QUMA: Quantum Unified Medical Architecture Using Blockchain
Abstract
:1. Introduction
1.1. Key Findings and Observations
1.2. Gaps in the Literature
2. Contribution and Motivation
- A whole new network of Quantum Mechanics-based chains for Highly Advanced Medical Information Networking (QMEDCHAIN) is being developed. We use entangled states to connect the quantum blockchain nodes. A single qubit stores the hash values for individual blocks, and the regulated actions required to combine quantum blocks automatically create time stamps.
- An innovative protocol for entangled quantum medical records (EQMRs) is proposed, and the data flow and processing in the network are explained in detail. This protocol implements a quantum authentication technique. The feasibility of the new EQMR protocol is explained by linked simulations, and its security aspects are fully realizable. Additionally, the mechanism of information processing in the network is elucidated via an example.
- This study provides an in-depth evaluation of security measures. The theory-derived security research demonstrates the EQMR protocol’s security against three common types of attacks: external attacks, measurement replay attacks, and entanglement attacks. The correctness and traceability analyses of the BloQ are well presented. This study also compares the proposed QMEDCHAIN with numerous current blockchain models, particularly quantum blockchain systems.
3. Concerns about Blockchain’s Security in Light of Forthcoming Quantum Computing
4. Associated Works
5. QUMEDCHAIN—Quantum Mechanics-Based Chain for Highly Advanced Medical Information Networking
5.1. The Data Structure of Classical Blockchain vs. Quantum Blockchain
Measurement
5.2. Quantum Hash Generation
5.3. Quantum Embedding
5.4. Representations of Qblocks
6. Quantum Entangled Medical Record (EQMR) Protocol
6.1. Creation and Dissemination of Quantum Entropy
6.2. Publish Health Records
6.3. Validation Phase
6.4. Verification of Health Records
6.5. Qblocks’ Creation
6.6. Double-Checking the Qblocks
6.7. Validation Process and Its Descriptions
7. Results and Analysis
7.1. Experimental Setup
7.2. Collision Rate
7.3. Multi Hash Collision Resistance Analysis
8. EQHR Attacks and Analysis
8.1. Outside Attack
Measurement-Resending Attack (Worst-Case Scenario)
8.2. A Simple Intercept–Resend Attack
8.3. Entanglement Measure Attack (ENMA)
8.4. Validity and Auditability of Quantum Blocks
8.5. Information Traceability Analysis
8.6. A Review of Accomplishment
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. Available online: https://bitcoin.org/bitcoin.pdf (accessed on 20 February 2023).
- Miao, J.; Wang, Z.; Wu, Z.; Ning, X.; Tiwari, P. A blockchain-enabled privacy-preserving authentication management protocol for Internet of Medical Things. Expert Syst. Appl. 2024, 237, 121329. [Google Scholar] [CrossRef]
- Gupta, S.; Sharma, H.K.; Kapoor, M. Integration of IoMT and Blockchain in Smart Healthcare System. In Blockchain for Secure Healthcare Using Internet of Medical Things (IoMT); Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Kumar, S.; Tiwari, P.; Zymbler, M. Internet of Things is a revolutionary approach for future technology enhancement: A review. J. Big Data 2019, 6, 111. [Google Scholar] [CrossRef]
- Kamalov, F.; Pourghebleh, B.; Gheisari, M.; Liu, Y.; Moussa, S. Internet of Medical Things Privacy and Security: Challenges, Solutions, and Future Trends from a New Perspective. Sustainability 2023, 15, 3317. [Google Scholar] [CrossRef]
- Beasley, J.W.; Holden, R.J.; Sullivan, F. Electronic health records: Research into design and implementation. Br. J. Gen. Pract. 2011, 61, 604–605. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yeo, L.H.; Banfield, J. Human Factors in Electronic Health Records Cybersecurity Breach: An Exploratory Analysis. Perspect. Health Inf. Manag. 2022, 19, 1i. [Google Scholar] [PubMed]
- Habib, G.; Sharma, S.; Ibrahim, S.; Ahmad, I.; Qureshi, S.; Ishfaq, M. Blockchain Technology: Benefits, Challenges, Applications, and Integration of Blockchain Technology with Cloud Computing. Future Internet 2022, 14, 341. [Google Scholar] [CrossRef]
- Harman, L.B.; Flite, C.A.; Bond, K. Electronic health records: Privacy, confidentiality, and security. AMA J. Ethics 2012, 14, 712–719. [Google Scholar] [CrossRef] [PubMed]
- Lamba, S.; Sharma, M. An Efficient Elliptic Curve Digital Signature Algorithm (ECDSA). In Proceedings of the 2013 International Conference on Machine Intelligence and Research Advancement, Katra, India, 21–23 December 2013; pp. 179–183. [Google Scholar] [CrossRef]
- Kalra, S.; Sood, S.K. Elliptic Curve Cryptography: Current Status and Research Challenges. In High Performance Architecture and Grid Computing. HPAGC 2011. Communications in Computer and Information Science; Mantri, A., Nandi, S., Kumar, G., Kumar, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 169. [Google Scholar] [CrossRef]
- Raussendorf, R.; Briegel, H. A one-way quantum computer. Phys. Rev. Lett. 2001, 86, 5188–5191. [Google Scholar] [CrossRef] [PubMed]
- Spiller, T.P. Quantum information processing: Cryptography, computation, and teleportation. Proc. IEEE 1996, 84, 1719–1746. [Google Scholar] [CrossRef]
- Abuarqoub, A. Security Challenges Posed by Quantum Computing on Emerging Technologies. In Proceedings of the 4th International Conference on Future Networks and Distributed Systems (ICFNDS ‘20). Association for Computing Machinery, New York, NY, USA, 26–27 November 2020; p. 44. [Google Scholar] [CrossRef]
- Kumar, D.K.; Krishna, E.H.V.; Ushasri, R.; Jahnavi, V.; Prakash, K.B.; Imambi, S. Implementation of Grover’s and Shor’s Algorithms In Quantum Machine Learning. In Proceedings of the 2023 International Conference on Intelligent and Innovative Technologies in Computing, Electrical and Electronics (IITCEE), Bengaluru, India, 27–28 January 2023; pp. 967–972. [Google Scholar] [CrossRef]
- Fedorov, A.K.; Kiktenko, E.O.; Lvovsky, A.I. Quantum computers put blockchain security at risk. Nature 2018, 563, 465–467. Available online: https://link.gale.com/apps/doc/A573163765/AONE? (accessed on 20 February 2023).
- Sehgal, S.K.; Gupta, R. Quantum Cryptography and Quantum Key. In Proceedings of the 2021 International Conference on Industrial Electronics Research and Applications (ICIERA), New Delhi, India, 22–24 December 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Mavroeidis, V.; Vishi, K.; Zych, M.D.; Jøsang, A. The impact of quantum computing on present cryptography. Int. J. Adv. Comput. Sci. Appl. 2018, 9, 1–10. [Google Scholar] [CrossRef]
- Allende-Lopez, M.; Da Silva, M.M. Quantum Technologies: Digital Transformation, Social Impact, and Cross-sector Disruption. Inter-American Bank 2019, 1–94. [Google Scholar] [CrossRef]
- Shuaib, M.; Hassan, N.H.; Usman, S.; Alam, S.; Sam, S.M.; Samy, G.A.-L.N. Effect of Quantum computing on Blockchain-based Electronic Health Record Systems. In Proceedings of the 2022 4th International Conference on Smart Sensors and Application (ICSSA), Kuala Lumpur, Malaysia, 26–28 July; 2022; pp. 179–184. [Google Scholar] [CrossRef]
- Chen, L.; Jordan, S.; Liu, Y.-K.; Moody, D.; Peralta, R.; Perlner, R.; Smith-Tone, D. NIST Report on Post-Quantum Cryptography (2026). Available online: https://nvlpubs.nist.gov/nistpubs/ir/2016/nist.ir.8105.pdf (accessed on 20 February 2023).
- Ethereum’s Pathway of Handling Quantum. Available online: https://www.erc4337.io/ (accessed on 20 February 2023).
- Aumasson, J.P. The impact of quantum computing on cryptography. Comput. Fraud. Secur. 2017, 6, 8–11. [Google Scholar] [CrossRef]
- Khalid, Z.M.; Askar, S. Resistant blockchain cryptography to quantum computing attacks. Int. J. Sci. Bus. 2021, 5, 116–125. [Google Scholar]
- Punathumkandi, S.; Boscovic, D. A survey on quantum-safe blockchain system. In Proceedings of the Annual Computer Security Applications, Conference, Austin, TX, USA, 5–9 December 2022. [Google Scholar]
- Webber, M.; Elfving, V.; Weidt, S.; Hensinger, W.K. The impact of hardware specifications on reaching quantum advantage in the fault tolerant regime. AVS Quantum Sci. 2022, 4, 013801. [Google Scholar] [CrossRef]
- Kiktenko, E.O.; Pozhar, N.O.; Anufriev, M.N.; Trushechkin, A.S.; Yunusov, R.R.; Kurochkin, Y.V.; Lvovsky, A.I.; Fedorov, A.K. Quantum-secured blockchain. Quantum Sci. Technol. 2018, 3, 035004. [Google Scholar] [CrossRef]
- Cai, Z.; Qu, J.; Liu, P.; Yu, J. A blockchain smart contract based on light- weighted quantum blind signature. IEEE Access 2019, 7, 138657–138668. [Google Scholar] [CrossRef]
- Rajan, D.; Visser, M. Quantum blockchain using entanglement in time. Quantum Rep. 2019, 1, 3–11. [Google Scholar] [CrossRef]
- Chen, H. Quantum relay blockchain and its applications in key service. In Proceedings of the 2020 4th International Conference on Cryptography, Security and Privacy, Nanjing, China, 10–12 January 2020; pp. 95–99. [Google Scholar]
- Gao, Y.-L.; Chen, X.B.; Xu, G.; Yuan, K.G.; Liu, W.; Yang, Y.X. A novel quantum blockchain scheme base on quantum entanglement and DPoS. Quantum Inf. Process 2020, 19, 420. [Google Scholar] [CrossRef]
- Sun, X.; Sopek, M.; Wang, Q.; Kulicki, P. Towards Quantum-Secured Permissioned Blockchain: Signature, Consensus, and Logic. Entropy 2019, 21, 887. [Google Scholar] [CrossRef]
- Ablayev, F.; Bulychkov, D.; Sapaev, D.; Vasiliev, A.; Ziatdinov, M. Quantum-assisted blockchain. Lobachevskii J. Math. 2018, 39, 957–960. [Google Scholar] [CrossRef]
- El-Latif, A.; Abd-El-Atty, B.; Mehmood, I.; Muhammad, K.; Peng, J. Quantum-inspired blockchain-based cybersecurity: Securing smart edge utilities in iotbased smart cities. Inf. Process. Manag. 2021, 58, 102549. [Google Scholar] [CrossRef]
- Coladangelo, A.; Sattath, O. A quantum money solution to the blockchain scalability problem. Quantum 2020, 4, 297–340. [Google Scholar] [CrossRef]
- Stafford, T.; Treiblmaier, H. Characteristics of a blockchain ecosystem for secure and sharable electronic medical records. IEEE Trans. Eng. Manag. 2020, 67, 1340–1362. [Google Scholar] [CrossRef]
- Krishnan, S.; Manoj, M.; Gadekallu, T.; Kumar, N.; Maddikunta, P.; Bhattacharya, S.; Suh, D.; Piran, M. A blockchain-based credibility scoring framework for electronic medical records. In Proceedings of the 2020 IEEE Globecom Workshops (GC Wkshps), Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Yuan, B.; Wu, F.; Zheng, Z. Post quantum blockchain architecture for internet of things over NTRU lattice. PLoS ONE 2023, 18, e0279429. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Fedorov, A.K. Deploying hybrid quantum-secured infrastructure for applications: When quantum and post-quantum can work together. Front. Quantum Sci. Technol. 2023, 2, 1164428. [Google Scholar] [CrossRef]
- Allende, M.; León, D.L.; Cerón, S.; Pareja, A.; Pacheco, E.; Leal, A.; Da Silva, M.; Pardo, A.; Jones, D.; Worrall, D.J.; et al. Quantum-resistance in blockchain networks. Sci. Rep. 2023, 13, 5664. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Notations | Descriptions |
---|---|
Hermitian Operator | |
Normalized wave function | |
Z | Pauli Z gate |
full conditional shift operator | |
|ψ〉 | Vector (a ket notation) |
1st Variant Chains | |
2nd Variant Chains | |
Bell state | |
|Bx〉 | Representation of BloQ |
Blockchain | QMEDCHAIN | ||
---|---|---|---|
Block Header | Block Body | Quantum Header | Quantum Body |
Version | List of Medical Records | MQubits Qhash Quantum State | QMedical Records |
Hash and timestamp | |||
Merkle root | |||
Difficulty target | |||
Nonce |
When x = 1 for |Bx〉 | |B1〉 |1⟩. |
---|---|
When x = 2 | |B2〉 |00⟩ + |01⟩+ |10⟩ + |11⟩. |
When x = 3 | |B3〉 |000⟩ + |001⟩+ |010⟩ + |011⟩ + |100⟩ + |101⟩+ |110⟩ + |111⟩ |
When x = 4 | |B4〉 |0000⟩ + |0001⟩+ |0010⟩ + |0011⟩ + |0100⟩ + |0101⟩+ |0110⟩ + |0111⟩+…………………………..|1111⟩ |
When x = n | |Bn〉 |0000….000⟩ + |00…0001⟩+ |00…0010⟩ + |000…0011⟩ + |000…0100⟩ + |000…0101⟩+ |0000….0110⟩ + |0000….0111⟩+…………………………..|11…1111⟩ |
Pos_2 | Pos_4 | Pos_6 | Pos_10 | Pos_13 | Pos_15 | Pos_17 | Pos_19 | |
---|---|---|---|---|---|---|---|---|
BI | {|0〉, |1〉} | {|↑〉,|↓〉} | {|+〉, |-〉} | {|∊〉,|∉〉} | {|u〉, |v〉} | {|x〉, |y〉} | {|∱〉,|∲〉} | {〉,|〉} |
Output | |1〉 | |↑〉 | |-〉 | |∉〉 | |v〉 | |y〉 | |∲〉 | 〉 |
Root Hash | 0 × 1c9d15000aaa03e75b0449bd0b638d09ac6f5ce75201c657 |
---|---|
HB | 101011110011010110001010110001110100 |
HF | 0101011100100001001111010110110100101110 |
hashB | 0 × 356fc60a20190c462e08e4fe05d8650a2d5413b984201c34 |
hashF | 0 × ef2eb1bff1708434918a38d3a86a2064b4304bba8073017 |
00 | 01 | 00 | 01 | |
11 | 10 | 11 | 10 | |
If the values differ, anomalies are easily detectable. |
Review | Information Traceability | Quantum Block Structure | Resist Quantum Computer Attacks | QKD | Quantum Walk | Quantum Embedding | Quantum Entropy | Limitations |
---|---|---|---|---|---|---|---|---|
NTRU lattice [38] | Yes | Yes | Yes | No | No | No | No | No architecture for quantum blockchain. |
Hybrid quantum [39] | Yes | No | Yes | Yes | No | No | No | Privacy protection of health data is not mentioned. |
Quantum-resistant blockchain networks [40] | Yes | No | Yes | Yes | No | No | Yes | Not specific to medical applications |
QUMA (proposed) | Yes | Yes | Yes | Yes | Yes | Yes | Yes | - |
Review | Information Traceability | Quantum Walk | Quantum Embedding | Quantum Entropy | Quantum Phase Estimation |
---|---|---|---|---|---|
NTRU lattice [38] | 11.26 cm | No | No | No | No |
Hybrid quantum [39] | 13.01 cm | No | No | No | No |
Quantum-resistant blockchain networks [40] | 13.4 cm | No | No | Entropy value of 0.165 | No |
QUMA (proposed) | 10.1 cm | More spread outs (N *N matrix of probability distributions) | Dataset as N-bit binary string | Achieved lowest entropy (0.023) | Relative time |t⟩ with oracle operation with controlled ||〉. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balasubramaniam, A.; Surendiran, B. QUMA: Quantum Unified Medical Architecture Using Blockchain. Informatics 2024, 11, 33. https://doi.org/10.3390/informatics11020033
Balasubramaniam A, Surendiran B. QUMA: Quantum Unified Medical Architecture Using Blockchain. Informatics. 2024; 11(2):33. https://doi.org/10.3390/informatics11020033
Chicago/Turabian StyleBalasubramaniam, Akoramurthy, and B. Surendiran. 2024. "QUMA: Quantum Unified Medical Architecture Using Blockchain" Informatics 11, no. 2: 33. https://doi.org/10.3390/informatics11020033
APA StyleBalasubramaniam, A., & Surendiran, B. (2024). QUMA: Quantum Unified Medical Architecture Using Blockchain. Informatics, 11(2), 33. https://doi.org/10.3390/informatics11020033