Artificial Intelligence Chatbots in Chemical Information Seeking: Narrative Educational Insights via a SWOT Analysis
Abstract
:1. Introduction
2. Narrative Literature Review
2.1. Review Procedure
2.2. Information Scientific Framework
2.3. AI Chatbots and Information Seeking
2.4. Information Seeking in Chemistry
3. SWOT Analysis
3.1. TPACK Framework
3.2. Designed AI Chatbot-Assisted Information-Seeking Activities
3.2.1. Activity 1: Write a Summary (PK to TPACK)
- Ask an AI chatbot tool (e.g., ChatGPT, Bard, or Bing Chat) to refine it to 250-word length.
- Translate the text to Finnish via the same tool.
- Examine the text, correct language, and readability, and add the required infographic or table mentioned in the evaluation criteria.
- Describe the entire working process (prompts included) below the summary sufficiently precisely such that it can be repeated if desired.
- Reflect on the possibilities and challenges of the work process in 250 words.
3.2.2. Activity 2: Create a Concept Map (CK to TCK)
3.2.3. Activity 3: Build a Chemistry Measurement Instrument (TK to TPACK)
4. Results and Discussion
4.1. Supporting Writing Assignments
4.2. Triangulating Basic Level Conceptual Knowledge
4.3. Scaffolding Usage of Unfamiliar Technical Knowledge
5. Summary and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Use of Large Language Models in This Course
- -
- Fully allowed/forbidden.
- -
- Allowed/forbidden to generate text for, e.g., report, thesis, or certificates.
- -
- Allowed/forbidden to finish or rewrite the text.
- -
- Allowed/forbidden to check grammar mistakes.
- -
- Allowed/forbidden as a typesetting aid (e.g., generating Latex code when making tables or graphs).
- -
- Allowed/forbidden in searching for information or explaining or summarizing topics.
- -
- Allowed/forbidden in code generation.
References
- Bowman, S.R. Eight Things to Know about Large Language Models. arXiv 2023, arXiv:2304.00612. [Google Scholar]
- Bryant, A. AI Chatbots: Threat or Opportunity? Informatics 2023, 10, 49. [Google Scholar] [CrossRef]
- Okonkwo, C.W.; Ade-Ibijola, A. Chatbots Applications in Education: A Systematic Review. Comput. Educ. Artif. Intell. 2021, 2, 100033. [Google Scholar] [CrossRef]
- Dempere, J.; Modugu, K.; Hesham, A.; Ramasamy, L.K. The Impact of ChatGPT on Higher Education. Front. Educ. 2023, 8, 1206936. [Google Scholar] [CrossRef]
- Lo, C.K.; Hew, K.F. A Review of Integrating AI-Based Chatbots into Flipped Learning: New Possibilities and Challenges. Front. Educ. 2023, 8, 1175715. [Google Scholar] [CrossRef]
- Lim, W.M.; Gunasekara, A.; Pallant, J.L.; Pallant, J.I.; Pechenkina, E. Generative AI and the Future of Education: Ragnarök or Reformation? A Paradoxical Perspective from Management Educators. Int. J. Manag. Educ. 2023, 21, 100790. [Google Scholar] [CrossRef]
- Lolinco, A.T.; Holme, T.A. Developing a Curated Chatbot as an Exploratory Communication Tool for Chemistry Learning. J. Chem. Educ. 2023, 100, 4092–4098. [Google Scholar] [CrossRef]
- Humphry, T.; Fuller, A.L. Potential ChatGPT Use in Undergraduate Chemistry Laboratories. J. Chem. Educ. 2023, 100, 1434–1436. [Google Scholar] [CrossRef]
- Watts, F.M.; Dood, A.J.; Shultz, G.V.; Rodriguez, J.-M.G. Comparing Student and Generative Artificial Intelligence Chatbot Responses to Organic Chemistry Writing-to-Learn Assignments. J. Chem. Educ. 2023, 100, 3806–3817. [Google Scholar] [CrossRef]
- Panda, S.; Chakravarty, R. Adapting Intelligent Information Services in Libraries: A Case of Smart AI Chatbots. Libr. Hi Tech News 2022, 39, 12–15. [Google Scholar] [CrossRef]
- He, P.; Liu, X.; Gao, J.; Chen, W. DeBERTa: Decoding-Enchanced BERT with Distangled Attention. In Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018; ICRL: Vienna, Austria, 2021. [Google Scholar]
- Andreas, J. Language Models as Agent Models. In Proceedings of the Findings of the Association for Computational Linguistics: EMNLP 2022, Abu Dhabi, United Arab Emirates, 7–11 December 2022; Association for Computational Linguistics: Abu Dhabi, United Arab Emirates, 2022; pp. 5769–5779. [Google Scholar]
- Bubeck, S.; Chandrasekaran, V.; Eldan, R.; Gehrke, J.; Horvitz, E.; Kamar, E.; Lee, P.; Lee, Y.T.; Li, Y.; Lundberg, S.; et al. Sparks of Artificial General Intelligence: Early Experiments with GPT-4. arXiv 2023, arXiv:2303.12712. [Google Scholar]
- Kojima, T.; Gu, S.S.; Reid, M.; Matsuo, Y.; Iwasawa, Y. Large Language Models Are Zero-Shot Reasoners. Adv. Neural Inf. Process. Syst. 2022, 35, 22199–22213. [Google Scholar]
- Strzelecki, A. To Use or Not to Use ChatGPT in Higher Education? A Study of Students’ Acceptance and Use of Technology. Interact. Learn. Environ. 2023, 0, 1–14. [Google Scholar] [CrossRef]
- Cooper, G. Examining Science Education in ChatGPT: An Exploratory Study of Generative Artificial Intelligence. J. Sci. Educ. Technol. 2023, 32, 444–452. [Google Scholar] [CrossRef]
- Jauhiainen, J.S.; Guerra, A.G. Generative AI and ChatGPT in School Children’s Education: Evidence from a School Lesson. Sustainability 2023, 15, 14025. [Google Scholar] [CrossRef]
- Dahlqvist, C. Information-Seeking Behaviours of Teacher Students: A Systematic Review of Quantitative Methods Literature. Educ. Inf. 2021, 37, 259–285. [Google Scholar] [CrossRef]
- Crawford, J.; Cowling, M.; Allen, K.-A. Leadership Is Needed for Ethical ChatGPT: Character, Assessment, and Learning Using Artificial Intelligence (AI). J. Univ. Teach. Learn. Pract. 2023, 20, 2. [Google Scholar] [CrossRef]
- Sullivan, M.; Kelly, A.; McLaughlan, P. ChatGPT in Higher Education: Considerations for Academic Integrity and Student Learning. J. Appl. Learn. Teach. 2023, 6, 31–40. [Google Scholar] [CrossRef]
- Denning, P. Innovating the Future: From Ideas to Adoption. Futurist 2012, 46, 40. [Google Scholar]
- Rogers, E.M. Diffusion of Innovations, 5th ed.; Free Press: New York, NY, USA, 2003; ISBN 978-0-7432-2209-9. [Google Scholar]
- Ertmer, P.A.; Ottenbreit-Leftwich, A.T.; Sadik, O.; Sendurur, E.; Sendurur, P. Teacher Beliefs and Technology Integration Practices: A Critical Relationship. Comput. Educ. 2012, 59, 423–435. [Google Scholar] [CrossRef]
- Ertmer, P.A.; Hruskocy, C. Impacts of a University-Elementary School Partnership Designed to Support Technology Integration. Educ. Technol. Res. Dev. 1999, 47, 81–96. [Google Scholar] [CrossRef]
- OpenAI Introducing ChatGPT. Available online: https://openai.com/blog/chatgpt (accessed on 15 September 2023).
- Koehler, M.; Mishra, P.; Cain, W. What Is Technological Pedagogical Content Knowledge (TPACK)? J. Educ. 2013, 193, 13–19. [Google Scholar] [CrossRef]
- Voogt, J.; Fisser, P.; Pareja Roblin, N.; Tondeur, J.; van Braak, J. Technological Pedagogical Content Knowledge—A Review of the Literature. J. Comput. Assist. Learn. 2013, 29, 109–121. [Google Scholar] [CrossRef]
- Ingwersen, P.; Järvelin, K. (Eds.) Implications of the Cognitive Framework for IS&R. In The Turn: Integration of Information Seeking and Retrieval in Context; The Information Retrieval Series; Springer: Dordrecht, The Netherlands, 2005; pp. 313–357. ISBN 978-1-4020-3851-8. [Google Scholar]
- Gordon, I.D.; Meindl, P.; White, M.; Szigeti, K. Information Seeking Behaviors, Attitudes, and Choices of Academic Chemists. Sci. Technol. Libr. 2018, 37, 130–151. [Google Scholar] [CrossRef]
- Shultz, G.V.; Li, Y. Student Development of Information Literacy Skills during Problem-Based Organic Chemistry Laboratory Experiments. J. Chem. Educ. 2016, 93, 413–422. [Google Scholar] [CrossRef]
- Parissi, M.; Komis, V.; Dumouchel, G.; Lavidas, K.; Papadakis, S. How Does Students’ Knowledge about Information-Seeking Improve Their Behavior in Solving Information Problems? Educ. Process Int. J. 2023, 12, 113–137. [Google Scholar] [CrossRef]
- Järvelin, K.; Ingwersen, P. Information Seeking Research Needs Extension towards Tasks and Technology. Inf. Res. 2004, 10, 212. [Google Scholar]
- Allen, D.; Karanasios, S.; Slavova, M. Working with Activity Theory: Context, Technology, and Information Behavior. J. Am. Soc. Inf. Sci. Technol. 2011, 62, 776–788. [Google Scholar] [CrossRef]
- Zamani, H.; Trippas, J.R.; Dalton, J.; Radlinski, F. Conversational Information Seeking. Found. Trends® Inf. Retr. 2023, 17, 244–456. [Google Scholar] [CrossRef]
- Sarkar, S.; Amirizaniani, M.; Shah, C. Representing Tasks with a Graph-Based Method for Supporting Users in Complex Search Tasks. In Proceedings of the Proceedings of the 2023 Conference on Human Information Interaction and Retrieval, Austin, TX, USA, 19–23 March 2023; Association for Computing Machinery: New York, NY, USA, 2023; pp. 378–382. [Google Scholar]
- Fu, Y.; Lomas, E.; Inskip, C. Library Log Analysis and Its Implications for Studying Online Information Seeking Behavior of Cultural Groups. J. Acad. Librariansh. 2021, 47, 102421. [Google Scholar] [CrossRef]
- Bron, M.; Van Gorp, J.; de Rijke, M. Media Studies Research in the Data-Driven Age: How Research Questions Evolve. J. Assoc. Inf. Sci. Technol. 2016, 67, 1535–1554. [Google Scholar] [CrossRef]
- Green, B.N.; Johnson, C.D.; Adams, A. Writing Narrative Literature Reviews for Peer-Reviewed Journals: Secrets of the Trade. J. Chiropr. Med. 2006, 5, 101–117. [Google Scholar] [CrossRef] [PubMed]
- Benzaghta, M.; Elwalda, A.; Mousa, M.; Erkan, I.; Rahman, M. SWOT Analysis Applications: An Integrative Literature Review. J. Glob. Bus. Insights 2021, 6, 55–73. [Google Scholar] [CrossRef]
- Bawden, D.; Robinson, L. An Introduction to Information Science; Neal-Schuman: Chicago, IL, USA, 2012; ISBN 978-1-55570-861-0. [Google Scholar]
- Bawden, D. Information and Digital Literacies: A Review of Concepts. J. Doc. 2001, 57, 218–259. [Google Scholar] [CrossRef]
- Wilson, T.D. Human Information Behavior. Informing Sci. Int. J. Emerg. Transdiscipl. 2000, 3, 049–056. [Google Scholar] [CrossRef] [PubMed]
- Wilson, T.D. Models in Information Behaviour Research. J-Doc 1999, 55, 249–270. [Google Scholar] [CrossRef]
- Liao, Q.V.; Geyer, W.; Muller, M.; Khazaen, Y. Conversational Interfaces for Information Search. In Understanding and Improving Information Search: A Cognitive Approach; Fu, W.T., van Oostendorp, H., Eds.; Human–Computer Interaction Series; Springer International Publishing: Cham, Switzerland, 2020; pp. 267–287. ISBN 978-3-030-38825-6. [Google Scholar]
- Brandtzaeg, P.B.; Følstad, A. Why People Use Chatbots. In Proceedings of the Internet Science, 4th International Conference, INSCI 2017, Thessaloniki, Greece, 22–24 November 2017; Kompatsiaris, I., Cave, J., Satsiou, A., Carle, G., Passani, A., Kontopoulos, E., Diplaris, S., McMillan, D., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 377–392. [Google Scholar]
- Avula, S.; Chadwick, G.; Arguello, J.; Capra, R. SearchBots: User Engagement with ChatBots during Collaborative Search. In Proceedings of the 2018 Conference on Human Information Interaction & Retrieval, New Brunswick, NJ, USA, 11–15 March 2018; Association for Computing Machinery: New York, NY, USA, 2018; pp. 52–61. [Google Scholar]
- Radford, A.; Narasimhan, K.; Salimans, T.; Sutskever, I. Improving Language Understanding by Generative Pre-Training. Available online: https://openai.com/research/language-unsupervised (accessed on 26 October 2023).
- Lommatzsch, A.; Katins, J. An Information Retrieval-Based Approach for Building Intuitive Chatbots for Large Knowledge Bases. In Proceedings of the Conference on “Lernen, Wissen, Daten, Analysen”, Berlin, Germany, 30 September–2 October 2019; Jäschke, R., Weidlich, M., Eds.; CEUR: Berlin, Germany, 2019; pp. 343–352. [Google Scholar]
- Pernaa, J.; Takala, A.; Ciftci, V.; Hernández-Ramos, J.; Cáceres-Jensen, L.; Rodríguez-Becerra, J. Open-Source Software Development in Cheminformatics: A Qualitative Analysis of Rationales. Appl. Sci. 2023, 13, 9516. [Google Scholar] [CrossRef]
- Androutsopoulou, A.; Karacapilidis, N.; Loukis, E.; Charalabidis, Y. Transforming the Communication between Citizens and Government through AI-Guided Chatbots. Gov. Inf. Q. 2019, 36, 358–367. [Google Scholar] [CrossRef]
- Shumanov, M.; Johnson, L. Making Conversations with Chatbots More Personalized. Comput. Hum. Behav. 2021, 117, 106627. [Google Scholar] [CrossRef]
- Adarkwah, M.A.; Ying, C.; Mustafa, M.Y.; Huang, R. Prediction of Learner Information-Seeking Behavior and Classroom Engagement in the Advent of ChatGPT. In Smart Learning for a Sustainable Society; Anutariya, C., Liu, D., Kinshuk, Tlili, A., Yang, J., Chang, M., Eds.; Springer Nature: Singapore, 2023; pp. 117–126. [Google Scholar]
- Flaxbart, D. Conversations with Chemists: Information-Seeking Behavior of Chemistry Faculty in the Electronic Age. Sci. Technol. Libr. 2001, 21, 5–26. [Google Scholar] [CrossRef]
- Wegner, J.K.; Sterling, A.; Guha, R.; Bender, A.; Faulon, J.-L.; Hastings, J.; O’Boyle, N.; Overington, J.; Van Vlijmen, H.; Willighagen, E. Cheminformatics. Commun. ACM 2012, 55, 65–75. [Google Scholar] [CrossRef]
- Johnstone, A.H. Macro- and Microchemistry. Sch. Sci. Rev. 1982, 64, 377–379. [Google Scholar]
- Gilbert, J.K.; Treagust, D.F. Introduction: Macro, Submicro and Symbolic Representations and the Relationship Between Them: Key Models in Chemical Education. In Multiple Representations in Chemical Education; Gilbert, J.K., Treagust, D., Eds.; Models and Modeling in Science Education; Springer: Dordrecht, The Netherlands, 2009; pp. 1–8. ISBN 978-1-4020-8872-8. [Google Scholar]
- Johnstone, A.H. Why Is Science Difficult to Learn? Things Are Seldom What They Seem. J. Comput. Assist. Learn. 1991, 7, 75–83. [Google Scholar] [CrossRef]
- Gabel, D. Improving Teaching and Learning through Chemistry Education Research: A Look to the Future. J. Chem. Educ. 1999, 76, 448–554. [Google Scholar] [CrossRef]
- Reid, N. A Tribute to Professor Alex H Johnstone (1930–2017): His Unique Contribution to Chemistry Education Research. Chem. Teach. Int. 2019, 1, 20180016. [Google Scholar] [CrossRef]
- Ferk Savec, V. The Opportunities and Challenges for ICT in Science Education. LUMAT Int. J. Math Sci. Technol. Educ. 2017, 5, 12–22. [Google Scholar] [CrossRef]
- Guo, T.; Guo, K.; Nan, B.; Liang, Z.; Guo, Z.; Chawla, N.V.; Wiest, O.; Zhang, X. What Can Large Language Models Do in Chemistry? A Comprehensive Benchmark on Eight Tasks. Adv. Neural Inf. Process. Syst. 2023, 36, 59662–59688. [Google Scholar]
- Hatakeyama-Sato, K.; Yamane, N.; Igarashi, Y.; Nabae, Y.; Hayakawa, T. Prompt Engineering of GPT-4 for Chemical Research: What Can/Cannot Be Done? Sci. Technol. Adv. Mater. Methods 2023, 3, 2260300. [Google Scholar] [CrossRef]
- P dos Santos, R. Enhancing Chemistry Learning with ChatGPT and Bing Chat as Agents to Think With: A Comparative Case Study. arXiv 2023, arXiv:2305.11890. [Google Scholar]
- Emenike, M.E.; Emenike, B.U. Was This Title Generated by ChatGPT? Considerations for Artificial Intelligence Text-Generation Software Programs for Chemists and Chemistry Educators. J. Chem. Educ. 2023, 100, 1413–1418. [Google Scholar] [CrossRef]
- Leon, A.; Vidhani, D. ChatGPT Needs a Chemistry Tutor Too. J. Chem. Educ. 2023, 100, 3859–3865. [Google Scholar] [CrossRef]
- West, J.K.; Franz, J.L.; Hein, S.M.; Leverentz-Culp, H.R.; Mauser, J.F.; Ruff, E.F.; Zemke, J.M. An Analysis of AI-Generated Laboratory Reports across the Chemistry Curriculum and Student Perceptions of ChatGPT. J. Chem. Educ. 2023, 100, 4351–4359. [Google Scholar] [CrossRef]
- Krathwohl, D.R. A Revision of Bloom’s Taxonomy: An Overview. Theory Pract. 2002, 41, 212–218. [Google Scholar] [CrossRef]
- Clark, T.M. Investigating the Use of an Artificial Intelligence Chatbot with General Chemistry Exam Questions. J. Chem. Educ. 2023, 100, 1905–1916. [Google Scholar] [CrossRef]
- Vygotski, L.S. Mind in Society: The Development of Higher Psychological Processes; Harvard University Press: Cambridge, MA, USA, 1978. [Google Scholar]
- Fernández, M.; Wegerif, R.; Mercer, N.; Rojas-Drummond, S. Re-Conceptualizing “Scaffolding” and the Zone of Proximal Development in the Context of Symmetrical Collaborative Learning. J. Classr. Interact. 2001, 36/37, 40–54. [Google Scholar]
- Mott, J.; Wiley, D. Open for Learning: The CMS and the Open Learning Network. Education 2009, 15, 3–21. [Google Scholar] [CrossRef]
- Peña-López, I. Heavy Switchers in Translearning: From Formal Teaching to Ubiquitous Learning. Horizon 2013, 21, 127–137. [Google Scholar] [CrossRef]
- United Nations Goal 4: Ensure Inclusive and Equitable Quality Education and Promote Lifelong Learning Opportunities for All. Available online: https://sdgs.un.org/goals/goal4 (accessed on 25 October 2023).
- Tyson, J. Shortcomings of ChatGPT. J. Chem. Educ. 2023, 100, 3098–3101. [Google Scholar] [CrossRef]
- Gürel, S.; Tat, M. SWOT Analysis: A Theoretical Review. J. Int. Soc. Res. 2017, 10, 994–1006. [Google Scholar] [CrossRef]
- Puyt, R.W.; Lie, F.B.; Wilderom, C.P.M. The Origins of SWOT Analysis. Long Range Plann. 2023, 56, 102304. [Google Scholar] [CrossRef]
- Kittel, A.; Larkin, P.; Cunningham, I.; Spittle, M. 360° Virtual Reality: A SWOT Analysis in Comparison to Virtual Reality. Front. Psychol. 2020, 11, 563474. [Google Scholar] [CrossRef] [PubMed]
- Roche, L.; Kittel, A.; Cunningham, I.; Rolland, C. 360° Video Integration in Teacher Education: A SWOT Analysis. Front. Educ. 2021, 6, 761176. [Google Scholar] [CrossRef]
- Pernaa, J. Possibilities and Challenges of Using Educational Cheminformatics for STEM Education: A SWOT Analysis of a Molecular Visualization Engineering Project. J. Chem. Educ. 2022, 99, 1190–1200. [Google Scholar] [CrossRef]
- Verdel, N.; Hjort, K.; Sperlich, B.; Holmberg, H.-C.; Supej, M. Use of Smart Patches by Athletes: A Concise SWOT Analysis. Front. Physiol. 2023, 14, 1055173. [Google Scholar] [CrossRef] [PubMed]
- Mishra, P.; Koehler, M.J. Technological Pedagogical Content Knowledge: A Framework for Teacher Knowledge. Teach. Coll. Rec. 2006, 108, 1017–1054. [Google Scholar] [CrossRef]
- Koehler, M.; Mishra, P. What Happens When Teachers Design Educational Technology? The Development of Technological Pedagogical Content Knowledge. J. Educ. Comput. Res. 2005, 32, 131–152. [Google Scholar] [CrossRef]
- Willermark, S. Technological Pedagogical and Content Knowledge: A Review of Empirical Studies Published from 2011 to 2016. J. Educ. Comput. Res. 2018, 56, 315–343. [Google Scholar] [CrossRef]
- Graham, C.R. Theoretical Considerations for Understanding Technological Pedagogical Content Knowledge (TPACK). Comput. Educ. 2011, 57, 1953–1960. [Google Scholar] [CrossRef]
- Cox, S. A Conceptual Analysis of Technological Pedagogical Content Knowledge. Ph.D. Dissertation, Brigham Young University, Provo, UT, USA, 2008. [Google Scholar]
- Angeli, C.; Valanides, N. Epistemological and Methodological Issues for the Conceptualization, Development, and Assessment of ICT-TPCK: Advances in Technological Pedagogical Content Knowledge (TPCK). Comput. Educ. 2009, 52, 154–168. [Google Scholar] [CrossRef]
- Aksela, M.K. Engaging Students for Meaningful Chemistry Learning through Microcomputer-Based Laboratory (MBL) Inquiry. Educ. Quím. EduQ 2011, 4, 30–37. [Google Scholar] [CrossRef]
- Novak, J.; Cañas, A. The Theory Underlying Concept Maps and How to Construct Them. Available online: http://cmap.ihmc.us/Publications/researchpapers/theorycmaps/TheoryUnderlyingConceptMaps.bck-11-01-06.htm (accessed on 5 December 2019).
- Ambrož, M.; Pernaa, J.; Haatainen, O.; Aksela, M. Promoting STEM Education of Future Chemistry Teachers with an Engineering Approach Involving Single-Board Computers. Appl. Sci. 2023, 13, 3278. [Google Scholar] [CrossRef]
- Orenstrakh, M.S.; Karnalim, O.; Suarez, C.A.; Liut, M. Detecting LLM-Generated Text in Computing Education: A Comparative Study for ChatGPT Cases. arXiv 2023, arXiv:2307.07411. [Google Scholar]
- Yan, L.; Sha, L.; Zhao, L.; Li, Y.; Martinez-Maldonado, R.; Chen, G.; Li, X.; Jin, Y.; Gašević, D. Practical and Ethical Challenges of Large Language Models in Education: A Systematic Scoping Review. Br. J. Educ. Technol. 2024, 55, 90–112. [Google Scholar] [CrossRef]
- Aksela, M. Towards Student-Centred Solutions and Pedagogical Innovations in Science Education through Co-Design Approach within Design-Based Research. LUMAT Int. J. Math Sci. Technol. Educ. 2019, 7, 113–139. [Google Scholar] [CrossRef]
Date | Database | Search Phrase | Results (Total) | Results (Relevant) | Notes | Link |
---|---|---|---|---|---|---|
17 October 2023 | Google Scholar | “information behavior” and chemistry | 2670 | Not available | Not very useful because too many hits. Iteration needed. | www |
23 October 2023 | EBSCO | “information behavior” and chemistry | 65 | 2 | First three were relevant, but one of them was a methodological paper. | Not available, payment wall |
23 October 2023 | ERIC | “information behavior” | 333 | 4 | At least four, but the number of hits was too large. Not a chemistry specific search. | www |
25 October 2023 | Google Scholar | “information seeking” and chatbots | 4190 | 12 | Many preprints. A lot of noise such as books and conference papers. | www |
29 March 2024 | Chemistry Education Journals (JCE, CERP; CTI) | chatbot | 19 | 15 | Preprints had been processed to publications during the first review round. | For example: www |
30 March 2024 | Google Scholar | “Technology” from the articles citing [32] | 273 | 10 | Following the citation trace of [32] to present up-to-date references for information seeking rationale. | www |
Possibilities | Challenges | |
---|---|---|
Internal | Strengths - Teach modern AI-assisted information-seeking processes (TPACK) - Diversifies information behavior (TPAC) - Increases productivity (TCK/TPK) - Can be used in activating HOCS skills (PK) | Weaknesses - If not allowed, usage is hard to detect (TPK) - The need for critical thinking and content knowledge to detect biases (CK) - The output needs to be verified via triangulation (CK) - Not able to produce multimodal chemical visualizations, produces textual outputs (TCK) |
External | Opportunities - Can be used to include embedded knowledge, such as ethics of academic writing (TPK) - New opportunities for course planning, such as work time allocation and multilingual literature (TPK) - Supports inclusion and equity (SDG4), e.g., via translation features (TPACK) - Can be used to expand ZPD (PK) | Threats - Adoption requires innovation work (TPACK) - Selected software solutions might not be sustainable (TK) - Successful workflow requires prompt crafting knowledge that might not be included in earlier information literature studies (TPACK) - Changes the skillsets that different exercises develop (TPACK) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pernaa, J.; Ikävalko, T.; Takala, A.; Vuorio, E.; Pesonen, R.; Haatainen, O. Artificial Intelligence Chatbots in Chemical Information Seeking: Narrative Educational Insights via a SWOT Analysis. Informatics 2024, 11, 20. https://doi.org/10.3390/informatics11020020
Pernaa J, Ikävalko T, Takala A, Vuorio E, Pesonen R, Haatainen O. Artificial Intelligence Chatbots in Chemical Information Seeking: Narrative Educational Insights via a SWOT Analysis. Informatics. 2024; 11(2):20. https://doi.org/10.3390/informatics11020020
Chicago/Turabian StylePernaa, Johannes, Topias Ikävalko, Aleksi Takala, Emmi Vuorio, Reija Pesonen, and Outi Haatainen. 2024. "Artificial Intelligence Chatbots in Chemical Information Seeking: Narrative Educational Insights via a SWOT Analysis" Informatics 11, no. 2: 20. https://doi.org/10.3390/informatics11020020
APA StylePernaa, J., Ikävalko, T., Takala, A., Vuorio, E., Pesonen, R., & Haatainen, O. (2024). Artificial Intelligence Chatbots in Chemical Information Seeking: Narrative Educational Insights via a SWOT Analysis. Informatics, 11(2), 20. https://doi.org/10.3390/informatics11020020