Previous Issue
Volume 2, September
 
 

Chromatography, Volume 2, Issue 4 (December 2015) – 7 articles , Pages 594-708

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
1779 KiB  
Article
Uncertainty of Blood Alcohol Concentration (BAC) Results as Related to Instrumental Conditions: Optimization and Robustness of BAC Analysis Headspace Parameters
by Haleigh A. Boswell and Frank L. Dorman
Chromatography 2015, 2(4), 691-708; https://doi.org/10.3390/chromatography2040691 - 11 Dec 2015
Cited by 5 | Viewed by 13312
Abstract
Analysis of blood alcohol concentration is a routine analysis performed in many forensic laboratories. This analysis commonly utilizes static headspace sampling, followed by gas chromatography combined with flame ionization detection (GC-FID). Studies have shown several “optimal” methods for instrumental operating conditions, which are [...] Read more.
Analysis of blood alcohol concentration is a routine analysis performed in many forensic laboratories. This analysis commonly utilizes static headspace sampling, followed by gas chromatography combined with flame ionization detection (GC-FID). Studies have shown several “optimal” methods for instrumental operating conditions, which are intended to yield accurate and precise data. Given that different instruments, sampling methods, application specific columns and parameters are often utilized, it is much less common to find information on the robustness of these reported conditions. A major problem can arise when these “optimal” conditions may not also be robust, thus producing data with higher than desired uncertainty or potentially inaccurate results. The goal of this research was to incorporate the principles of quality by design (QBD) in the adjustment and determination of BAC (blood alcohol concentration) instrumental headspace parameters, thereby ensuring that minor instrumental variations, which occur as a matter of normal work, do not appreciably affect the final results of this analysis. This study discusses both the QBD principles as well as the results of the experiments, which allow for determination of more favorable instrumental headspace conditions. Additionally, method detection limits will also be reported in order to determine a reporting threshold and the degree of uncertainty at the common threshold value of 0.08 g/dL. Furthermore, the comparison of two internal standards, n-propanol and t-butanol, will be investigated. The study showed that an altered parameter of 85 °C headspace oven temperature and 15 psi headspace vial pressurization produces the lowest percent relative standard deviation of 1.3% when t-butanol is implemented as an internal standard, at least for one very common platform. The study also showed that an altered parameter of 100 °C headspace oven temperature and 15-psi headspace vial pressurization produces the lowest MDL of 0.00002 g/dL when n-propanol is implemented as an internal standard. These altered headspace parameters have the potential to produce more precise and accurate BAC determination. Full article
Show Figures

Figure 1

2577 KiB  
Article
Measurement and Modeling of Extra-Column Effects Due to Injection and Connections in Capillary Liquid Chromatography
by James P. Grinias, Bernard Bunner, Martin Gilar and James W. Jorgenson
Chromatography 2015, 2(4), 669-690; https://doi.org/10.3390/chromatography2040669 - 01 Dec 2015
Cited by 29 | Viewed by 8199
Abstract
As column volumes continue to decrease, extra-column band broadening has become an increasingly important consideration when determining column performance. Combined contributions due to the injector and connecting tubing in a capillary LC system were measured and found to be larger than expected by [...] Read more.
As column volumes continue to decrease, extra-column band broadening has become an increasingly important consideration when determining column performance. Combined contributions due to the injector and connecting tubing in a capillary LC system were measured and found to be larger than expected by Taylor-Aris theory. Variance from sigma-type and tau-type broadening was isolated from eluted peaks using the Foley-Dorsey Exponentially Modified Gaussian peak fitting model and confirmed with computational fluid dynamics. It was found that the tau-type contributions were the main cause for the excessive broadening because of poorly-swept volumes at the connection between the injector and tubing. To reduce tau-type contributions (and peak tailing), a timed pinch mode could be used for analyte injection. Full article
(This article belongs to the Special Issue Advances in High Pressure Liquid Chromatography)
Show Figures

Figure 1

1096 KiB  
Article
Hyphenation of Field-Flow Fractionation and Magnetic Particle Spectroscopy
by Norbert Löwa, Patricia Radon, Dirk Gutkelch, Rinaldo August and Frank Wiekhorst
Chromatography 2015, 2(4), 655-668; https://doi.org/10.3390/chromatography2040655 - 25 Nov 2015
Cited by 11 | Viewed by 5938
Abstract
Magnetic nanoparticles (MNPs) exhibit unique magnetic properties making them ideally suited for a variety of biomedical applications. Depending on the desired magnetic effect, MNPs must meet special magnetic requirements which are mainly determined by their structural properties (e.g., size distribution). The hyphenation of [...] Read more.
Magnetic nanoparticles (MNPs) exhibit unique magnetic properties making them ideally suited for a variety of biomedical applications. Depending on the desired magnetic effect, MNPs must meet special magnetic requirements which are mainly determined by their structural properties (e.g., size distribution). The hyphenation of chromatographic separation techniques with complementary detectors is capable of providing multidimensional information of submicron particles. Although various methods have already been combined for this approach, so far, no detector for the online magnetic analysis was used. Magnetic particle spectroscopy (MPS) has been proven a straightforward technique for specific quantification and characterization of MNPs. It combines high sensitivity with high temporal resolution; both of these are prerequisites for a successful hyphenation with chromatographic separation. We demonstrate the capability of MPS to specifically detect and characterize MNPs under usually applied asymmetric flow field-flow fractionation (A4F) conditions (flow rates, MNP concentration, different MNP types). To this end MPS has been successfully integrated into an A4F multidetector platform including dynamic ligth scattering (DLS), multi-angle light scattering (MALS) and ultraviolet (UV) detection. Our system allows for rapid and comprehensive characterization of typical MNP samples for the systematic investigation of structure-dependent magnetic properties. This has been demonstrated by magnetic analysis of the commercial magnetic resonance imaging (MRI) contrast agent Ferucarbotran (FER) during hydrodynamic A4F fractionation. Full article
(This article belongs to the Special Issue Field-Flow Fractionation)
Show Figures

Graphical abstract

720 KiB  
Technical Note
Simultaneous High Performance Liquid Chromatography Assay of Pentoxifylline, Mupirocin, Itraconazole, and Fluticasone Propionate in Humco™ Lavare Wound Base
by Troy Purvis
Chromatography 2015, 2(4), 642-654; https://doi.org/10.3390/chromatography2040642 - 11 Nov 2015
Cited by 3 | Viewed by 7013
Abstract
This article details the elements used in the method verification for the simultaneous high performance liquid chromatography (HPLC) assay of Pentoxifylline, Mupirocin, Itraconazole, and Fluticasone Propionate in Humco™ Lavare Wound base. The method was proven to be linear over 50%–150% of the nominal [...] Read more.
This article details the elements used in the method verification for the simultaneous high performance liquid chromatography (HPLC) assay of Pentoxifylline, Mupirocin, Itraconazole, and Fluticasone Propionate in Humco™ Lavare Wound base. The method was proven to be linear over 50%–150% of the nominal concentration of the standards. The method was proven to be accurate over 50%–150%, with 98%–102% recovery of the actives from spiked placeboes over that range. The method was shown to be specific to the analytes listed and precise, yielding acceptable results for system reproducibility and method repeatability. The method, as written, is considered to have been verified. Full article
Show Figures

Figure 1

747 KiB  
Article
Prediction of Peak Shape and Characterization of Column Performance in Liquid Chromatography as a Function of Flow Rate
by Juan José Baeza-Baeza, Casandra Ortiz-Bolsico and María Celia García-Alvarez-Coque
Chromatography 2015, 2(4), 625-641; https://doi.org/10.3390/chromatography2040625 - 02 Nov 2015
Cited by 2 | Viewed by 7166
Abstract
Traditionally, column performance in liquid chromatography has been studied using information from the elution of probe compounds at different flow rates through van Deemter plots, which relate the column plate height to the linear mobile phase velocity. A more recent approach to characterize [...] Read more.
Traditionally, column performance in liquid chromatography has been studied using information from the elution of probe compounds at different flow rates through van Deemter plots, which relate the column plate height to the linear mobile phase velocity. A more recent approach to characterize columns is the representation of the peak widths (or the right and left peak half-widths) for a set of compounds versus their retention times, which, for isocratic elution, give rise to almost linear plots. In previous work, these plots have been shown to facilitate the prediction of peak profiles (width and asymmetry) with optimization purposes. In this work, a detailed study on the dependence of the peak widths (or half-widths) on the flow rate is reported. A new approach to quantify the deterioration of column performance for slow and fast flow rates and to characterize chromatographic columns is proposed. The approach makes use of the width (or half-widths) for a set of compounds with similar interaction kinetics and does not require knowledge of the extra-column contributions to the total variance. The chromatographic data of two sets of compounds of different natures (sulfonamides and β-blockers), eluted from Spherisorb and Chromolith columns with acetonitrile-water mixtures, are used to illustrate the approach. Full article
Show Figures

Figure 1

758 KiB  
Article
Modeling Compound Loss from Polydimethylsiloxane Passive Samplers
by Courtney L. Thomas and Danny D. Reible
Chromatography 2015, 2(4), 611-624; https://doi.org/10.3390/chromatography2040611 - 12 Oct 2015
Cited by 7 | Viewed by 5100
Abstract
Volatile losses were measured from polydimethylsiloxane (PDMS) passive samplers during determination of contaminant porewater concentrations in sediments. Volatile losses could occur between the time of retrieval and processing of the passive sampler or in intertidal environments where the passive sampler could potentially be [...] Read more.
Volatile losses were measured from polydimethylsiloxane (PDMS) passive samplers during determination of contaminant porewater concentrations in sediments. Volatile losses could occur between the time of retrieval and processing of the passive sampler or in intertidal environments where the passive sampler could potentially be exposed above the water surface at low tide. A model was developed to predict losses of absorbed compounds as a function of sorbent geometry and the Henry’s Law Coefficient and PDMS-water partition coefficient of the compound of interest. The model suggests that thin layers of PDMS typically used to minimize equilibration times in passive sampling (≤30 µm) may not provide quantitative measurement of naphthalenes or other lighter volatile compounds without special efforts to reduce losses. The results suggest that the samplers should be processed rapidly onsite or kept at low temperatures after retrieval to maximize retention of more volatile compounds or designed with thick PDMS layers. The results also suggest that less volatile compounds, including phenanthrene, and higher molecular weight polynuclear aromatic hydrocarbons (PAHs) exhibit minimal evaporative losses with typical sample processing times. Full article
(This article belongs to the Special Issue Solid Phase Micro-Extraction)
Show Figures

Figure 1

1214 KiB  
Article
Particle Based Modeling of Electrical Field Flow Fractionation Systems
by Tonguc O. Tasci, William P. Johnson, Diego P. Fernandez, Eliana Manangon and Bruce K. Gale
Chromatography 2015, 2(4), 594-610; https://doi.org/10.3390/chromatography2040594 - 09 Oct 2015
Cited by 5 | Viewed by 6972
Abstract
Electrical Field Flow Fractionation (ElFFF) is a sub method in the field flow fractionation (FFF) family that relies on an applied voltage on the channel walls to effect a separation. ElFFF has fallen behind some of the other FFF methods because of the [...] Read more.
Electrical Field Flow Fractionation (ElFFF) is a sub method in the field flow fractionation (FFF) family that relies on an applied voltage on the channel walls to effect a separation. ElFFF has fallen behind some of the other FFF methods because of the optimization complexity of its experimental parameters. To enable better optimization, a particle based model of the ElFFF systems has been developed and is presented in this work that allows the optimization of the main separation parameters, such as electric field magnitude, frequency, duty cycle, offset, flow rate and channel dimensions. The developed code allows visualization of individual particles inside the separation channel, generation of realistic fractograms, and observation of the effects of the various parameters on the behavior of the particle cloud. ElFFF fractograms have been generated via simulations and compared with experiments for both normal and cyclical ElFFF. The particle visualizations have been used to verify that high duty cycle voltages are essential to achieve long retention times and high resolution separations. Furthermore, by simulating the particle motions at the channel outlet, it has been demonstrated that the top channel wall should be selected as the accumulation wall for cyclical ElFFF to reduce band broadening and achieve high efficiency separations. While the generated particle based model is a powerful tool to estimate the outcomes of the ElFFF experiments and visualize particle motions, it can also be used to design systems with new geometries which may lead to the design of higher efficiency ElFFF systems. Furthermore, this model can be extended to other FFF techniques by replacing the electrical field component of the model with the fields used in the other FFF techniques. Full article
(This article belongs to the Special Issue Field-Flow Fractionation)
Show Figures

Figure 1

Previous Issue
Back to TopTop