Effectiveness of Telemedicine in Diabetes Management: A Retrospective Study in an Urban Medically Underserved Population Area (UMUPA)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Sample
2.3. Study Variables
2.4. Statistical Methods
3. Results Comparing Patient HbA1c % Levels Using TM and F2F Healthcare
3.1. Descriptive Statistics for Patients with Uncontrolled Diabetes and Prediabetes
3.2. Tables
3.2.1. Patients with T2DM Uncontrolled Diabetes Visits
3.2.2. Patients with Prediabetes Visits
3.3. Summary
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. WHO Reveals Leading Causes of Death and Disability Worldwide: 2000–2019. Available online: https://www.who.int/news/item/09-12-2020-who-reveals-leading-causes-of-death-and-disability-worldwide-2000-2019 (accessed on 28 April 2021).
- American Diabetes Association. Economic Costs of Diabetes in the U.S. in 2017. Diabetes Care 2018, 41, 917–928. [Google Scholar] [CrossRef] [Green Version]
- Report of the First Meeting of the WHO Global Diabetes Compact Forum. 2021. Available online: https://www.who.int/publications/i/item/9789240045705 (accessed on 14 January 2023).
- WHO. Int Fact Diabetes Sheet. Available online: https://www.who.int/news-room/fact-sheets/detail/diabetes (accessed on 5 May 2021).
- CDC. Certain Medical Conditions and Risk for Severe COVID-19 Illness|CDC. Available online: https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/people-with-medical-conditions.html (accessed on 28 April 2021).
- Adegunsoye, A.; Ventura, I.B.; Liarski, V.M. Association of Black Race with Outcomes in COVID-19 Disease: A Retrospective Cohort Study. Ann. Am. Thorac. Soc. 2020, 17, 1336–1339. [Google Scholar] [CrossRef] [PubMed]
- Braveman, P. Health Disparities and Health Equity: Concepts and Measurement. Annu. Rev. Public Health 2006, 27, 167–194. [Google Scholar] [CrossRef] [Green Version]
- Ward, L.A. Effectiveness of Telemedicine in Diabetes Management: A Retrospective Study in an Urban Medically Underserved Population Area (UMUPA). Available online: https://digitalcommons.georgiasouthern.edu/cgi/viewcontent.cgi?article=3706&context=etd (accessed on 3 November 2022).
- Temesgen, Z.M.; DeSimone, D.C.; Mahmood, M.; Libertin, C.R.; Varatharaj Palraj, B.R.; Berbari, E.F. Health Care After the COVID-19 Pandemic and the Influence of Telemedicine. Mayo Clin. Proc. 2020, 95, S66–S68. [Google Scholar] [CrossRef]
- CDC. Preventing Diabetes-Related Complications|Diabetes|CDC. Available online: https://www.cdc.gov/diabetes/data/statistics-report/preventing-complications.html (accessed on 7 September 2021).
- McElroy, J.A.; Day, T.M.; Becevic, M. The Influence of Telehealth for Better Health Across Communities. Prev. Chronic Dis. 2020, 17, 200254. [Google Scholar] [CrossRef]
- Andreozzi, F.; Candido, R.; Corrao, S.; Fornengo, R.; Giancaterini, A.; Ponzani, P.; Ponziani, M.C.; Tuccinardi, F.; Mannino, D. Clinical inertia is the enemy of therapeutic success in the management of diabetes and its complications: A narrative literature review. Diabetol. Metab. Syndr. 2020, 12, 52. [Google Scholar] [CrossRef] [PubMed]
- Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2020|Diabetes Care. Available online: https://care.diabetesjournals.org/content/43/Supplement_1/S14 (accessed on 7 September 2021).
- Pantalone, K.M.; Misra-Hebert, A.D.; Hobbs, T.M.; Ji, X.; Kong, S.X.; Milinovich, A.; Weng, W.; Bauman, J.; Ganguly, R.; Burguera, B.; et al. Clinical Inertia in Type 2 Diabetes Management: Evidence From a Large, Real-World Data Set. Diabetes Care 2018, 41, e113–e114. [Google Scholar] [CrossRef] [Green Version]
- Cade, W.T. Diabetes-Related Microvascular and Macrovascular Diseases in the Physical Therapy Setting. Phys. Ther. 2008, 88, 1322–1335. [Google Scholar] [CrossRef] [Green Version]
- Stratton, I.M. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): Prospective observational study. BMJ 2000, 321, 405–412. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hirakawa, Y.; Arima, H.; Zoungas, S.; Ninomiya, T.; Cooper, M.; Hamet, P.; Mancia, G.; Poulter, N.; Harrap, S.; Woodward, M.; et al. Impact of Visit-to-Visit Glycemic Variability on the Risks of Macrovascular and Microvascular Events and All-Cause Mortality in Type 2 Diabetes: The Advance Trial. Diabetes Care 2014, 37, 2359–2365. [Google Scholar] [CrossRef]
- Khunti, K.; Gomes, M.B.; Pocock, S.; Shestakova, M.V.; Pintat, S.; Fenici, P.; Hammar, N.; Medina, J. Therapeutic inertia in the treatment of hyperglycaemia in patients with type 2 diabetes: A systematic review. Diabetes Obes. Metab. 2018, 20, 427–437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Telehealth Basics-ATA. Available online: https://www.americantelemed.org/resource/why-telemedicine/ (accessed on 2 September 2021).
- DHS. Federally-Facilitated Marketplace Assister Curriculum Serving Vulnerable and Underserved Populations. Department of Health & Human Services Centers for Medicare & Medicaid Services Center for Consumer Information & Insurance Oversight; 2014:108. Available online: https://mail.google.com/mail/u/0/#inbox/WhctKKXpSdCrPvRlSTHvtnfmSgRmFchWfGmFFvLsCgFKCVbzKrBCMgxLPjcmtncgpsJRlgG?compose=new&projector=1&messagePartId=0.1 (accessed on 25 June 2022).
- Vilendrer, S.; Patel, B.; Chadwick, W.; Hwa, M.; Asch, S.; Pageler, N.; Ramdeo, R.; Saliba-Gustafsson, E.A.; Strong, P.; Sharp, C. Rapid Deployment of Inpatient Telemedicine In Response to COVID-19 Across Three Health Systems. J. Am. Med. Inform. Assoc. 2020, 27, 1102–1109. [Google Scholar] [CrossRef] [PubMed]
- Bashshur, R.; Doarn, C.R.; Frenk, J.M.; Kvedar, J.C.; Woolliscroft, J.O. Telemedicine and the COVID-19 Pandemic, Lessons for the Future. Telemed. E Health 2020, 26, 571–573. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sounderajah, V.; Patel, V.; Varatharajan, L.; Harling, L.; Normahani, P.; Symons, J.; Barlow, J.; Darzi, A.; Ashrafian, H. Are disruptive innovations recognised in the healthcare literature? A systematic review. BMJ Innov. 2021, 7, 208–216. [Google Scholar] [CrossRef] [PubMed]
- Demiris, G. Integration of Telemedicine in Graduate Medical Informatics Education. J. Am. Med. Inform Assoc. 2003, 10, 310–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- About Social Determinants of Health (SDOH). Published 10 March 2021. Available online: https://www.cdc.gov/socialdeterminants/about.html (accessed on 23 April 2021).
- Walker, R.J.; Strom Williams, J.; Egede, L.E. Influence of Race, Ethnicity and Social Determinants of Health on Diabetes Outcomes. Am. J. Med. Sci. 2016, 351, 366–373. [Google Scholar] [CrossRef] [Green Version]
- Klein, R.; Huang, D. Defining and Measuring Disparities, Inequities, and Inequalities in the Healthy People Initiative. National Center of Health Statistics NCHS-CDC. Available online: https://www.cdc.gov/nchs/ppt/nchs2010/41_klein.pdf (accessed on 26 July 2022).
- Eberle, C.; Stichling, S. Effect of Telemetric Interventions on Glycated Hemoglobin A1c and Management of Type 2 Diabetes Mellitus: Systematic Meta-Review. J. Med. Int. Res. 2021, 23, e23252. [Google Scholar] [CrossRef]
- De Groot, J.; Wu, D.; Flynn, D.; Robertson, D.; Grant, G.; Sun, J. Efficacy of telemedicine on glycaemic control in patients with type 2 diabetes: A meta-analysis. World J. Diabetes 2021, 12, 170–197. [Google Scholar] [CrossRef]
- Shea, S.; Weinstock, R.S.; Teresi, J.A.; Palmas, W.; Starren, J.; Cimino, J.J.; Lai, A.M.; Field, L.; Morin, P.C.; Goland, R.; et al. A Randomized Trial Comparing Telemedicine Case Management with Usual Care in Older, Ethnically Diverse, Medically Underserved Patients with Diabetes Mellitus: 5 Year Results of the IDEATel Study. J. Am. Med. Inform. Assoc. 2009, 16, 446–456. [Google Scholar] [CrossRef]
- Duval County, Florida|County Health Rankings & Roadmaps. Available online: https://www.countyhealthrankings.org/app/florida/2021/rankings/duval/county/outcomes/overall/snapshot (accessed on 23 April 2021).
- U.S. Census Bureau QuickFacts: Duval County, Florida. Available online: https://www.census.gov/quickfacts/fact/table/duvalcountyflorida/INC110219 (accessed on 10 October 2021).
- Livingood, W.C.; Razaila, L.; Reuter, E.; Filipowicz, R.; Butterfield, R.C.; Lukens-Bull, K.; Edwards, L.; Palacio, C.; Wood, D.L. Using multiple sources of data to assess the prevalence of diabetes at the subcounty level, Duval County, Florida, 2007. Prev. Chronic Dis. 2010, 7, A108. [Google Scholar]
- FLHealthCHARTS.com: Chronic Disease Data. Available online: https://flhealthcharts.com (accessed on 10 October 2021).
- Difference between Medicare and Medicaid Insurance. Available online: https://www.hhs.gov/answers/medicare-and-medicaid/what-is-the-difference-between-medicare-medicaid/index.html (accessed on 12 January 2023).
- Canedo, J.R.; Miller, S.T.; Schlundt, D.; Fadden, M.K.; Sanderson, M. Racial/Ethnic Disparities in Diabetes Quality of Care: The Role of Healthcare Access and Socioeconomic Status. J. Racial Ethn. Health Disparities 2018, 5, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Viigimaa, M.; Sachinidis, A.; Toumpourleka, M.; Koutsampasopoulos, K.; Alliksoo, S.; Titma, T. Macrovascular Complications of Type 2 Diabetes Mellitus. Curr. Vasc. Pharmacol. 2020, 18, 110–116. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Uncontrolled N | Uncontrolled % | Prediabetes N | Prediabetes % |
---|---|---|---|---|
Ethnicity | ||||
Hispanic | 17 | 1.01 | 35 | 5.52 |
Non-Hispanic | 1668 | 98.99 | 599 | 94.48 |
Provider Title | ||||
MD | 272 | 16.14 | 175 | 27.6 |
PA | 326 | 19.35 | 149 | 23.5 |
NP | 1087 | 64.51 | 310 | 48.9 |
Gender | ||||
Male | 671 | 39.82 | 171 | 26.97 |
Female | 1014 | 60.18 | 463 | 73.03 |
HealthZones | ||||
Outer Duval | 65 | 3.86 | 48 | 7.57 |
Out of Area * | 87 | 5.16 | 27 | 4.26 |
Southwest (SW) | 616 | 36.56 | 231 | 36.44 |
MUAs | 917 | 54.42 | 328 | 51.74 |
Race | ||||
Other | 30 | 1.78 | 35 | 5.52 |
White | 421 | 24.99 | 183 | 28.86 |
Black | 1234 | 73.23 | 416 | 65.62 |
Medical Insurer | ||||
Private | 291 | 17.27 | 89 | 14.04 |
Medicare | 696 | 41.31 | 306 | 48.26 |
Medicaid | 698 | 41.42 | 239 | 37.70 |
Healthcare service type | ||||
Telemedicine (TM) | 843 | 50.03 | 311 | 49.05 |
Traditional (F2F) | 842 | 49.97 | 323 | 50.95 |
Characteristics | Unstandardized Coefficients | T | p-Value | |
---|---|---|---|---|
B (Regression Coefficient) | Std. Error | |||
(HbA1c %) | 11.588 | 0.307 | 37.765 | 0.001 |
Age | −0.026 | 0.004 | −5.863 | 0.001 |
Gender-Female | 0.190 | 0.090 | 2.122 | 0.034 |
Race-Black | 0.888 | 0.097 | 9.117 | 0.001 |
Provider Type/title-NP | 0.006 | 0.089 | 0.072 | 0.942 |
Healthcare-TM | −0.339 | 0.086 | −3.957 | 0.001 |
Insurer-Medicaid | −0.612 | 0.097 | −6.286 | 0.001 |
HZ SW | 0.617 | 0.093 | 6.638 | 0.001 |
HZs in Outer Duval | −0.602 | 0.225 | −2.678 | 0.007 |
Characteristics | Unstandardized Coefficients | T | p-Value | |
---|---|---|---|---|
B (Regression Coefficient) | Std. Error | |||
(HbA1c %) | 5.880 | 0.099 | 59.618 | 0.001 |
Age | 0.006 | 0.001 | 4.541 | 0.001 |
Gender-Female | 0.016 | 0.032 | 0.488 | 0.626 |
Race-Black | −0.062 | 0.029 | −2.171 | 0.030 |
Provider type-NP | 0.008 | 0.028 | 0.301 | 0.763 |
Healthcare-TM | −0.042 | 0.026 | −1.639 | 0.102 |
Insurer-Medicaid | 0.237 | 0.034 | 7.010 | 0.001 |
HZ SW | 0.086 | 0.031 | 2.796 | 0.005 |
Outer Duval | 0.027 | 0.053 | 0.499 | 0.618 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ward, L.A.; Shah, G.H.; Jones, J.A.; Kimsey, L.; Samawi, H. Effectiveness of Telemedicine in Diabetes Management: A Retrospective Study in an Urban Medically Underserved Population Area (UMUPA). Informatics 2023, 10, 16. https://doi.org/10.3390/informatics10010016
Ward LA, Shah GH, Jones JA, Kimsey L, Samawi H. Effectiveness of Telemedicine in Diabetes Management: A Retrospective Study in an Urban Medically Underserved Population Area (UMUPA). Informatics. 2023; 10(1):16. https://doi.org/10.3390/informatics10010016
Chicago/Turabian StyleWard, Lisa Ariellah, Gulzar H. Shah, Jeffery A. Jones, Linda Kimsey, and Hani Samawi. 2023. "Effectiveness of Telemedicine in Diabetes Management: A Retrospective Study in an Urban Medically Underserved Population Area (UMUPA)" Informatics 10, no. 1: 16. https://doi.org/10.3390/informatics10010016
APA StyleWard, L. A., Shah, G. H., Jones, J. A., Kimsey, L., & Samawi, H. (2023). Effectiveness of Telemedicine in Diabetes Management: A Retrospective Study in an Urban Medically Underserved Population Area (UMUPA). Informatics, 10(1), 16. https://doi.org/10.3390/informatics10010016