Testing for Seasonal Affective Disorder on Selected CEE and SEE Stock Markets
Abstract
:1. Introduction
2. Previous Research
3. Methodology
4. Empirical Analysis
5. Discussion
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Estimated Values/Diagnostics | GARCH | E-GARCH | T-GARCH | P-ARCH | C-GARCH |
---|---|---|---|---|---|
0.0001 (0.569) | 0.0001 (0.387) | 0.0001 (0.581) | 0.0002 (0.408) | 0.0001 (0.545) | |
−0.001 (0.283) | −0.001 (0.277) | −0.001 (0.284) | −0.001 (0.289) | −0.001 (0.304) | |
−0.001 (0.003) *** | −0.001 (0.008) * | −0.001 (0.003) *** | −0.001 (0.005) *** | 0.0003 (0.270) | |
−0.0004 (0.568) | −0.0004 (0.567) | −0.0004 (0.566) | −0.0004 (0.574) | −0.0004 (0.586) | |
0.0003 (0.234) | 0.0002 (0.384) | 0.0003 (0.236) | 0.0002 (0.339) | 0.0003 (0.270) | |
0.0003 (0.513) | 0.0003 (0.507) | 0.0003 (0.510) | 0.0002 (0.519) | 0.0003 (0.475) | |
0.086 (0.000) *** | 0.085 (0.000) *** | 0.085 (0.000) *** | 0.084 (0.000) *** | 0.084 (0.000) *** | |
0.021 (0.350) | 0.016 (0.459) | 0.021 (0.364) | 0.018 (0.425) | 0.020 (0.367) | |
0.041 ** (0.069) *** | 0.036 (0.105) | 0.041 (0.069) * | 0.038 (0.092) * | 0.040 (0.075) * | |
0.044 (0.034) *** | 0.046 (0.024) ** | 0.043 (0.035) ** | 0.047 (0.023) ** | 0.044 (0.030) ** | |
2.8 × 10−6 (0.000) *** | −0.812 (0.000) *** | 2.8 × 10−6 (0.000) *** | 0.0001 (0.465) | - | |
0.130 (0.000) *** | 0.277 (0.000) *** | 0.128 (0.000) *** | 0.148 (0.000) *** | 4.925 (0.000) *** | |
0.816 (0.000) *** | 0.940 (0.000) *** | 0.816 (0.000) *** | 0.829 (0.000) *** | 0.721 (0.000) *** | |
- | −0.002 (0.931) | - | - | - | |
- | - | 0.004 (0.903) | - | - | |
- | - | - | −0.005 (0.943) | - | |
- | - | - | 1.247 (0.000) *** | - | |
- | - | - | - | 4.6 × 10−5 (0.001) *** | |
- | - | - | - | 0.985 (0.000) *** | |
- | - | - | - | 0.042 (0.034) ** | |
6.4 × 10−7 (0.115) | 0.009 (0.233) | 6.4 × 10−7 (0.116) | 1.4 × 10−5 (0.450) | 3.4 × 10−8 (0.226) | |
−6.5 × 10−8 (0.901) | 0.002 (0.790) | −6.6 × 10−8 (0.903) | 6.9 × 10−8 (0.996) | 0.721 (0.000) *** | |
t-dist DoF | 4.977 (0.000) *** | 5.036 (0.000) *** | 4.971 (0.000) *** | 4.995 (0.000) *** | 4.925 (0.000) *** |
Log L | 7544.519 | 7547.885 | 7544.527 | 7547.069 | 7548.756 |
Q (15) | 18.804 (0.065) * | 18.047 (0.080) * | 18.754 (0.066) * | 19.298 (0.056) * | 17.915 (0.084) * |
Q2 (15) | 12.566 (0.323) | 20.538 (0.038) ** | 12.418 (0.333) | 24.474 (0.011) ** | 11.703 (0.386) |
Estimated Values/Diagnostics | GARCH | E-GARCH | T-GARCH | P-ARCH | C-GARCH |
---|---|---|---|---|---|
0.0004 (0.061) * | 0.0004 (0.086) * | 0.0004 (0.119) | 0.0004 (0.116) | 0.0004 (0.052) * | |
−0.0016 (0.079) * | −0.0013 (0.147) | −0.0015 (0.098) * | −0.001 (0.107) | −0.001 (0.132) | |
−0.001 (0.085) * | −0.001 (0.059) * | −0.001 (0.068) * | −0.001 (0.068) * | −0.001 (0.115) | |
−0.001 (0.372) | −0.001 (0.189) | −0.001 (0.290) | −0.001 (0.266) | −0.001 (0.328) | |
0.001 (0.001) *** | 0.001 (0.001) *** | 0.001 (0.001) *** | 0.001 (0.001) *** | 0.001 (0.002) *** | |
−0.001 (0.030) ** | −0.001 (0.064) * | −0.001 (0.040) ** | −0.001 (0.045) ** | −0.001 (0.045) ** | |
4.1 × 10−6 (0.000) *** | −0.652 (0.000) *** | 4.3 × 10−6 (0.000) *** | 1.4 × 10−5 (0.554) | - | |
0.127 (0.000) *** | 0.250 (0.000) *** | 0.085 (0.001) *** | 0.130 (0.000) *** | 4.914 (0.000) *** | |
0.829 (0.000) *** | 0.951 (0.000) *** | 0.824 (0.000) *** | 0.830 (0.000) *** | 0.798 (0.000) *** | |
- | −0.055 (0.003) *** | - | - | - | |
- | - | 0.085 (0.005) *** | - | - | |
- | - | - | 0.193 (0.012) ** | - | |
- | - | - | 1.745 (0.000)*** | - | |
- | - | - | - | 1 × 10−5 (0.822) | |
- | - | - | - | 0.997 (0.000) *** | |
- | - | - | - | 2.5 × 10−7 (0.361) | |
4.2 × 10−7 (0.394) | 0.006 (0.350) | 5.4 × 10−7 (0.292) | 1.6 × 10−6 (0.574) | −1.6 × 10−7 (0.628) | |
−7 × 10−7 (0.218) | −0.013 (0.137) | −8.4 × 10−7 (0.149) | −2.6 × 10−6 (0.545) | 0.798 (0.000) *** | |
t-dist DoF | 5.058 (0.000) *** | 5.115 (0.000) *** | 5.225 (0.000) *** | 5.233 (0.000) *** | 4.914 (0.000) *** |
Log L | 7024.627 | 7022.775 | 7028.692 | 7029.027 | 7033.081 |
Q (15) | 20.158 (0.166) | 19.609 (0.187) | 20.017 (0.171) | 19.814 (0.179) | 18.561 (0.234) |
Q2 (15) | 19.948 (0.174) | 21.394 (0.125) | 21.479 (0.122) | 21.577 (0.119) | 15.425 (0.421) |
Estimated Values/Diagnostics | GARCH | E-GARCH | T-GARCH | P-ARCH | C-GARCH |
---|---|---|---|---|---|
−2.5 × 10−5 (0.833) | −4.4 × 10−5 (0.971) | −1.5 × 10−5 (0.971) | −1.7 × 10−5 (0.820) | −1.5 × 10−5 (0.903) | |
0.001 (0.132) | 0.001 (0.097) * | 0.001 (0.229) | 0.001 (0.016) ** | 0.001 (0.129) | |
−0.0003 (0.155) | −0.0003 (0.199) | −0.0004 (0.093) * | −0.0001 (0.396) | −0.0003 (0.140) | |
0.001 (0.083) * | 0.001 (0.153) | 0.001 (0.098) * | 0.0004 (0.158) | 0.001 (0.093) * | |
−0.0002 (0.105) | −0.0002 (0.079) * | −0.0002 (0.119) | −0.0003 (0.028) ** | −0.0002 (0.092) * | |
4.4 × 10−6 (0.984) | 6.7 × 10−5 (0.749) | −7.5 × 10−6 (0.975) | 0.0001 (0.425) | 7.9 × 10−6 (0.971) | |
5.7 × 10−6 (0.467) | −0.208 (0.000) *** | 4.6 × 10−7 (0.012) ** | 0.003 (0.168) | - | |
0.232 (0.436) | 0.214 (0.003) *** | 0.041 (0.000) *** | 0.069 (0.001) *** | 2.339 (0.000) *** | |
0.953 (0.000) *** | 0.984 (0.000) *** | 0.957 (0.000) *** | 0.950 (0.000) *** | −0.502 (0.018) ** | |
- | 0.051 (0.095) * | - | - | - | |
- | - | −0.030 (0.005) *** | - | - | |
- | - | - | −0.130 (0.000) *** | - | |
- | - | - | 0.419 (0.001) *** | - | |
- | - | - | - | 0.018 (0.369) | |
- | - | - | - | 0.9999 (0.000) *** | |
- | - | - | - | 0.110 (0.011) ** | |
2.7 × 10−6 (0.489) | 0.005 (0.154) | 1.1 × 10−7 (0.325) | 0.0001 (0.421) | −2.6 × 10−8 (0.937) | |
−9.4 × 10−7 (0.645) | −0.0002 (0.970) | 9.5 × 10−8 (0.525) | 4.8 × 10−5 (0.784) | −0.502 (0.018) ** | |
t-dist DoF | 2.054 (0.000) *** | 2.116 (0.000) *** | 1.699 (0.000) *** | 2.095 (0.000) *** | 2.339 (0.000) *** |
Log L | 7913.856 | 7933.976 | 7889.419 | 7945.727 | 7913.247 |
Q (15) | 10.948 (0.756) | 9.891 (0.827) | 11.807 (0.694) | 10.514 (0.786) | 12.312 (0.655) |
Q2 (15) | 19.845 (0.178) | 22.380 (0.098) * | 23.514 (0.074) * | 35.124 (0.002) *** | 19.057 (0.211) |
Estimated Values/Diagnostics | GARCH | E-GARCH | T-GARCH | P-ARCH | C-GARCH |
---|---|---|---|---|---|
0.0004 (0.278) | 5.4 × 10−5 (0.867) | 0.0001 (0.734) | 7.8 × 10−5 (0.808) | 0.0003 (0.292) | |
0.001 (0.539) | 0.001 (0.338) | 0.001 (0.383) | 0.001 (0.370) | 0.001 (0.530) | |
−2.4 × 10−5 (0.968) | 4.6 × 10−5 (0.937) | 2.7 × 10−5 (0.964) | 3.3 × 10−5 (0.957) | −3.7 × 10−5 (0.951) | |
0.001 (0.354) | 0.001 (0.265) | 0.001 (0.335) | 0.001 (0.321) | 0.001 (0.368) | |
0.0001 (0.715) | 7.5 × 10−5 (0.827) | 0.0001 (0.715) | 9.8 × 10−5 (0.780) | 0.0001 (0.719) | |
−0.005 (0.362) | −0.0004 (0.359) | −0.0005 (0.333) | −0.0005 (0.360) | −0.0005 (0.368) | |
2.5 × 10−6 (0.012) ** | −0.234 (0.000) *** | 2.4 × 10−6 (0.004) *** | 4.5 × 10−5 (0.466) | - | |
0.061 (0.000) *** | 0.095 (0.000) *** | 0.006 (0.563) | 0.046 (0.002) *** | 7.838 (0.000) *** | |
0.922 (0.000) *** | 0.982 (0.000) *** | 0.931 (0.000) *** | 0.941 (0.000) *** | −0.828 (0.019) ** | |
- | −0.080 (0.000) *** | - | - | - | |
- | - | 0.092 (0.000) *** | - | - | |
- | - | - | 0.800 (0.003) *** | - | |
- | - | - | 1.328 (0.000) *** | - | |
- | - | - | - | 0.0001 (0.000) *** | |
- | - | - | - | 0.983 (0.000) *** | |
- | - | - | - | 0.058 (0.000) *** | |
5.6 × 10−7 (0.155) | 0.006 (0.031) ** | 4.5 × 10−7 (0.208) | 8.1 × 10−6 (0.457) | −8 × 10−7 (0.085) * | |
−8.1 × 10−7 (0.085) * | −0.009 (0.026) ** | −6.8 × 10−7 (0.115) | −1.1 × 10−5 (0.441) | −0.828 (0.019) ** | |
t-dist DoF | 7.785 (0.000) *** | 8.625 (0.000) *** | 8.674 (0.000) *** | 8.748 (0.000) *** | 7.838 (0.000) *** |
Log L | 6315.697 | 6333.369 | 6331.414 | 6334.121 | 6316.054 |
Q (15) | 11.031 (0.750) | 11.026 (0.751) | 10.445 (0.791) | 11.131 (0.743) | 10.873 (0.762) |
Q2 (15) | 16.997 (0.319) | 31.867 (0.007) *** | 24.407 (0.059) * | 30.512 (0.010) ** | 15.196 (0.437) |
Estimated Values/Diagnostics | GARCH | E-GARCH | T-GARCH | P-ARCH | C-GARCH |
---|---|---|---|---|---|
0.0004 (0.026) ** | 0.0003 (0.093) * | 0.0003 (0.050) * | 0.0003 (0.042) ** | 0.0004 (0.030) ** | |
0.0003 (0.699) | 6.6 × 10−5 (0.918) | 0.0002 (0.817) | 0.0002 (0.786) | 0.0004 (0.568) | |
−0.002 (0.000) *** | −0.002 (0.000) *** | −0.002 (0.000) *** | −0.002 (0.000) *** | −0.002 (0.000) *** | |
0.0003 (0.595) | 0.0003 (0.649) | 0.0004 (0.507) | 0.0003 (0.549) | 0.0003 (0.573) | |
0.0002 (0.214) | 0.0002 (0.185) | 0.0002 (0.176) | 0.0003 (0.142) | 0.0002 (0.189) | |
−0.0004 (0.114) | −0.0004 (0.119) | −0.0005 (0.082) * | −0.0004 (0.086) * | −0.0005 (0.101) | |
−0.744 (0.000) *** | 0.915 (0.000) *** | −0.736 (0.000) *** | −0.748 (0.000) *** | −0.764 (0.000) *** | |
0.780 (0.000) *** | −0.897 (0.000) *** | 0.774 (0.000) *** | 0.782 (0.000) *** | 0.797 (0.000) *** | |
1.6 × 10−6 (0.000) *** | −0.477 (0.000) *** | 1.3 × 10−6 (0.000) *** | 0.0001 (0.491) | - | |
0.099 (0.000) *** | 0.177 (0.000) *** | 0.053 (0.001) *** | 0.099 (0.000) *** | 5.750 (0.000) *** | |
0.860 (0.000) *** | 0.967 (0.000) *** | 0.882 (0.000) *** | 0.887 (0.000) *** | 0.810 (0.000) *** | |
- | −0.040 (0.011) ** | - | - | - | |
- | - | 0.058 (0.008) *** | - | - | |
- | - | - | 0.203 (0.020) ** | - | |
- | - | - | 1.137 (0.000) *** | - | |
- | - | - | - | 1.1 × 10−5 (0.693) | |
- | - | - | - | 0.998 (0.000) *** | |
- | - | - | - | −0.001 (0.762) | |
8.7 × 10−8 (0.645) | 0.003 (0.522) | 1.2 × 10−7 (0.461) | 6.2 × 10−6 (0.593) | 3.4 × 10−8 (0787) | |
−9 × 10−8 (0.706) | −0.002 (0.767) | −1.2 × 10−7 (0.584) | −5.4 × 10−6 (0.675) | 0.810 (0.000) *** | |
t-dist DoF | 5.768 (0.000) *** | 5.922 (0.000) *** | 5.885 (0.000) *** | 5.911 (0.000) *** | 5.750 (0.000) *** |
Log L | 7680.070 | 7685.541 | 7683.260 | 7687.072 | 7690.087 |
Q (15) | 20.933 (0.074) * | 18.059 (0.155) | 23.007 (0.042) ** | 24.251 (0.029) ** | 26.644 (0.026) ** |
Q2 (15) | 4.714 (0.981) | 3.296 (0.997) | 3.565 (0.995) | 3.174 (0.997) | 4.210 (0.989) |
Estimated Values/Diagnostics | GARCH | E-GARCH | T-GARCH | P-ARCH | C-GARCH |
---|---|---|---|---|---|
7.3 × 10−5 (0.754) | −1.5 × 10−5 (0.949) | 2.4 × 10−5 (0.919) | 2 × 10−5 (0.932) | 8.2 × 10−5 (0.726) | |
−0.0004 (0.631) | −0.0004 (0.622) | −0.0004 (0.623) | −0.0004 (0.619) | −0.0004 (0.635) | |
−0.001 (0.008) *** | −0.001 (0.009) *** | −0.001 (0.008) *** | −0.001 (0.008) *** | −0.001 (0.007) *** | |
0.001 (0.416) | 0.001 (0.489) | 0.001 (0.437) | 0.001 (0.443) | 0.001 (0.397) | |
0.0004 (0.097) * | 0.0004 (0.095) * | 0.0004 (0.089) * | 0.0004 (0.089) * | 0.0004 (0.104) | |
−0.001 (0.143) | −0.001 (0.147) | −0.001 (0.146) | −0.001 (0.147) | −0.001 (0.123) | |
0.047 (0.038) ** | 0.043 (0.049) ** | 0.047 (0.041) ** | 0.046 (0.044) ** | 0.056 (0.017) ** | |
6.5 × 10−6 (0.000) *** | −0.879 (0.000) *** | 6.3 × 10−5 (0.000) *** | 1.4 × 10−5 (0.647) | - | |
0.144 (0.000) *** | 0.250 (0.000) *** | 0.115 (0.000) *** | 0.140 (0.000) *** | 5.846 (0.000) *** | |
0.775 (0.000) *** | 0.928 (0.000) *** | 0.781 (0.000) *** | 0.791 (0.000) *** | 0.622 (0.000) *** | |
- | −0.032 (0.120) | - | - | - | |
- | - | 0.050 (0.165) | - | - | |
- | - | - | 0.094 (0.180) | - | |
- | - | - | 1.830 (0.000) *** | - | |
- | - | - | - | 6.6 × 10−5 (0.009) *** | |
- | - | - | - | 0.995 (0.000) *** | |
- | - | - | - | 0.144 (0.000) *** | |
2.2 × 10−7 (0.693) | −0.003 (0.718) | −1.4 × 10−7 (0.807) | −3.2 × 10−7 (0.815) | 7.3 × 10−9 (0.972) | |
6.2 × 10−7 (0.392) | 0.007 (0.461) | 5.3 × 10−7 (0.457) | 1.1 × 10−6 (0.672) | 0.622 (0.000) *** | |
t-dist DoF | 5.408 (0.000) *** | 5.388 (0.000) *** | 5.411 (0.000) *** | 5.420 (0.000) *** | 5.846 (0.000) *** |
Log L | 7004.063 | 7002.518 | 7005.083 | 7005.176 | 7013.630 |
Q (15) | 11.017 (0.685) | 11.336 (0.659) | 11.302 (0.662) | 11.370 (0.657) | 9.909 (0.769) |
Q2 (15) | 10.250 (0.744) | 10.419 (0.731) | 10.267 (0.742) | 10.319 (0.739) | 7.604 (0.909) |
Estimated Values/Diagnostics | GARCH | E-GARCH | T-GARCH | P-ARCH | C-GARCH |
---|---|---|---|---|---|
0.001 (0.021) ** | 0.0005 (0.113) | 0.0005 (0.095) * | 0.0005 (0.112) | 0.001 (0.024) ** | |
−0.002 (0.050) * | −0.001 (0.245) | −0.001 (0.207) | −0.001 (0.274) | −0.002 (0.052) * | |
−0.001 (0.162) | −0.001 (0.077) * | −0.001 (0.133) | −0.001 (0.095) * | −0.001 (0.172) | |
−2.6 × 10−5 (0.979) | 0.0004 (0.684) | 0.0004 (0.676) | 0.0004 (0.659) | −2.2 × 10−5 (0.982) | |
0.0003 (0.341) | 0.0002 (0.560) | 0.0002 (0.509) | 0.0001 (0.631) | 0.0003 (0.367) | |
−0.0003 (0.550) | −0.0003 (0.488) | −0.0004 (0.415) | −0.0003 (0.497) | −0.0003 (0.557) | |
4.6 × 10−6 (0.002) *** | −0.518 (0.000) *** | 5.9 × 10−6 (0.000) *** | 0.0002 (0.469) | - | |
0.080 (0.000) *** | 0.153 (0.000) *** | 0.009 (0.581) | 0.077 (0.000) *** | 7.062 (0.000) *** | |
0.884 (0.000) *** | 0.956 (0.000) *** | 0.877 (0.000) *** | 0.886 (0.000) *** | 0.438 (0.243) | |
- | −0.094 (0.000) *** | - | - | - | |
- | - | 0.133 (0.000) *** | - | - | |
- | - | - | 0.669 (0.000) *** | - | |
- | - | - | 1.270 (0.000) *** | - | |
- | - | - | - | 0.0001 (0.000) *** | |
- | - | - | - | 0.978 (0.000) *** | |
- | - | - | - | 0.056 (0.000) *** | |
−5 × 10−8 (0.905) | −0.002 (0.646) | −2.6 × 10−8 (0.953) | −9.8 × 10−7 (0.899) | 3.7 × 10−7 (0.435) | |
3.3 × 10−7 (0.581) | 0.0003 (0.546) | 5.4 × 10−7 (0.393) | 5.9 × 10−6 (0.624) | 0.438 (0.243) | |
t-dist DoF | 6.999 (0.000) | 7.310 (0.000) *** | 7.277 (0.000) *** | 7.395 (0.000) *** | 7.062 (0.000) *** |
Log L | 6456.816 | 6469.887 | 6471.077 | 6473.404 | 6458.436 |
Q (15) | 20.222 (0.164) | 20.033 (0.171) | 20.811 (0.143) | 20.145 (0.166) | 20.347 (0.159) |
Q2 (15) | 7.584 (0.939) | 9.510 (0.849) | 8.668 (0.894) | 9.506 (0.850) | 5.071 (0.992) |
Estimated Values/Diagnostics | GARCH | E-GARCH | T-GARCH | P-ARCH | C-GARCH |
---|---|---|---|---|---|
−8.7 × 10−5 (0.774) | −8.2 × 10−5 (0.757) | −3.1 × 10−5 (0.900) | 0.0002 (0.200) | −3.4 × 10−5 (0.898) | |
−0.001 (0.262) | −0.002 (0.069) * | −0.001 (0.141) | −0.001 (0.304) | −0.001 (0.107) | |
3.4 × 10−5 (0.958) | −2.6 × 10−5 (0.969) | 4.8 × 10−5 (0.942) | 0.0002 (0.543) | −0.0002 (0.861) | |
0.001 (0.481) | 0.001 (0.279) | 0.0004 (0.535) | 5.4 × 10−5 (0.928) | 0.001 (0.289) | |
0.0005 (0.062) ** | 0.001 (0.005) *** | 0.0004 (0.057) * | 0.0001 (0.469) | 0.001 (0.014) ** | |
−0.001 (0.119) | −0.001 (0.018) ** | −0.001 (0.138) | −0.0001 (0.627) | −0.001 (0.035) ** | |
- | 0.662 (0.000) *** | 0.650 (0.000) *** | 0.840 (0.000) *** | 0.641 (0.000) *** | |
- | 0.107 (0.002) *** | 0.113 (0.000) *** | - | 0.112 (0.002) *** | |
−0.203 (0.000) *** | −0.847 (0.000) *** | −0.854 (0.000) *** | −0.954 (0.000) *** | −0.842 (0.000) *** | |
- | - | - | 0.078 (0.001) *** | - | |
4.6 × 10−6 (0.000) *** | −4.170 (0.000) *** | 2.9 × 10−6 (0.000) *** | 0.007 (0.306) | - | |
0.025 (0.000) *** | 0.170 (0.000) *** | 0.037 (0.000) *** | 0.209 (0.052) * | −0.791 (0.065) * | |
0.937 (0.000) *** | 0.549 (0.000) *** | 0.954 (0.000) *** | 0.836 (0.000) *** | 0.744 (0.103) | |
- | −0.041 (0.046) ** | - | - | - | |
- | - | −0.024 (0.000) *** | - | - | |
- | - | - | 0.111 (0.498) | - | |
- | - | - | 0.703 (0.001) *** | - | |
- | - | - | - | 0.0001 (0.000) *** | |
- | - | - | - | 0.093 (0.097) * | |
- | - | - | - | 0.826 (0.053) * | |
8.1 × 10−7 (0.000) *** | −0.009 (0.316) | 5 × 10−7 (0.000) *** | 0.0002 (0.450) | −1.7 × 10−6 (0.490) | |
−1.7 × 10−6 (0.000) *** | −0.037 (0.007) *** | −1.2 × 10−6 (0.000) *** | 6.8 × 10−5 (0.818) | 0.744 (0.103) | |
t-dist DoF | 2 (0.000) *** | 2.061 (0.000) *** | 2 (0.000) *** | 2.080 (0.000) *** | 2.141 (0.000) *** |
Log L | 6185.770 | 6169.446 | 6187.473 | 6499.096 | 6181.706 |
Q (15) | 22.417 (0.070) * | 18.579 (0.099) * | 16.023 (0.190) | 25.377 (0.013) ** | 18.828 (0.093) * |
Q2 (15) | 26.511 (0.022) ** | 36.195 (0.000) *** | 38.881 (0.000) *** | 26.704 (0.009) *** | 53.566 (0.000) *** |
Estimated Values/Diagnostics | GARCH | E-GARCH | T-GARCH | P-ARCH | C-GARCH |
---|---|---|---|---|---|
0.0003 (0.358) | 0.0002 (0.503) | 0.0002 (0.468) | 0.0002 (0.461) | 0.0002 (0.368) | |
1.4 × 10−6 (0.988) | 2.1 × 10−5 (0.981) | 4.3 × 10−5 (0.964) | 5.6 × 10−5 (0.953) | 1.6 × 10−5 (0.987) | |
−0.001 (0.009) *** | −0.001 (0.012) ** | −0.001 (0.009) *** | −0.001 (0.009) *** | −0.001 (0.009) *** | |
−0.001 (0.118) | −0.001 (0.128) | −0.001 (0.121) | −0.001 (0.122) | −0.001 (0.128) | |
0.001 (0.021) ** | 0.001 (0.013) ** | 0.001 (0.022) ** | 0.001 (0.024) ** | 0.001 (0.020) ** | |
−0.0003 (0.469) | −0.0004 (0.359) | −0.0003 (0.478) | −0.0003 (0.488) | −0.0003 (0.451) | |
0.986 (0.000) *** | 0.984 (0.000) *** | 0.986 (0.000) *** | 0.986 (0.000) *** | 0.986 (0.000) *** | |
−0.974 (0.000) *** | −0.972 (0.000) *** | −0.974 (0.000) *** | −0.974 (0.000) *** | −0.974 (0.000) *** | |
8.4 × 10−6 (0.000) *** | −1.686 (0.000) *** | 8.6 × 10−6 (0.000) *** | 3.6 × 10−6 (0.659) | - | |
0.222 (0.000) *** | 0.384 (0.000) *** | 0.198 (0.000) *** | 0.220 (0.000) *** | 4.993 (0.000) *** | |
0.645 (0.011) ** | 0.858 (0.000) *** | 0.636 (0.000) *** | 0.624 (0.000) *** | 0.447 (0.777) | |
- | −0.022 (0.423) | - | - | - | |
- | - | 0.053 (0.325) | - | - | |
- | - | - | 0.057 (0.331) | - | |
- | - | - | 2.182 (0.000) *** | - | |
- | - | - | - | 6.3 × 10−5 (0.000) *** | |
- | - | - | - | 0.875 (0.000) *** | |
- | - | - | - | 0.206 (0.013) ** | |
3 × 10−6 (0.011) ** | 0.038 (0.008) *** | 3.2 × 10−6 (0.008) *** | 1.5 × 10−6 (0.625) | −3.3 × 10−6 (0.013) ** | |
−3.5 × 10−6 (0.006) *** | −0.040 (0.019) ** | −3.7 × 10−6 (0.005) *** | −1.7 × 10−6 (0.625) | 0.447 (0.777) | |
t-dist DoF | 5 (0.000) *** | 4.806 (0.000) *** | 5.024 (0.000) *** | 5.037 (0.000) *** | 4.993 (0.000) *** |
Log L | 7234.218 | 7229.291 | 7234.696 | 7234.782 | 7234.308 |
Q (15) | 16.737 (0.212) | 15.756 (0.263) | 11.648 (0.474) | 17.110 (0.194) | 16.520 (0.222) |
Q2 (15) | 9.869 (0.705) | 8.628 (0.800) | 9.435 (0.739) | 9.682 (0.720) | 10.480 (0.654) |
Estimated Values/Diagnostics | GARCH | E-GARCH | T-GARCH | P-ARCH | C-GARCH |
---|---|---|---|---|---|
−0.0002 (0.383) | −0.0003 (0.109) | −0.0002 (0.232) | −0.0003 (0.135) | −5.2 × 10−6 (0.842) | |
−0.0002 (0.707) | −0.0003 (0.657) | −0.0003 (0.676) | 0.0002 (0.807) | −0.0003 (0.710) | |
0.0002 (0.533) | 0.0002 (0.456) | 0.0002 (0.553) | 0.0002 (0.429) | 0.0003 (0.269) | |
0.001 (0.088) * | 0.001 (0.067) * | 0.001 (0.073) * | 0.001 (0.079) * | 0.001 (0.535) | |
0.0004 (0.016) ** | 0.0004 (0.009) *** | 0.0004 (0.010) ** | 0.0003 (0.026) ** | 0.0003 (0.077) * | |
−0.001 (0.032) ** | −0.001 (0.029) ** | −0.001 (0.027) ** | −0.0004 (0.052) * | −0.0004 (0.297) | |
0.231 (0.000) *** | 0.209 (0.000) *** | 0.222 (0.000) *** | 0.211 (0.000) *** | 0.252 (0.000) *** | |
1.5 × 10−6 (0.011) ** | −0.288 (0.000) *** | 1.4 × 10−6 (0.011) ** | 0.0001 (0.144) | - | |
0.381 (0.000) *** | 0.225 (0.000) *** | 0.248 (0.000) *** | 0.209 (0.000) *** | 18.703 (0.000) *** | |
0.787 (0.000) *** | 0.983 (0.000) *** | 0.804 (0.000) *** | 0.856 (0.000) *** | 0.187 (0.074) * | |
- | −0.101 (0.000) *** | - | - | - | |
- | - | 0.199 (0.008) *** | - | - | |
- | - | - | 0.135 (0.052) * | - | |
- | - | - | 0.753 (0.000) *** | - | |
- | - | - | - | 0.002 (0.000) *** | |
- | - | - | - | 0.9997 (0.000) *** | |
- | - | - | - | 0.153 (0.000) *** | |
−1.3 × 10−7 (0.653) | 0.003 (0.492) | −8.1 × 10−8 (0.753) | 2.4 × 10−7 (0.997) | −1.7 × 10−7 (0.032) ** | |
−1.8 × 10−7 (0.454) | −0.006 (0.226) | −1.8 × 10−7 (0.447) | −4.3 × 10−5 (0.553) | 0.188 (0.074) * | |
t-dist DoF | 2.784 (0.000) *** | 2.790 (0.000) *** | 2.775 (0.000) *** | 2.843 (0.000) *** | 18.703 (0.000) *** |
Log L | 6570.055 | 6614.415 | 6617.720 | 6641.325 | 6469.517 |
Q (15) | 8.832 (0.842) | 11.799 (0.622) | 8.056 (0.886) | 8.587 (0.857) | 8.857 (0.840) |
Q2 (15) | 0.032 (1.000) | 0.033 (1.000) | 0.029 (1.000) | 0.030 (1.000) | 0.035 (1.000) |
Estimated Values/Diagnostics | GARCH | E-GARCH | T-GARCH | P-ARCH | C-GARCH |
---|---|---|---|---|---|
0.0003 (0.291) | 0.0001 (0.681) | 0.0001 (0.677) | 9.8 × 10−5 (0.704) | 0.0003 (0.289) | |
0.0002 (0.876) | 0.0001 (0.915) | 4.1 × 10−5 (0.967) | 2.7 × 10−5 (0.978) | 0.0002 (0.874) | |
0.001 (0.073) * | 0.001 (0.043) ** | 0.001 (0.076) * | 0.001 (0.064) * | 0.001 (0.074) * | |
−0.001 (0.535) | −0.001 (0.265) | −0.001 (0.401) | −0.001 (0.344) | −0.001 (0.541) | |
4.4 × 10−5 (0.850) | 7.2 × 10−5 (0.745) | 0.0001 (0.655) | 9.4 × 10−5 (0.674) | 4.1 × 10−5 (0.860) | |
8.6 × 10−5 (0.804) | 0.0002 (0.627) | 8.9 × 10−5 (0.789) | 0.0001 (0.736) | 8.8 × 10−5 (0.800) | |
2.9 × 10−6 (0.003) *** | −0.444 (0.000) *** | 4.6 × 10−6 (0.000) *** | 3.2 × 10−5 (0.508) | - | |
0.064 (0.000) *** | 0.129 (0.000) *** | 0.005 (0.737) | 0.054 (0.020) ** | 6.197 (0.000) *** | |
0.904 (0.000) *** | 0.963 (0.000) *** | 0.884 (0.000) *** | 0.894 (0.000) *** | −0.932 (0.000) *** | |
- | −0.082 (0.000) *** | - | - | - | |
- | - | 0.112 (0.000) *** | - | - | |
- | - | - | 0.711 (0.036) ** | - | |
- | - | - | 1.570 (0.000) *** | - | |
- | - | - | - | 9.1 × 10−5 (0.000) *** | |
- | - | - | - | 0.968 (0.000) *** | |
- | - | - | - | 0.063 (0.000) *** | |
2.6 × 10−9 (0.991) | −0.001 (0.850) | 3.2 × 10−8 (0.907) | 7.2 × 10−8 (0.964) | 7.5 × 10−9 (0.981) | |
2.4 × 10−9 (0.993) | 0.0004 (0.929) | −7.7 × 10−8 (0.830) | −3.6 × 10−7 (0.870) | 0.006 (0.630) | |
t-dist DoF | 6.143 (0.000) *** | 6.498 (0.000) *** | 6.467 (0.000) *** | 6.540 (0.000) *** | 6.197 (0.000) *** |
Log L | 6804.856 | 6814.064 | 6817.210 | 6818.253 | 6805.062 |
Q (15) | 21.296 (0.128) | 21.729 (0.115) | 19.666 (0.185) | 20.401 (0.157) | 21.158 (0.098) * |
Q2 (15) | 9.405 (0.855) | 9.701 (0.838) | 8.918 (0.882) | 9.166 (0.869) | 8.362 (0.908) |
References
- Andries, Alin Marius, Iulian Ihnatov, and Nicu Sprincean. 2018. Do seasonal anomalies still exist in central and eastern European countries? A conditional variance approach. Romanina Journal of Economic Forecasting 20: 60–83. [Google Scholar]
- Anghel, Dan Gabrel. 2015. Market Efficiency and Technical Analysis in Romania. International Journal of Financial Research 6: 164–77. [Google Scholar] [CrossRef]
- Barbić, Tatjana. 2010. Testiranje slabog oblika hipoteze efikasnog tržišta na hrvatskom tržištu dionica [Testing the weak form of Efficient Market Hypothesis on Croatian stock market]. Zbornik Ekonomskog Fakulteta u Zagrebu (Proceedings of Faculty of Economics and Business Zagreb) 8: 155–72. [Google Scholar]
- Cao, Melanie, and Jason Wei. 2005. Stock market returns: A note on temperature anomaly. Journal of Banking & Finance 29: 1559–73. [Google Scholar]
- Dolvin, Steven, and Stephanie Fernbaher. 2014. Seasonal Affective Disorder and IPO underpricing: Implications for young firms. An International Journal of Entrepreneurial Finance 16: 51–68. [Google Scholar] [CrossRef]
- Dolvin, Steven, and Mark Pyles. 2007. Seasonal Affective Disorder and the Pricing of IPOs. Review of Accounting and Finance 6: 214–28. [Google Scholar] [CrossRef]
- Dolvin, Steven, Mark Pyles, and Qun Wu. 2009. Analysts get sad too: The effect of seasonal affective disorder on stock analysts’ earnings estimates. The Journal of Behavioral Finance 10: 214–25. [Google Scholar] [CrossRef]
- Dowling, Michael, and Brian Lucey. 2008. Robust global mood influences in equity pricing. Journal of Multinational Financial Management 18: 145–64. [Google Scholar] [CrossRef]
- Dumitriu, Ramona, and Razvan Stefanescu. 2018. The Winter Effect on Bucharest Stock Exchange. Paper presented at the XI International & Interdisciplinary Scientific Conference, Vanguard Scientific Instruments in Management 2018, Ravda, Bulgaria, September 11–16. [Google Scholar]
- Engle, Robert, and Victor Ng. 1993. Measuring and Testing the Impact of News on Volatility. Journal of Finance 48: 1749–78. [Google Scholar] [CrossRef]
- Fama, Eugene. 1965. The Behavior of Stock-Market Prices. Journal of Business 38: 34–105. [Google Scholar] [CrossRef]
- Fama, Eugene. 1970. Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance 25: 383–417. [Google Scholar] [CrossRef]
- Ferreira, Paulo. 2018. Long-range dependencies of Eastern European stock markets: A dynamic detrended analysis. Physica A 505: 454–70. [Google Scholar] [CrossRef]
- Filip, Angela, Miruna Pochea, and Andreea Pece. 2015. The herding behaviour of investors in the CEE stocks markets. Procedia Economics and Finance 32: 307–15. [Google Scholar] [CrossRef]
- Francq, Christian, and Jean-Michel Zakoian. 2010. GARCH Models—Structure, Statistical Inference and Financial Applications. Chichester: John Wiley & Sons. [Google Scholar]
- Gajdka, Jerzy, and Piotr Pietraszewski. 2017. Stock price volatility and fundamental value: Evidence from Central and Eastern European countries. Economics and Business Review 3: 28–46. [Google Scholar] [CrossRef]
- Hasanov, Mübariz, and Tolga Omay. 2007. Are the Transition Stock Markets Efficient? Evidence from Non-Linear Unit Root Tests. Central Bank Review 7: 1–12. [Google Scholar]
- Hassan, Kabir, Mahfuzul Haque, and Shari Lawerence. 2006. An Empirical Analysis of Emerging Stock Markets of Europe. Quarterly Journal of Business and Economics 45: 31–52. [Google Scholar]
- Heininen, Polina, and Vesa Puttonen. 2008. Stock Market Efficiency in the Transition Economies through the Lens of Calendar Anomalies. Paper presented at the 10th Biannual EACES Conference, Moscow, Russia, August 28–30. [Google Scholar]
- Hirshleifer, David, and Tyler Shumway. 2003. Good day sunshine: Stock returns and the weather. The Journal of Finance 58: 1009–32. [Google Scholar] [CrossRef]
- Kamstra, Mark, Lisa Kramer, and Maruce Levi. 2000. Losing sleep at the market: The daylight saving anomaly. American Economic Review 90: 1005–11. [Google Scholar] [CrossRef]
- Kamstra, Mark, Lisa Kramer, and Maruce Levi. 2002. Losing sleep at the market: The daylight saving anomaly: Reply. American Economic Review 92: 1257–63. [Google Scholar] [CrossRef]
- Kamstra, Mark, Lisa Kramer, and Maurice Levi. 2003. Winter Blues: A SAD Stock Market Cycle. American Economic Review 93: 324–43. [Google Scholar] [CrossRef]
- Kaplanski, Guy, and Haim Levy. 2017. Seasonality in Perceived Risk: A Sentiment Effect. Quarterly Journal of Finance 7: 1–21. [Google Scholar] [CrossRef]
- Karadzic, Vesna, and Julija Cerovic. 2014. Market risk of the western Balkans countries during the global financial crisis. Economic Annals XXI: 19–23. [Google Scholar]
- Keef, Stephen, Michael Keefe O’Connor, and Mohammed Khaled. 2015. Seasonal affective disorder and IPO underpricing: Updated evidence. Journal of Neuroscience, Psychology, and Economics 8: 78–99. [Google Scholar] [CrossRef]
- Kilon, Jaroslaw, and Pawel Jamroz. 2014. Informational (in)efficiency of the Polish Stock Exchange. Procedia Social and Behavioral Sciences 213: 390–96. [Google Scholar] [CrossRef]
- Kliger, Doron, and Ori Levy. 2008. Mood Impacts on Probability Weighting Functions: Large-Gamble Evidence. Journal of Socio-Economics 37: 1397–411. [Google Scholar] [CrossRef]
- Kliger, Doron, Gregory Gurevich, and Abraham Haim. 2012. When Chronobiology Met Economics: Seasonal Affective Disorder and the Demand for Initial Public Offerings. Journal of Neuroscience, Psychology, and Economics 5: 131–51. [Google Scholar] [CrossRef]
- Kršikapa-Rašajski, Jovana, and Siniša Ranov. 2016. Testing weak form efficiency on the capital markets in Serbia. Megatrend Revija Megatrend Review 13: 265–78. [Google Scholar] [CrossRef]
- Lu, Jing, and Robin Chou. 2012. Does the weather have impacts on returns and trading activities in order-driven stock markets? Evidence from China. Journal of Empirical Finance 19: 79–93. [Google Scholar] [CrossRef]
- Marinela, Rebedia C. Viorela. 2014. Complex Nonlinear Dynamics of Financial Time Series. An Empirical Analysis Using Chaos Theory. Master’s dissertation, The Academy of Economic Studies, Bucharest, Romania. [Google Scholar]
- Merton, Robert. 1973. An Intertemporal Capital Asset Pricing Model. Econometrica 41: 867–87. [Google Scholar] [CrossRef]
- Milošević Avdalović, Snežana, and Ivan Milenković. 2017. January Effect on Stock Returns: Evidence from emerging Balkan equity markets. Industrija 45: 7–21. [Google Scholar] [CrossRef]
- Murgea, Aurora. 2016. Seasonal affective disorder and the Romanian stock market. Economic Research 29: 177–92. [Google Scholar] [CrossRef]
- Mynhardt, Ronald Henry, and Alexey Plastun. 2014. The overreaction hypothesis: The case of Ukrainian stock market. Corporate Ownership and Control Volume 11: 406–22. [Google Scholar] [CrossRef]
- Necula, Ciprian, and Alina-Nicoleta Radu. 2012. Long memory in Eastern European financial markets returns. Economic Research 25: 361–78. [Google Scholar] [CrossRef]
- OECD. 2018. Classification of SEE Countries. Available online: http://www.oecd.org/south-east-europe/economies/ (accessed on 15 November 2018).
- Palinkas, Lawrence A., Houseal Matt, and Norman Rosenthal. 1996. Subsyndromal Seasonal Affective Disorder in Antarica. Journal of Nervous & Mental Disease 184: 530–34. [Google Scholar]
- Pece, Andreea Maria, Anuta Ludusan Emilia, and Mutu Simona. 2013. Testing the Long Range-Dependence for the Central Eastern European and the Balkans Stock Markets. Annals of Faculty of Economics, University of Oradea 1: 1113–24. [Google Scholar]
- Radovanov, Boris, and Aleksandra Marcikić. 2017. Bootstrap testing of trading strategies in emerging Balkan stock markets. E&M Economics and Management 20: 103–19. [Google Scholar]
- Rosenthal, Norman. 1998. Winter Blues: Seasonal Affective Disorder-What It Is and How to Overcome It. New York: The Guilford Press. [Google Scholar]
- Rosenthal, Norman. 2012. Winter Blues: Everything You Need to Know to Beat Seasonal Affective Disorder. New York: The Guilford Press. [Google Scholar]
- Rosenthal, Norman, David Sack, Christian Gillin, Alfred Lewy, Frederick Goodwin, Yolande Davenport, Peter Mueller, David Newsome, and Thomas Wehr. 1984. Seasonal affective disorder. A description of the syndrome and preliminary findings with light therapy. Archives of General Psychiatry 41: 72–80. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, Norman, Michael Genhart, Frederick Jacobsen, Robert Skwerer, and Thomas Wehr. 1987. Disturbances of appetite and weight regulation in seasonal affective disorder. Annals of the New York Academy of Sciences 499: 216–30. [Google Scholar] [CrossRef]
- Saunders, Edward. 1993. Stock prices and Wall Street weather. American Economic Review 83: 1337–45. [Google Scholar]
- Schwarz, Norbert, and Gerald Clore. 1983. Mood, misattribution, and judgements of well-being: Informative and directive functions of affective states. Journal of Personality and Social Psychology 45: 513–23. [Google Scholar] [CrossRef]
- Šego, Boško, and Tihana Škrinjarić. 2012. Modeliranje dnevne sezonalnosti prinosa na ZSE [Modelling daily seasonality in stock returns on ZSE]. In Matematički Modeli u Analizi Razvoja Hrvatskog Financijskog Tržišta [Mathematical Models in Analysis of the Development of the Croatian Financial Market]. Edited by Zdravka Aljinović and Branka Marasović. Split: University of Split, Faculty of Economics, pp. 159–72. [Google Scholar]
- Shleifer, Andrei. 1999. Inefficient Markets: An Introduction to Behavioral Finance. New York: Oxford University Press. [Google Scholar]
- Škrinjarić, Tihana. 2013. Investicijske strategije prilagođene dnevnoj sezonalnosti u prinosima dionica [Investment strategies tailored according to daily seasonality in stock returns]. Ekonomska Misao i Praksa (Economic Thought and Practice) XXII: 97–120. [Google Scholar]
- Škrinjarić, Tihana, Branka Marasović, and Boško Šego. 2018. Is Croatian stock market SAD? In Book of Abstracts 17th International Conference on Operational Research. Edited by Josip Arnerić and Anita Čeh Časni. Zadar: Croatian Operational Research Society, p. 107. [Google Scholar]
- Šonje, Velimir, Denis Alajbeg, and Zoran Bubaš. 2011. Efficient market hypothesis: Is the Croatian stock market as (in)efficient as the U.S. market. Financial Theory and Practice 35: 301–26. [Google Scholar] [CrossRef]
- Stefanescu, Razvan, and Ramona Dumitriu. 2011. The SAD Cycle for the Bucharest Stock Exchange. MPRA Paper No. 41889. Galati: University of Galati, September 9. [Google Scholar]
- Stoica, Ovidu, and Delia-Elena Diaconasu. 2011. An Examination of the Calendar Anomalies on Emerging Central and Eastern European Stock Markets. Paper presented at 3rd World Multiconference on Applied Economics, Business and Development, Recent Researches in Applied Economics, Iasi, Romania, July 1–3. [Google Scholar]
- Todea, Alexandru, and Adrian Zoicas-Ienciu. 2008. Episodic dependencies in Central and Eastern Europe stock markets. Applied Economics Letters 15: 1123–26. [Google Scholar] [CrossRef]
- Tokić, Saša, Berislav Bolfek, and Anita Radman Peša. 2018. Testing efficient market hypothesis in developing Eastern European countries. Investment Management and Financial Innovations 15: 281–91. [Google Scholar] [CrossRef]
- Tsay, Ruey. 2002. Analysis of Financial Time Series—Financial Econometrics. New York: John Wiley & Sons. [Google Scholar]
- White, Halbert. 1980. A heteroskedasticity-consistent covariance matrix estimator and direct test for heteroskedasticity. Econometrica 48: 285–316. [Google Scholar] [CrossRef]
- Wong, Alan, and Bernardo Carducci. 1991. Sensation Seeking and Financial Risk Taking in Everyday Money Matters. Journal of Business and Psychology 5: 525–30. [Google Scholar] [CrossRef]
- Xu, Cheng. 2016. Are UK Financial Markets SAD? A Behavioural Finance Analysis. Ph.D. thesis, University of Sheffield, Sheffield, UK. [Google Scholar]
- Zuckerman, Marvin. 1984. Sensation Seeking: A Comparative Approach to a Human Trait. Behavioral and Brain Sciences 7: 413–71. [Google Scholar] [CrossRef]
1 | |
2 | Generalized AutoRegressive Conditional Heteroskedasticity. |
3 | This additional redefinition is suggested by one reviewer and the results will be provided for the variable defined in (4) with the smoothing out of the two mentioned days. |
4 | AutoRegressive Moving Average. |
5 | The indices refer to the following countries: Serbia, Hungary, Bosnia and Herzegovina, Bulgaria, Croatia, Slovenia, Czech Republic, Slovakia, Romania, Ukraine and Poland respectively. |
6 | Since such markets exhibit behaviour which is not stable over time, maybe the regime switching methodology could be better to use in future work for more insightful information. |
7 | However, the results for CROBEX are somewhat in line with Karadzic and Cerovic (2014). The long memory and predictability of CROBEX, SOFIX, and SAX is confirmed in Pece et al. (2013). |
8 | Additional tests on residuals were performed to test for normality: Lilliefors, Cramer von Mises, Watson and Anderson-Darling and all of the tests rejected the null hypothesis for every series. Detailed results are available upon request. |
9 | One referee pointed out that the values of the ARMA parameters had great magnitude. That is why the following ARMA(p,q) models have been observed for the CROBEX return: AR(2), MA(2), ARMA(1,1), ARMA(2,2), ARMA(3,3), ARMA(2,1), and ARMA(1,2) in order to see if the values of parameters change significantly. The results (details are available upon request) indicated that when the values of parameters were smaller they were not significant at all. ARMA(1,1) model resulted with no problems of autocorrelation and heteroskedasticity of residuals and thus this model was left in the rest of the analysis with GARCH specifications. The following papers confirm that the Croatian stock market is not efficient in terms of the Efficient Market Hypothesis: Heininen and Puttonen (2008), Barbić (2010), Šego and Škrinjarić (2012). However, these inefficiencies were found to be not much exploitable (in (Škrinjarić 2013) and (Radovanov and Marcikić 2017)). |
10 | Moreover, the great values of ARMA parameters in all models have been double checked. Other literature is found which obtained similar parameters: Marinela (2014). Moreover, the long memory in Bulgarian returns is found to be rising over time, as found in Necula and Radu (2012). |
Descriptive Statistics | BELEX | BETI | BIRS | BUX | CROBEX | SBITOP | PX | SAX | SOFIX | PFTS | WIG |
---|---|---|---|---|---|---|---|---|---|---|---|
Mean return | 9.4 × 10−5 | 0.0002 | −0.0002 | 0.0003 | −7.5 × 10−6 | −2.2 × 10−5 | 0.0003 | 0.0002 | 0.0002 | −0.0001 | 0.0002 |
Max return | 0.0822 | 0.1056 | 0.0384 | 0.1067 | 0.0856 | 0.0372 | 0.0522 | 0.0911 | 0.0563 | 0.2443 | 0.0457 |
Min return | −0.0741 | −0.0876 | −0.0416 | −0.0698 | −0.0311 | −0.0605 | −0.0530 | −0.0932 | −0.0473 | −0.1137 | −0.0624 |
Standard deviation | 0.0078 | 0.0104 | 0.0069 | 0.0125 | 0.0066 | 0.0087 | 0.0115 | 0.0110 | 0.0081 | 0.0149 | 0.0098 |
Skewness | −0.0620 | 0.0503 | −0.2858 | 0.1022 | 0.8042 | −0.3894 | −0.0864 | −0.5064 | −0.1367 | 2.0834 | −0.6271 |
Kurtosis | 16.140 | 16.982 | 9.8781 | 7.7799 | 18.462 | 6.6837 | 4.8272 | 12.993 | 7.9053 | 47.169 | 7.3148 |
N | 2099 | 2083 | 2082 | 2064 | 2051 | 2049 | 2070 | 1981 | 2046 | 2018 | 2058 |
Estimated Values/Diagnostics | BELEX | BETI | BIRS | BUX | CROBEX | SBITOP | PX | SAX | SOFIX | PFTS | WIG |
---|---|---|---|---|---|---|---|---|---|---|---|
−0.0002 (0.365) | 0.0001 (0.705) | −1.8 × 10−5 (0.932) | −6.7 × 10−5 (0.863) | 1.2 × 10−5 (0.953) | −8.71 × 10−5 (0.767) | 0.0004 (0.218) | −4.2 × 10 (0.865) | 1.1 × 10−5 (0.961) | −0.001 (0.257) | −3.9 × 10−5 (0.903) | |
−0.0004 (0.714) | −0.0013 (0.237) | 0.001 (0.388) | 0.001 (0.293) | 0.001 (0.371) | 0.0001 (0.903) | −0.003 (0.041) ** | −0.001 (0.161) | 0.001 (0.574) | −0.002 (0.120) | 0.0002 (0.868) | |
−0.0011 (0.018) ** | −0.0015 (0.028) ** | −0.0012 (0.001) *** | 0.001 (0.486) | −0.002 (0.000) *** | −0.001 (0.005) *** | −0.001 (0.238) | −0.0002 (0.786) | −0.001 (0.095) * | 0.0003 (0.741) | 0.0005 (0.395) | |
0.0004 (0.565) | 0.0005 (0.644) | 0.001 (0.085) * | 0.002 (0.122) | 0.0004 (0.583) | 0.002 (0.060) * | 0.001 (0.647) | 0.001 (0.609) | −0.001 (0.323) | −0.002 (0.107) | 0.001 (0.342) | |
0.0007 (0.017) ** | 0.0012 (0.000) *** | −0.0002 (0.569) | 4.4 × 10−5 (0.903) | 0.001 (0.009) *** | 0.0002 (0.361) | 0.0003 (0.311) | 0.001 (0.035) ** | 0.001 (0.082) * | 0.001 (0.003) *** | 0.0002 (0.466) | |
−0.0004 (0.331) | −0.0014 (0.006) *** | −0.0003 (0.498) | −0.001 (0.246) | −0.001 (0.165) | −0.001 (0.101) | −0.0004 (0.462) | −0.001 (0.098) * | −0.001 (0.666) | −0.0002 (0.711) | −0.0005 (0.228) | |
0.1364 (0.049) ** | - | - | - | −0.680 (0.000) *** | 0.052 (0.101) * | - | 0.677 (0.000) *** | 0.112 (0.125) *** | 0.089 (0.544) | 0.070 (0.027) ** | |
- | - | - | - | - | - | - | 0.105 (0.002) *** | −0.864 (0.000) *** | - | −0.065 (0.023) ** | |
- | - | - | - | 0.743 (0.000) *** | - | - | −0.859 (0.000) *** | −0.080 (0.343) | 0.192 (0.162) | - | |
- | - | - | - | - | - | - | - | 0.825 (0.000) *** | - | - | |
Log L | 7219.236 | 6547.400 | 7400.540 | 6118.230 | 7414.094 | 6806.999 | 6305.740 | 6148.587 | 6942.737 | 5704.660 | 6596.616 |
Estimated Values/Diagnostics | BELEX | BETI | BIRS | BUX | CROBEX | SBITOP | PX | SAX | SOFIX | PFTS | WIG |
---|---|---|---|---|---|---|---|---|---|---|---|
0.0001 (0.569) | 0.0004 (0.116) | −4.4 × 10−5 (0.971) | 0.0004 (0.278) | 0.0004 (0.026) ** | 7.3 × 10−5 (0.754) | 0.0005 (0.112) | −8.7 × 10−5 (0.774) | 0.0003 (0.358) | −0.0003 (0.109) | 0.0003 (0.291) | |
−0.001 (0.283) | −0.001 (0.107) | 0.001 (0.097) * | 0.001 (0.539) | 0.0003 (0.699) | −0.0004 (0.631) | −0.001 (0.274) | −0.001 (0.262) | 1.4 × 10−6 (0.988) | −0.0003 (0.657) | 0.0002 (0.876) | |
−0.001 (0.003) *** | −0.001 (0.068) * | −0.0003 (0.199) | −2.4 × 10−5 (0.968) | −0.002 (0.000) *** | −0.001 (0.008) *** | −0.001 (0.095) * | 3.4 × 10−5 (0.958) | −0.001 (0.009) *** | 0.0002 (0.456) | 0.001 (0.073) * | |
−0.0004 (0.568) | −0.001 (0.266) | 0.001 (0.153) | 0.001 (0.354) | 0.0003 (0.595) | 0.001 (0.416) | 0.0004 (0.659) | 0.001 (0.481) | −0.001 (0.118) | 0.001 (0.067) * | −0.001 (0.535) | |
0.0003 (0.234) | 0.001 (0.001) *** | −0.0002 (0.079) * | 0.0001 (0.715) | 0.0002 (0.214) | 0.0004 (0.097) * | 0.0001 (0.631) | 0.0005 (0.062) ** | 0.001 (0.021) ** | 0.0004 (0.009) *** | 4.4 × 10−5 (0.850) | |
0.0003 (0.513) | −0.001 (0.045) ** | 6.7 × 10−5 (0.749) | −0.005 (0.362) | −0.0004 (0.114) | −0.001 (0.143) | −0.0003 (0.497) | −0.001 (0.119) | −0.0003 (0.469) | −0.001 (0.029) ** | 8.6 × 10−5 (0.804) | |
0.086 (0.000) *** | - | - | - | −0.744 (0.000) *** | 0.047 (0.038) ** | - | - | 0.986 (0.000) *** | 0.209 (0.000) *** | - | |
0.021 (0.350) | - | - | - | - | - | - | - | - | - | - | |
0.041 ** (0.069) *** | - | - | - | - | - | - | - | - | - | - | |
0.044 (0.034) *** | - | - | - | - | - | - | - | - | - | - | |
- | - | - | - | 0.780 (0.000) *** | - | - | −0.203 (0.000) *** | −0.974 (0.000) *** | - | - | |
GARCH equation | |||||||||||
6.4 × 10−7 (0.115) | 1.6 × 10−6 (0.574) | 0.005 (0.154) | 5.6 × 10−7 (0.155) | 1.2 × 10−7 (0.461) | 2−2 × 10−7 (0.693) | −9.8 × 10−7 (0.899) | 8.1 × 10−7 (0.000) *** | 3 × 10−6 (0.011) ** | 0.003 (0.492) | 2.6 × 10−9 (0.991) | |
−6.5 × 10−8 (0.901) | −2.6 × 10−6 (0.545) | −0.0002 (0.970) | −8.1 × 10−7 (0.085) * | −1.2 × 10−7 (0.584) | 6.2 × 10−7 (0.392) | 5.9 × 10−6 (0.624) | −1.7 × 10−6 (0.000) *** | −3.5 × 10−6 (0.006) *** | −0.006 (0.226) | 2.4 × 10−9 (0.993) | |
Model | GARCH | P-ARCH | EGARCH | GARCH | GARCH | GARCH | P-ARCH | GARCH | GARCH | EGARCH | GARCH |
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Škrinjarić, T. Testing for Seasonal Affective Disorder on Selected CEE and SEE Stock Markets. Risks 2018, 6, 140. https://doi.org/10.3390/risks6040140
Škrinjarić T. Testing for Seasonal Affective Disorder on Selected CEE and SEE Stock Markets. Risks. 2018; 6(4):140. https://doi.org/10.3390/risks6040140
Chicago/Turabian StyleŠkrinjarić, Tihana. 2018. "Testing for Seasonal Affective Disorder on Selected CEE and SEE Stock Markets" Risks 6, no. 4: 140. https://doi.org/10.3390/risks6040140
APA StyleŠkrinjarić, T. (2018). Testing for Seasonal Affective Disorder on Selected CEE and SEE Stock Markets. Risks, 6(4), 140. https://doi.org/10.3390/risks6040140