Associations between Brain Microstructure and Phonological Processing Ability in Preschool Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Neuropsychological Assessment
2.3. MRI Acquisition
2.4. DTI Data Processing
2.5. Statistical Analysis
3. Results
3.1. Clinical and Behavioral Measures
3.2. Correlation between PPRS and DTI Measures
3.3. Associations between Language Performance, Age, and FN Characteristics
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carroll, J.M.; Maughan, B.; Goodman, R.; Meltzer, H. Literacy difficulties and psychiatric disorders: Evidence for comorbidity. J. Child Psychol. Psychiatry 2005, 46, 524–532. [Google Scholar] [CrossRef] [PubMed]
- Carroll, J.M.; Snowling, M.J. Language and phonological skills in children at high risk of reading difficulties. J. Child Psychol. Psychiatry 2004, 45, 631–640. [Google Scholar] [CrossRef] [PubMed]
- May, L.; Byers-Heinlein, K.; Gervain, J.; Werker, J. Language and the Newborn Brain: Does Prenatal Language Experience Shape the Neonate Neural Response to Speech? Front. Psychol. 2011, 2, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dehaene-Lambertz, G.; Hertz-Pannier, L.; Dubois, J. Nature and nurture in language acquisition: Anatomical and functional brain-imaging studies in infants. Trends Neurosci. 2006, 29, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Lonigan, C.J.; Farver, J.M.; Nakamoto, J.; Eppe, S. Developmental trajectories of preschool early literacy skills: A comparison of language-minority and monolingual-English children. Dev. Psychol. 2013, 49, 1943–1957. [Google Scholar] [CrossRef] [PubMed]
- Torppa, M.; Poikkeus, A.-M.; Laakso, M.-L.; Eklund, K.; Lyytinen, H. Predicting delayed letter knowledge development and its relation to Grade 1 reading achievement among children with and without familial risk of dyslexia. Dev. Psychol. 2006, 42, 1128–1142. [Google Scholar] [CrossRef] [Green Version]
- Sakai Kuniyoshi, L. Language Acquisition and Brain Development. Science 2005, 310, 815–819. [Google Scholar] [CrossRef] [Green Version]
- Hulme, C.; Snowling, M.J. Reading disorders and dyslexia. Curr. Opin. Pediatr. 2016, 28, 731–735. [Google Scholar] [CrossRef] [Green Version]
- Gabrieli John, D.E. Dyslexia: A New Synergy Between Education and Cognitive Neuroscience. Science 2009, 325, 280–283. [Google Scholar] [CrossRef] [Green Version]
- Melby-Lervåg, M.; Lyster, S.-A.H.; Hulme, C. Phonological skills and their role in learning to read: A meta-analytic review. Psychol. Bull. 2012, 138, 322–352. [Google Scholar] [CrossRef]
- Dubois, J.; Dehaene-Lambertz, G.; Kulikova, S.; Poupon, C.; Hüppi, P.S.; Hertz-Pannier, L. The early development of brain white matter: A review of imaging studies in fetuses, newborns and infants. Neuroscience 2014, 276, 48–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smits, M.; Jiskoot, L.C.; Papma, J.M. White Matter Tracts of Speech and Language. Semin. Ultrasound CT MRI 2014, 35, 504–516. [Google Scholar] [CrossRef] [PubMed]
- Niogi, S.N.; McCandliss, B.D. Left lateralized white matter microstructure accounts for individual differences in reading ability and disability. Neuropsychologia 2006, 44, 2178–2188. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, J.E.; Long, X.; Grohs, M.N.; Dewey, D.; Lebel, C. Structural and functional asymmetry of the language network emerge in early childhood. Dev. Cogn. Neurosci. 2019, 39, 100682. [Google Scholar] [CrossRef]
- Walton, M.; Dewey, D.; Lebel, C. Brain white matter structure and language ability in preschool-aged children. Brain Lang. 2018, 176, 19–25. [Google Scholar] [CrossRef]
- Zuk, J.; Yu, X.; Sanfilippo, J.; Figuccio, M.J.; Dunstan, J.; Carruthers, C.; Sideridis, G.; Turesky, T.K.; Gagoski, B.; Grant, P.E.; et al. White matter in infancy is prospectively associated with language outcomes in kindergarten. Dev. Cogn. Neurosci. 2021, 50, 100973. [Google Scholar] [CrossRef]
- Ekerdt, C.E.M.; Kühn, C.; Anwander, A.; Brauer, J.; Friederici, A.D. Word learning reveals white matter plasticity in preschool children. Brain Struct. Funct. 2020, 225, 607–619. [Google Scholar] [CrossRef] [Green Version]
- Mitsuhashi, T.; Sugano, H.; Asano, K.; Nakajima, T.; Nakajima, M.; Okura, H.; Iimura, Y.; Suzuki, H.; Tange, Y.; Tanaka, T.; et al. Functional MRI and Structural Connectome Analysis of Language Networks in Japanese-English Bilinguals. Neuroscience 2020, 431, 17–24. [Google Scholar] [CrossRef]
- Hutton, J.S.; Dudley, J.; Horowitz-Kraus, T.; DeWitt, T.; Holland, S.K. Associations between home literacy environment, brain white matter integrity and cognitive abilities in preschool-age children. Acta Paediatr. 2020, 109, 1376–1386. [Google Scholar] [CrossRef]
- Bitan, T.; Burman, D.D.; Chou, T.-L.; Lu, D.; Cone, N.E.; Cao, F.; Bigio, J.D.; Booth, J.R. The interaction between orthographic and phonological information in children: An fMRI study. Hum. Brain Mapp. 2007, 28, 880–891. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Qu, J.; Chen, C.; Chen, Y.; Xue, G.; Zhang, L.; Lu, C.; Mei, L. Lexical learning in a new language leads to neural pattern similarity with word reading in native language. Hum. Brain Mapp. 2019, 40, 98–109. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoeft, F.; Ueno, T.; Reiss, A.L.; Meyler, A.; Whitfield-Gabrieli, S.; Glover, G.H.; Keller, T.A.; Kobayashi, N.; Mazaika, P.; Jo, B.; et al. Prediction of Children’s Reading Skills Using Behavioral, Functional, and Structural Neuroimaging Measures; American Psychological Association: Washington, DC, USA, 2007; Volume 121, pp. 602–613. [Google Scholar] [CrossRef]
- Lebel, C.; Deoni, S. The development of brain white matter microstructure. NeuroImage 2018, 182, 207–218. [Google Scholar] [CrossRef] [PubMed]
- Brown, T.T.; Jernigan, T.L. Brain development during the preschool years. Neuropsychol. Rev. 2012, 22, 313–333. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, J.E.; Long, X.; Paniukov, D.; Bagshawe, M.; Lebel, C. Calgary Preschool magnetic resonance imaging (MRI) dataset. Data Brief 2020, 29, 105224. [Google Scholar] [CrossRef]
- Korkman, M.; Kirk, U.; Kemp, S. NEPSY II: Clinical and Interpretive Manual, 2nd ed.; Harcourt Assessment; PsychCorp.: New York, NY, USA, 2007. [Google Scholar]
- Thieba, C.; Frayne, A.; Walton, M.; Mah, A.; Benischek, A.; Dewey, D.; Lebel, C. Factors Associated With Successful MRI Scanning in Unsedated Young Children. Front. Pediatr. 2018, 6, 146. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; Chen, L.; Zuo, N.; Jiang, T. DiffusionKit: A Light One-Stop Solution for Diffusion MRI Data Analysis. J. Neurosci. Methods 2016, 273, 107–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fonov, V.; Evans, A.; McKinstry, R.; Almli, C.R.; Collins, D.J.N. Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage 2009, 47, S102. [Google Scholar] [CrossRef]
- Fonov, V.; Evans, A.C.; Botteron, K.; Almli, C.R.; McKinstry, R.C.; Collins, D.L. Unbiased average age-appropriate atlases for pediatric studies. NeuroImage 2011, 54, 313–327. [Google Scholar] [CrossRef] [Green Version]
- Lange, T.; Hansen, K.W.; Sørensen, R.; Galatius, S. Applied mediation analyses: A review and tutorial. Epidemiol. Health 2017, 39, e2017035. [Google Scholar] [CrossRef] [Green Version]
- MacKinnon, D.P.; Fairchild, A.J.; Fritz, M.S. Mediation analysis. Annu. Rev. Psychol. 2007, 58, 593–614. [Google Scholar] [CrossRef]
- Wager, T.D.; Davidson, M.L.; Hughes, B.L.; Lindquist, M.A.; Ochsner, K.N. Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron 2008, 59, 1037–1050. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Zhang, S.; Le, T.M.; Tang, X.; Li, C.-S.R. Neural responses to negative facial emotions: Sex differences in the correlates of individual anger and fear traits. NeuroImage 2020, 221, 117171. [Google Scholar] [CrossRef] [PubMed]
- Vouloumanos, A.; Werker, J.F. Listening to language at birth: Evidence for a bias for speech in neonates. Dev. Sci. 2007, 10, 159–164. [Google Scholar] [CrossRef]
- Byers-Heinlein, K.; Burns, T.C.; Werker, J.F. The Roots of Bilingualism in Newborns. Psychol. Sci. 2010, 21, 343–348. [Google Scholar] [CrossRef] [Green Version]
- Conroy, P.; Sotiropoulou Drosopoulou, C.; Humphreys, G.F.; Halai, A.D.; Lambon Ralph, M.A. Time for a quick word? The striking benefits of training speed and accuracy of word retrieval in post-stroke aphasia. Brain 2018, 141, 1815–1827. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, J.E.; Grohs, M.N.; Dewey, D.; Lebel, C. Global and regional white matter development in early childhood. NeuroImage 2019, 196, 49–58. [Google Scholar] [CrossRef]
- Lebel, C.; Treit, S.; Beaulieu, C. A review of diffusion MRI of typical white matter development from early childhood to young adulthood. NMR Biomed. 2019, 32, e3778. [Google Scholar] [CrossRef] [PubMed]
- Houston, J.; Allendorfer, J.; Nenert, R.; Goodman, A.M.; Szaflarski, J.P. White Matter Language Pathways and Language Performance in Healthy Adults across Ages. Front. Neurosci. 2019, 13, 1185. [Google Scholar] [CrossRef]
- Neil, J.; Miller, J.; Mukherjee, P.; Hüppi, P.S. Diffusion tensor imaging of normal and injured developing human brain—A technical review. NMR Biomed. 2002, 15, 543–552. [Google Scholar] [CrossRef]
- Yeatman, J.D.; Dougherty, R.F.; Ben-Shachar, M.; Wandell, B.A. Development of white matter and reading skills. Proc. Natl. Acad. Sci. USA 2012, 109, E3045–E3053. [Google Scholar] [CrossRef] [Green Version]
- Gaillard, W.D.; Balsamo, L.M.; Ibrahim, Z.; Sachs, B.C.; Xu, B. fMRI identifies regional specialization of neural networks for reading in young children. Neurology 2003, 60, 94. [Google Scholar] [CrossRef] [PubMed]
- Dejerine, J.J. Contribution a l’étude anatomo-pathologique et clinique des différentes variétés de cécité verbale. Comptes Rendus Séances Société Biol. Ses Fil. 2011, 44, 61–90. [Google Scholar] [CrossRef] [Green Version]
- Stoeckel, C.; Gough, P.M.; Watkins, K.E.; Devlin, J.T. Supramarginal gyrus involvement in visual word recognition. Cortex 2009, 45, 1091–1096. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pugh, K.R.; Mencl, W.E.; Jenner, A.R.; Katz, L.; Frost, S.J.; Lee, J.R.; Shaywitz, S.E.; Shaywitz, B.A. Neurobiological studies of reading and reading disability. J. Commun. Disord. 2001, 34, 479–492. [Google Scholar] [CrossRef] [Green Version]
- Price, C.; Mechelli, A. Reading and reading disturbance. Curr. Opin. Neurobiol. 2005, 15, 231–238. [Google Scholar] [CrossRef]
- Shaywitz, B.; Shaywitz, S.; Pugh, K.; Mencl, W.; Fulbright, R.; Skudlarski, P.; Constable, R.; Marchione, K.; Fletcher, J.; Lyon, G.; et al. Disruption of Posterior Brain Systems for Reading in Children with Developmental Dyslexia. Biol. Psychiatry 2002, 52, 101–110. [Google Scholar] [CrossRef]
- Bookheimer, S.Y.; Zeffiro, T.A.; Blaxton, T.; Gaillard, W.; Theodore, W. Regional cerebral blood flow during object naming and word reading. Hum. Brain Mapp. 1995, 3, 93–106. [Google Scholar] [CrossRef]
- Pugh, K.R.; Mencl, W.E.; Shaywitz, B.A.; Shaywitz, S.E.; Fulbright, R.K.; Constable, R.T.; Skudlarski, P.; Marchione, K.E.; Jenner, A.R.; Fletcher, J.M.; et al. The Angular Gyrus in Developmental Dyslexia: Task-Specific Differences in Functional Connectivity within Posterior Cortex. Psychol. Sci. 2000, 11, 51–56. [Google Scholar] [CrossRef]
Characteristic | Male n = 38, m = 111 | Female n = 35, m = 97 | t | p |
---|---|---|---|---|
Age | 4.56 ± 1.05 | 4.39 ± 0.97 | −1.186 | 0.237 |
Maternal education | 5.63 ± 2.35 | 5.62 ± 2.44 | −0.32 | 0.975 |
Handedness (Left:Right:Both:N/A) | 3:32:2:1 | 3:29:1:2 | / | / |
PPRS | 19.47 ± 6.18 | 19.16 ± 5.51 | −0.386 | 0.700 |
SNCT | 79.18 ± 62.36 | 63.73 ± 50.99 | −1.964 | 0.051 |
SNNC | 41.74 ± 27.86 | 35.33 ± 25.00 | −1.748 | 0.082 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, Y.; Li, G.; Song, Z.; Zhang, Z.; Huang, H.; Li, H.; Tang, X. Associations between Brain Microstructure and Phonological Processing Ability in Preschool Children. Children 2022, 9, 782. https://doi.org/10.3390/children9060782
Zhou Y, Li G, Song Z, Zhang Z, Huang H, Li H, Tang X. Associations between Brain Microstructure and Phonological Processing Ability in Preschool Children. Children. 2022; 9(6):782. https://doi.org/10.3390/children9060782
Chicago/Turabian StyleZhou, Ying, Guangfei Li, Zeyu Song, Zhao Zhang, Huishi Huang, Hanjun Li, and Xiaoying Tang. 2022. "Associations between Brain Microstructure and Phonological Processing Ability in Preschool Children" Children 9, no. 6: 782. https://doi.org/10.3390/children9060782
APA StyleZhou, Y., Li, G., Song, Z., Zhang, Z., Huang, H., Li, H., & Tang, X. (2022). Associations between Brain Microstructure and Phonological Processing Ability in Preschool Children. Children, 9(6), 782. https://doi.org/10.3390/children9060782