 179, 102975. [Google Scholar] [CrossRef]
- Padmavilochanan, D.; Pathinarupothi, R.K.; Menon, K.U.; Kumar, H.; Guntha, R.; Ramesh, M.V.; Rangan, P.V. Personalized diabetes monitoring platform leveraging IoMT and AI for non-invasive estimation. Smart Health 2023, 30, 100428. [Google Scholar] [CrossRef]
- Ali, A.; Al-rimy, B.A.S.; Alsubaei, F.S.; Almazroi, A.A.; Almazroi, A.A. HealthLock: Blockchain-Based Privacy Preservation Using Homomorphic Encryption in Internet of Things Healthcare Applications. Sensors 2023, 23, 6762. [Google Scholar] [CrossRef] [PubMed]
- Rafique, W.; Khan, M.; Khan, S.; Ally, J.S. SecureMed: A Blockchain-Based Privacy-Preserving Framework for Internet of Medical Things. Wirel. Commun. Mob. Comput. 2023, 2023, 2558469. [Google Scholar] [CrossRef]
- Pradhan, B.; Das, S.; Roy, D.S.; Routray, S.; Benedetto, F.; Jhaveri, R.H. An AI-Assisted Smart Healthcare System Using 5G Communication. IEEE Access 2023, 11, 108339–108355. [Google Scholar] [CrossRef]
- Tahir, A.; Chen, F.; Khan, H.U.; Ming, Z.; Ahmad, A.; Nazir, S.; Shafiq, M. A Systematic Review on Cloud Storage Mechanisms Concerning e-Healthcare Systems. Sensors 2020, 20, 5392. [Google Scholar] [CrossRef]
- Kaur, R.; Chana, I.; Bhattacharya, J. Data deduplication techniques for efficient cloud storage management: A systematic review. J. Supercomput. 2018, 74, 2035–2085. [Google Scholar] [CrossRef]
- Yoosuf, M.S.; Anitha, R. Low Latency Fog-Centric Deduplication Approach to Reduce IoT Healthcare Data Redundancy. Wirel. Pers. Commun. 2022, 126, 421–443. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Alam, M.S.B.; Afrin, S.; Rafa, S.J.; Rafa, N.; Gando, A.H. Insights into Internet of Medical Things (IoMT): Data fusion, security issues and potential solutions. Inf. Fusion 2024, 102, 102060. [Google Scholar] [CrossRef]
- Alzahrani, F.A.; Ahmad, M.; Ansari, T.J. Towards Design and Development of Security Assessment Framework for Internet of Medical Things. Appl. Sci. 2022, 12, 8148. [Google Scholar] [CrossRef]
- Sun, Y.; Lo, F.P.-W.; Lo, B. Security and Privacy for the Internet of Medical Things Enabled Healthcare Systems: A Survey. IEEE Access 2019, 7, 183339–183355. [Google Scholar] [CrossRef]
- Sadhu, P.K.; Yanambaka, V.P.; Abdelgawad, A.; Yelamarthi, K. Prospect of Internet of Medical Things: A Review on Security Requirements and Solutions. Sensors 2022, 22, 5517. [Google Scholar] [CrossRef]
- Blazeska-Tabakovska, N.; Bocevska, A.; Jolevski, I.; Ristevski, B.; Beredimas, N.; Kilintzis, V.; Maglaveras, N.; Savoska, S. Implementation of Cloud-Based Personal Health Record Integrated with IoMT. UKLO Repos. 2021, 2933, 178–188. [Google Scholar]
- Magnusson, R.S. The Changing Legal and Conceptual Shape of Health Care Privacy. J. Law Med. Ethics 2004, 32, 680–691. [Google Scholar] [CrossRef] [PubMed]
- Jegatheswaran, R.A.; Sakira, I.J.; Rahman, N.A.A. A Review on IoMT device Vulnerabilities and Countermeasures. J. Phys. Conf. Ser. 2020, 1712, 012020. [Google Scholar] [CrossRef]
- Srivastava, J.; Routray, S.; Waris, M.M.; Ahmad, S. Internet of Medical Things (IoMT)-Based Smart Healthcare System: Trends and Progress. Comput. Intell. Neurosci. 2022, 2022, 7218113. [Google Scholar] [CrossRef] [PubMed]
- Mika, H.; Pattama, P.; Khalid, A.; Niko, P.; Jack, R. Detecting depression in thai blog posts: A dataset and a baseline. In Proceedings of the Seventh Workshop on Noisy User-Generated Text (W-NUT 2021), Online, 11 November 2021. [Google Scholar]
- Bury, T.M.; Sujith, R.I.; Pavithran, I.; Scheffer, M.; Lenton, T.M.; Anand, M.; Bauch, C.T. Deep learning for early warning signals of tipping points. Proc. Natl. Acad. Sci. USA 2021, 118, e2106140118. [Google Scholar] [CrossRef] [PubMed]
- Baseer, K.; Sivakumar, K.; Veeraiah, D.; Chhabra, G.; Lakineni, P.K.; Pasha, M.J.; Gandikota, R.; Harikrishnan, G. Healthcare diagnostics with an adaptive deep learning model integrated with the Internet of medical Things (IoMT) for predicting heart disease. Biomed. Signal Process. Control 2024, 92, 105988. [Google Scholar] [CrossRef]
- Centobelli, P.; Cerchione, R.; Del Vecchio, P.; Oropallo, E.; Secundo, G. Blockchain technology for bridging trust, traceability and transparency in circular supply chain. Inf. Manag. 2022, 59, 103508. [Google Scholar] [CrossRef]
- Kumari, K.A.; Padmashani, R.; Varsha, R.; Upadhayay, V. Securing Internet of Medical Things (IoMT) Using Private Blockchain Network. In Principles of Internet of Things (IoT) Ecosystem: Insight Paradigm; Springer: Cham, Switzerland, 2019; pp. 305–326. [Google Scholar]
- Ali, A.; Pasha, M.F.; Guerrieri, A.; Guzzo, A.; Sun, X.; Saeed, A.; Hussain, A.; Fortino, G. A Novel Homomorphic Encryption and Consortium Blockchain-Based Hybrid Deep Learning Model for Industrial Internet of Medical Things. IEEE Trans. Netw. Sci. Eng. 2023, 10, 2402–24183. [Google Scholar] [CrossRef]
- Rehman, A.; Saba, T.; Haseeb, K.; Marie-Sainte, S.L.; Lloret, J. Energy-Efficient IoT e-Health Using Artificial Intelligence Model with Homomorphic Secret Sharing. Energies 2021, 14, 6414. [Google Scholar] [CrossRef]
- Vovk, O.; Piho, G.; Ross, P. Methods and tools for healthcare data anonymization: A literature review. Int. J. Gen. Syst. 2023, 52, 326–342. [Google Scholar] [CrossRef]
- Oh, J.; Lee, K. Data De-identification Framework. Comput. Mater. Contin. 2023, 74, 3579–3606. [Google Scholar] [CrossRef]
- Alhaqbani, B.; Fidge, C. Access Control Requirements for Processing Electronic Health Records. In Proceedings of the Business Process Management Workshops, BPM 2007, Brisbane, Australia, 24 September 2007; Lecture Notes in Computer Science. Springer: Berlin/Heidelberg, Germany, 2008; Volume 4928, pp. 371–382. [Google Scholar]
- Khan, J.A. Role-Based Access Control (RBAC) and Attribute-Based Access Control (ABAC); IGI Global: Hershey, PA, USA, 2024; p. 14. [Google Scholar]
- Ghubaish, A.; Salman, T.; Zolanvari, M.; Unal, D.; Al-Ali, A.; Jain, R. Recent Advances in the Internet-of-Medical-Things (IoMT) Systems Security. IEEE Internet Things J. 2020, 8, 8707–8718. [Google Scholar] [CrossRef]
- Saxena, D.; Verma, J.K. 4—Blockchain for public health: Technology, applications, and a case study. In Computational Intelligence and Its Applications in Healthcare; Academic Press: Cambridge, MA, USA, 2020; pp. 53–61. [Google Scholar]
- Urkude, S.V.; Sharma, H.; Kumar, S.U.; Urkude, V.R. Anatomy of Blockchain Implementation in Healthcare. In Blockchain Technology: Applications and Challenges; Springer: Cham, Switzerland, 2021; Volume 203, pp. 51–76. [Google Scholar]
- Kotronis, C.; Routis, I.; Politi, E.; Nikolaidou, M.; Dimitrakopoulos, G.; Anagnostopoulos, D.; Amira, A.; Bensaali, F.; Djelouat, H. Evaluating Internet of Medical Things (IoMT)-Based Systems from a Human-Centric Perspective. Internet Things 2019, 8, 100125. [Google Scholar] [CrossRef]
- Roy, T.; Nahid, M.M. The IoMT and Cloud in Healthcare: Use, Impact and Efficiency of Contemporary Sensor Devices Used by Patients and Clinicians. In Proceedings of the ICCA’22: Proceedings of the 2nd International Conference on Computing Advancements, Dhaka, Bangladesh, 10–12 March 2022. [Google Scholar]
- Indumathi, J.; Shankar, A.; Ghalib, M.R.; Gitanjali, J.; Hua, Q.; Wen, Z.; Qi, X. Block Chain Based Internet of Medical Things for Uninterrupted, Ubiquitous, User-Friendly, Unflappable, Unblemished, Unlimited Health Care Services (BC IoMT U6 HCS). IEEE Access 2020, 8, 216856–216872. [Google Scholar] [CrossRef]
- El-Rashidy, N.; El-Sappagh, S.; Islam, S.M.R.; El-Bakry, H.M.; Abdelrazek, S. Mobile Health in Remote Patient Monitoring for Chronic Diseases: Principles, Trends, and Challenges. Diagnostics 2021, 11, 607. [Google Scholar] [CrossRef] [PubMed]
- Hatzivasilis, G.; Soultatos, O.; Ioannidis, S.; Verikoukis, C.; Demetriou, G.; Tsatsoulis, C. Review of Security and Privacy for the Internet of Medical Things (IoMT). In Proceedings of the 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), Santorini, Greece, 29–31 May 2019. [Google Scholar]
- Hajiheydari, N.; Delgosha, M.S.; Olya, H. Scepticism and resistance to IoMT in healthcare: Application of behavioural reasoning theory with configurational perspective. Technol. Forecast. Soc. Chang. 2021, 169, 120807. [Google Scholar] [CrossRef]
- Tsai, T.-H.; Lin, W.-Y.; Chang, Y.-S.; Chang, P.-C.; Lee, M.-Y. Technology anxiety and resistance to change behavioral study of a wearable cardiac warming system using an extended TAM for older adults. PLoS ONE 2020, 15, e0227270. [Google Scholar] [CrossRef] [PubMed]
- Falcone, F.; Astrain, J.J.; Aguirre, I.; Trigo, J.D.; Serrano, L. Future Wireless Communication Systems to Enable IoMT Services and Applications. In Smart and Secure Internet of Healthcare Things, 1st ed.; CRC Press: Boca Raton, FL, USA, 2022; p. 22. [Google Scholar]
- Abdulbaqi, A.S.; Obaid, A.J.; Alazawi, S.A.H. A Smart System for Health Caregiver Based on IoMT: Toward Tele-Health Caregiving. Int. J. Online Biomed. Eng. 2021, 17, 70–87. [Google Scholar] [CrossRef]
- Razdan, S.; Sharma, S. Internet of Medical Things (IoMT): Overview, Emerging Technologies, and Case Studies. IETE Tech. Rev. 2022, 39, 775–788. [Google Scholar] [CrossRef]
- Saha, J.; Sen, R. IoT vs IoMT—A comparative study based on knowledge among medical professionals. Int. J. Multidiscip. Educ. Res. 2024, 13, 99–109. [Google Scholar]
- Adarsha, A.S.; Reader, K.; Erban, S. User Experience, IoMT, and Healthcare. AIS Trans. Hum. Comput. Interact. 2019, 11, 264–273. [Google Scholar]
- Gorrepati, R.R.; Jonnala, P.; Guntur, S.R.; Kim, D.-H. Semantic Web of Things for Healthcare Interoperability using IoMT Technologies. In Semantic Technologies for Intelligent Industry 4.0 Applications, 1st ed.; Patel, A., Debnath, N.C., Eds.; River Publishers: New York, NY, USA, 2023; p. 34. [Google Scholar]
- Pradyumna, G.R.; Hegde, R.B.; Bommegowda, K.B.; Jan, T.; Naik, G.R. Empowering Healthcare with IoMT: Evolution, Machine Learning Integration, Security, and Interoperability Challenges. IEEE Access 2024, 12, 20603–20623. [Google Scholar] [CrossRef]
- Jaleel, A.; Mahmood, T.; Hassan, M.A.; Bano, G.; Khurshid, S.K. Towards Medical Data Interoperability Through Collaboration of Healthcare Devices. IEEE Access 2020, 8, 132302–132319. [Google Scholar] [CrossRef]
- Abdelouahid, R.A.; Debauche, O.; Mahmoudi, S.; Marzak, A. Literature Review: Clinical Data Interoperability Models. Information 2023, 14, 364. [Google Scholar] [CrossRef]
- Chiahsu, Y.; Tzu-Chuan, C.; Yen-Hung, C. Bridging digital boundary in healthcare systems—An interoperability enactment perspective. Comput. Stand. Interfaces 2019, 62, 43–52. [Google Scholar]
- Suryateja, P.S.; Reddi, S.; Murty, P.S.R.; Naresh, V.S. Internet of things in healthcare: Architecture, applications, challenges, and solutions. Comput. Syst. Sci. Eng. 2020, 35, 411–421. [Google Scholar]
Country | Documents | Citations | Total Link Strength |
---|---|---|---|
India | 105 | 1578 | 85 |
Saudi Arabia | 47 | 718 | 81 |
China | 73 | 1029 | 70 |
Pakistan | 31 | 391 | 65 |
South Korea | 32 | 533 | 52 |
United States | 43 | 882 | 45 |
Australia | 21 | 375 | 44 |
United Kingdom | 17 | 319 | 42 |
France | 15 | 337 | 33 |
Malaysia | 14 | 171 | 33 |
Canada | 20 | 325 | 31 |
Iraq | 11 | 78 | 28 |
Taiwan | 13 | 22 | 26 |
Italy | 14 | 95 | 23 |
Iran | 11 | 34 | 19 |
Spain | 13 | 399 | 19 |
United Arab Emirates | 8 | 7 | 17 |
Jordan | 5 | 49 | 16 |
Oman | 6 | 92 | 15 |
Sweden | 7 | 125 | 15 |
India | 105 | 1578 | 85 |
Saudi Arabia | 47 | 718 | 81 |
China | 73 | 1029 | 70 |
Pakistan | 31 | 391 | 65 |
South Korea | 32 | 533 | 52 |
United States | 43 | 882 | 45 |
Australia | 21 | 375 | 44 |
United Kingdom | 17 | 319 | 42 |
France | 15 | 337 | 33 |
Malaysia | 14 | 171 | 33 |
Canada | 20 | 325 | 31 |
Iraq | 11 | 78 | 28 |
Taiwan | 13 | 22 | 26 |
Italy | 14 | 95 | 23 |
Iran | 11 | 34 | 19 |
Spain | 13 | 399 | 19 |
United Arab Emirates | 8 | 7 | 17 |
Jordan | 5 | 49 | 16 |
Oman | 6 | 92 | 15 |
Sweden | 7 | 125 | 15 |
Case Study | Healthcare Facility | Details | Outcome |
---|---|---|---|
Remote Patient Monitoring for Chronic Disease Management | Partners HealthCare (part of Mass General Brigham) | Partners HealthCare deployed a remote patient monitoring system for patients with chronic heart disease. The system included wearable devices that continuously monitored vital signs, such as heart rate, blood pressure, and oxygen saturation. Data were transmitted in real-time to a cloud-based platform accessible by healthcare professionals [52]. |
|
Smart Inhalers for Asthma Management | Cleveland Clinic | Cleveland Clinic implemented smart inhalers equipped with sensors that tracked usage patterns and environmental conditions for asthma patients. Data were sent to a mobile app that provided patients with reminders, usage feedback, and alerts about environmental triggers [56]. |
|
IoMT in Post-Surgical Care | Johns Hopkins Hospital | Johns Hopkins Hospital implemented an IoMT solution to monitor patients after surgery. Wearable sensors tracked vital signs, such as temperature, heart rate, and blood pressure, which were crucial for detecting early signs of infection or complications. Data were analyzed in real-time, and alerts were sent to healthcare providers if any abnormalities were detected [60]. |
|
Diabetes Management with Continuous Glucose Monitors (CGMs) | Mayo Clinic | Mayo Clinic implemented an IoMT solution using continuous glucose monitors (CGMs) for diabetes patients. The CGMs provided real-time blood glucose readings and transmitted data to a mobile app. The app analyzed the data and provided personalized recommendations and alerts [64]. |
|
Telehealth and Remote Monitoring for Elderly Care | Kaiser Permanente | Kaiser Permanente introduced a telehealth and remote monitoring system for elderly patients living in assisted living facilities. The system included various IoMT devices such as fall detectors, heart rate monitors, and smart medication dispensers. Data were transmitted to a central monitoring hub where healthcare providers could track patients’ health status [68]. |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Khatib, I.; Shamayleh, A.; Ndiaye, M. Healthcare and the Internet of Medical Things: Applications, Trends, Key Challenges, and Proposed Resolutions. Informatics 2024, 11, 47. https://doi.org/10.3390/informatics11030047
Al Khatib I, Shamayleh A, Ndiaye M. Healthcare and the Internet of Medical Things: Applications, Trends, Key Challenges, and Proposed Resolutions. Informatics. 2024; 11(3):47. https://doi.org/10.3390/informatics11030047
Chicago/Turabian StyleAl Khatib, Inas, Abdulrahim Shamayleh, and Malick Ndiaye. 2024. "Healthcare and the Internet of Medical Things: Applications, Trends, Key Challenges, and Proposed Resolutions" Informatics 11, no. 3: 47. https://doi.org/10.3390/informatics11030047
APA StyleAl Khatib, I., Shamayleh, A., & Ndiaye, M. (2024). Healthcare and the Internet of Medical Things: Applications, Trends, Key Challenges, and Proposed Resolutions. Informatics, 11(3), 47. https://doi.org/10.3390/informatics11030047