Designing Annuities with Flexibility Opportunities in an Uncertain Mortality Scenario
Abstract
:1. Introduction
2. Model Setup
2.1. Mortality/Longevity-Linked Annuity Benefits
2.2. Policy Fund and Periodic Fees
2.3. Individual Reserve and Components
2.4. Pool Fund, Present Value of Future Benefits, Present Value of Future Profits and Business Value
2.5. Setting the Periodic Fee
3. Results
3.1. Mortality Model
3.2. Benefit Arrangements
- Case (a): ;
- Case (b): .
3.3. Implementation and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andersen, Carsten, and Peter Skjodt. 2007. Pension Institutions and Annuities in Denmark. Policy Research Working Paper. Washington, DC: World Bank. [Google Scholar]
- Bacinello, Anna Rita, Pietro Millossovich, and An Chen. 2018. The impact of longevity and investment risk on a portfolio of life insurance liabilities. European Actuarial Journal 8: 257–90. [Google Scholar] [CrossRef] [Green Version]
- Bacinello, Anna Rita, Pietro Millossovich, Annamaria Olivieri, and Ermanno Pitacco. 2011. Variable annuities: A unifying valuation approach. Insurance: Mathematics and Economics 49: 285–97. [Google Scholar] [CrossRef]
- Bernhardt, Thomas, and Catherine Donnelly. 2019. Modern tontine with bequest: Innovation in pooled annuity products. Insurance: Mathematics and Economics 86: 168–88. [Google Scholar] [CrossRef] [Green Version]
- Blackburn, Craig, Katja Hanewald, Annamaria Olivieri, and Michael Sherris. 2017. Longevity risk management and shareholder value for a life annuity business. ASTIN Bulletin 47: 43–77. [Google Scholar] [CrossRef]
- Bravo, Jorge Miguel, and Najat El Mekkaoui de Freitas. 2018. Valuation of longevity-linked life annuities. Insurance: Mathematics and Economics 78: 212–29. [Google Scholar] [CrossRef]
- Cairns, Andrew J. G., David P. Blake, Amy Kessler, and Marsha Kessler. 2020. The Impact of COVID-19 on Future Higher-Age Mortality. May 19. Available online: https://ssrn.com/abstract=3606988 (accessed on 3 August 2021).
- Chen, An, and Manuel Rach. 2019. Options on tontines: An innovative way of combining tontines and annuities. Insurance: Mathematics and Economics 89: 182–92. [Google Scholar]
- Chen, An, Manuel Rach, and Thorsten Sehner. 2020. On the optimal combination of annuities and tontines. Astin Bulletin 50: 95–129. [Google Scholar] [CrossRef]
- Chen, An, Montserrat Guillen, and Manuel Rach. 2021. Fees in tontines. Insurance: Mathematics and Economics 100: 89–106. [Google Scholar]
- Chen, An, Peter Hieber, and Jakob K. Klein. 2019. Tonuity: A novel individual-oriented retirement plan. ASTIN Bulletin 49: 5–30. [Google Scholar] [CrossRef]
- Davidoff, Thomas, Jeffrey R. Brown, and Peter A. Diamond. 2005. Annuities and Individual Welfare. American Economic Review 95: 1573–90. [Google Scholar] [CrossRef] [Green Version]
- Denuit, Michel, Steven Haberman, and Arthur Renshaw. 2011. Longevity-indexed life annuities. North American Actuarial Journal 15: 97–111. [Google Scholar] [CrossRef]
- Donnelly, Catherine. 2015. Actuarial fairness and solidarity in pooled annuity funds. ASTIN Bulletin 45: 49–74. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, Catherine, Montserrat Guillén, and Jens Perch Nielsen. 2013. Exchanging uncertain mortality for a cost. Insurance: Mathematics and Economics 52: 65–76. [Google Scholar] [CrossRef]
- Duffie, Darrell. 2001. Dynamic Asset Pricing Theory, 3rd ed. Princeton: Princeton University Press. [Google Scholar]
- Hanbali, Hamza, Michel Denuit, Jan Dhaene, and Julien Truffin. 2019. A dynamic equivalence principle for systematic longevity risk management. Insurance: Mathematics and Economics 86: 158–67. [Google Scholar] [CrossRef] [Green Version]
- Lee, Ronald, and Lawrence Carter. 1992. Modelling and forecasting US mortality. Journal of the American Statistical Association 87: 659–75. [Google Scholar]
- McKever, Kent. 2009. A short history of tontines. Fordham Journal of Corporate and Financial Law 15: 491–521. [Google Scholar]
- Milevsky, Moshe A. 2014. Portfolio choice and longevity risk in the late Seventeenth century: A re-examination of the first English tontine. Financial History Review 21: 225–58. [Google Scholar] [CrossRef]
- Milevsky, Moshe A. 2020. Is COVID-19 a Parallel Shock to the Term Structure of Mortality? Available online: https://moshemilevsky.com/wp-content/uploads/2020/05/MILEVSKY_20MAY2020_AMAZON.pdf (accessed on 3 August 2021).
- Milevsky, Moshe A., and Thomas S. Salisbury. 2015. Optimal retirement income tontines. Insurance: Mathematics and Economics 64: 91–105. [Google Scholar] [CrossRef] [Green Version]
- Olivieri, Annamaria, and Ermanno Pitacco. 2009. Stochastic mortality: The impact on target capital. ASTIN Bulletin 39: 541–63. [Google Scholar] [CrossRef]
- Olivieri, Annamaria, and Ermanno Pitacco. 2020a. Linking annuity benefits to the longevity experience: Alternative solutions. Annals of Actuarial Science 14: 316–37. [Google Scholar] [CrossRef]
- Olivieri, Annamaria, and Ermanno Pitacco. 2020b. Longevity-Linked Annuities: How to Preserve Value Creation against Longevity Risk. In Life Insurance in Europe. Edited by M. Borda, S. Grima and I. Kwiecień. Financial and Monetary Policy Studies. Berlin: Springer, vol. 50, pp. 103–26. [Google Scholar]
- Peijnenburg, Kim, Theo Nijman, and Bas J. M. Werker. 2016. The Annuity Puzzle Remains a Puzzle. Journal of Economic Dynamics and Control 70: 18–35. [Google Scholar] [CrossRef] [Green Version]
- Piggott, John, Emiliano A. Valdez, and Bettina Detzel. 2005. The simple analytics of a pooled annuity fund. The Journal of Risk and Insurance 72: 497–520. [Google Scholar] [CrossRef]
- Pitacco, Ermanno. 2016. Guarantee structures in life annuities: A comparative analysis. The Geneva Papers on Risk and Insurance—Issues and Practice 41: 78–97. [Google Scholar] [CrossRef]
- Qiao, Chao, and Michael Sherris. 2013. Managing systematic mortality risk with group self-pooling and annuitization schemes. The Journal of Risk and Insurance 80: 949–74. [Google Scholar] [CrossRef]
- Richter, Andreas, and Frederik Weber. 2011. Mortality-Indexed annuities. Managing longevity risk via product design. North American Actuarial Journal 15: 212–36. [Google Scholar] [CrossRef] [Green Version]
- Stamos, Michael Z. 2008. Optimal consumption and portfolio choice for pooled annuity funds. Insurance: Mathematics and Economics 43: 56–68. [Google Scholar] [CrossRef]
- Weinert, Jan Hendrik, and Helmut Gründl. 2021. The modern tontine. European Actuarial Journal 11: 49–86. [Google Scholar] [CrossRef]
- Yaari, Menahem E. 1965. Uncertain lifetime, life insurance, and the theory of the consumer. The Review of Economic Studies 32: 137–50. [Google Scholar] [CrossRef]
Arrangement | Moderate Aggregate Deviations | Major Aggregate Deviations |
---|---|---|
Fixed benefits | 0.069% | 0.242% |
Benefits linked to surv. prob., case (a) | 0.003% | 0.025% |
Benefits linked to act. value, case (a) | 0.013% | 0.033% |
Benefits linked to surv. prob., case (b) | 0.006% | 0.093% |
Benefits linked to act. value, case (b) | 0.013% | 0.019% |
Timet | Fixed benefits | Benefits Linked to Surv. Prob., Case (a) | Benefits Linked to Act. Value, Case (a) | ||||
Exp. value | 0.01-quant. | 0.99-quant. | Exp. value | 0.01-quant. | 0.99-quant. | ||
0 | 5.199 | 5.242 | 5.236 | ||||
5 | 5.199 | 5.242 | 5.213 | 5.272 | 5.236 | 5.069 | 5.408 |
10 | 5.199 | 5.242 | 5.168 | 5.320 | 5.236 | 5.052 | 5.426 |
15 | 5.199 | 5.242 | 5.097 | 5.398 | 5.236 | 5.037 | 5.443 |
20 | 5.199 | 5.243 | 4.984 | 5.526 | 5.236 | 5.029 | 5.454 |
25 | 5.199 | 5.246 | 4.805 | 5.741 | 5.236 | 5.037 | 5.447 |
30 | 5.199 | 5.253 | 4.527 | 6.114 | 5.236 | 5.093 | 5.388 |
Time | Benefits Linked to Surv. Prob., Case (b) | Benefits Linked to Act. Value, Case (b) | |||||
Exp. value | 0.01-quant. | 0.99-quant. | Exp. value | 0.01-quant. | 0.99-quant. | ||
0 | 5.240 | 5.236 | |||||
5 | 5.240 | 5.211 | 5.270 | 5.236 | 5.069 | 5.408 | |
10 | 5.240 | 5.166 | 5.318 | 5.236 | 5.052 | 5.426 | |
15 | 5.240 | 5.095 | 5.396 | 5.236 | 5.037 | 5.443 | |
20 | 5.241 | 4.982 | 5.524 | 5.236 | 5.029 | 5.454 | |
25 | 5.243 | 4.804 | 5.739 | 5.236 | 5.037 | 5.447 | |
30 | 5.244 | 4.716 | 5.764 | 5.236 | 5.093 | 5.388 |
Timet | Fixed benefits | Benefits Linked to Surv. Prob., Case (a) | Benefits Linked to Act. Value, Case (a) | ||||
Exp. value | 0.01-quant. | 0.99-quant. | Exp. value | 0.01-quant. | 0.99-quant. | ||
0 | 5.090 | 5.228 | 5.223 | ||||
5 | 5.090 | 5.228 | 5.143 | 5.326 | 5.221 | 4.717 | 5.784 |
10 | 5.090 | 5.228 | 5.011 | 5.487 | 5.222 | 4.671 | 5.846 |
15 | 5.090 | 5.231 | 4.806 | 5.757 | 5.223 | 4.629 | 5.905 |
20 | 5.090 | 5.240 | 4.494 | 6.223 | 5.224 | 4.607 | 5.946 |
25 | 5.090 | 5.253 | 4.030 | 6.534 | 5.225 | 4.635 | 5.929 |
30 | 5.090 | 5.247 | 3.921 | 6.534 | 5.226 | 4.804 | 5.736 |
Time | Benefits Linked to Surv. Prob., Case (b) | Benefits Linked to Act. Value, Case (b) | |||||
Exp. value | 0.01-quant. | 0.99-quant. | Exp. value | 0.01-quant. | 0.99-quant. | ||
0 | 5.184 | 5.231 | |||||
5 | 5.185 | 5.101 | 5.282 | 5.229 | 4.725 | 5.755 | |
10 | 5.185 | 4.970 | 5.442 | 5.229 | 4.708 | 5.755 | |
15 | 5.187 | 4.767 | 5.703 | 5.229 | 4.708 | 5.755 | |
20 | 5.185 | 4.666 | 5.703 | 5.229 | 4.708 | 5.755 | |
25 | 5.179 | 4.666 | 5.703 | 5.231 | 4.708 | 5.755 | |
30 | 5.175 | 4.666 | 5.703 | 5.233 | 4.812 | 5.745 |
Arrangement | Moderate Aggregate Deviations | Major Aggregate Deviations |
---|---|---|
Fixed benefits | 0.845% | 2.933% |
Benefits linked to surv. prob., case (a) | 0.038% | 0.311% |
Benefits linked to act. value, case (a) | 0.155% | 0.400% |
Benefits linked to surv. prob., case (b) | 0.076% | 1.132% |
Benefits linked to act. value, case (b) | 0.155% | 0.236% |
Fixed Benefits | ||||
Time | Age | |||
0 | 65 | 100.000 | 99.155% | 0.845% |
5 | 70 | 80.512 | 99.286% | 0.714% |
10 | 75 | 62.970 | 99.410% | 0.590% |
15 | 80 | 47.576 | 99.525% | 0.475% |
20 | 85 | 34.378 | 99.632% | 0.368% |
25 | 90 | 23.095 | 99.736% | 0.264% |
30 | 95 | 12.387 | 99.847% | 0.153% |
Benefits Linked to Surv. Prob., Case (a) | ||||
Time | Age | |||
0 | 65 | 100.000 | 99.962% | 0.038% |
5 | 70 | 80.614 | 99.968% | 0.032% |
10 | 75 | 63.126 | 99.974% | 0.026% |
15 | 80 | 47.750 | 99.979% | 0.021% |
20 | 85 | 34.545 | 99.984% | 0.016% |
25 | 90 | 23.242 | 99.988% | 0.012% |
30 | 95 | 12.496 | 99.993% | 0.007% |
Benefits Linked to Act. Value, Case (a) | ||||
Time | Age | |||
0 | 65 | 100.000 | 99.845% | 0.155% |
5 | 70 | 80.597 | 99.869% | 0.131% |
10 | 75 | 63.102 | 99.892% | 0.108% |
15 | 80 | 47.721 | 99.913% | 0.087% |
20 | 85 | 34.515 | 99.933% | 0.067% |
25 | 90 | 23.207 | 99.952% | 0.048% |
30 | 95 | 12.458 | 99.972% | 0.028% |
Arrangement | Moderate Aggregate Deviations | Major Aggregate Deviations | ||
---|---|---|---|---|
Fixed benefits | 0.820 | 25.160% | 2.713 | 29.071% |
Benefits linked to surv. prob., case (a) | 0.034 | 52.960% | 0.341 | 28.146% |
Benefits linked to act. value, case (a) | 0.151 | 42.137% | 0.387 | 23.347% |
Benefits linked to surv. prob., case (b) | 0.076 | 17.690% | 1.140 | 24.734% |
Benefits linked to act. value, case (b) | 0.151 | 42.137% | 0.246 | 9.468% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olivieri, A. Designing Annuities with Flexibility Opportunities in an Uncertain Mortality Scenario. Risks 2021, 9, 189. https://doi.org/10.3390/risks9110189
Olivieri A. Designing Annuities with Flexibility Opportunities in an Uncertain Mortality Scenario. Risks. 2021; 9(11):189. https://doi.org/10.3390/risks9110189
Chicago/Turabian StyleOlivieri, Annamaria. 2021. "Designing Annuities with Flexibility Opportunities in an Uncertain Mortality Scenario" Risks 9, no. 11: 189. https://doi.org/10.3390/risks9110189
APA StyleOlivieri, A. (2021). Designing Annuities with Flexibility Opportunities in an Uncertain Mortality Scenario. Risks, 9(11), 189. https://doi.org/10.3390/risks9110189