Temporal Shifts in Pathogen Profiles Due to the COVID-19 Pandemic in a Romanian Pediatric Tertiary Hospital
Abstract
Highlights
- Pandemic year (2021) profiles were ICU-weighted, with higher proportional detection of non-fermenters and ICU-linked taxa—notably Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Enterobacter spp., and Candida—while the rest of the hospital wards showed persistent elevation of Escherichia coli and Klebsiella pneumoniae.
- The post-pandemic period (2023) showed a community rebound, with renewed detection of group A Streptococcus and normalization of outpatient respiratory samples, while several ICU-weighted signals receded toward baseline.
- Surveillance should be ward-mix aware: it should prioritize ICU fungal/Gram-negative vigilance during service disruptions, and track community streptococcal resurgence as outpatient activity returns.
- IRR-based, setting-stratified monitoring is a practical way for clinical labs to detect real-time shifts in pathogen mix without duplicating full baseline tables, supporting rapid infection prevention and testing panel adjustments.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Data
2.2. Statistical Analysis
2.3. Ethics
3. Results
3.1. IRR Expansion of Previously Published Ward and Specimen Distributions
3.2. Microbial Identification
4. Discussion
4.1. Overview
4.2. Bacterial Trends
4.3. Limitations and Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dascalu, S. The Successes and Failures of the Initial COVID-19 Pandemic Response in Romania. Front. Public Health 2020, 8, 344. [Google Scholar] [CrossRef]
- Noureddine, F.Y.; Chakkour, M.; El Roz, A.; Reda, J.; Al Sahily, R.; Assi, A.; Joma, M.; Salami, H.; Hashem, S.J.; Harb, B.; et al. The Emergence of SARS-CoV-2 Variant(s) and Its Impact on the Prevalence of COVID-19 Cases in the Nabatieh Region, Lebanon. Med. Sci. 2021, 9, 40. [Google Scholar] [CrossRef]
- Leretter, M.; Vulcanescu, D.; Horhat, F.; Matichescu, A.; Rivis, M.; Rusu, L.-C.; Roi, A.; Racea, R.; Badea, I.; Dehelean, C.; et al. COVID-19: Main findings after a year and half of unease and the proper scientific progress (Review). Exp. Ther. Med. 2022, 23, 424. [Google Scholar] [CrossRef] [PubMed]
- Mitrică, B.; Mocanu, I.; Grigorescu, I.; Dumitraşcu, M.; Pistol, A.; Damian, N.; Şerban, P. Population Vulnerability to the SARS-CoV-2 Virus Infection. A County-Level Geographical-Methodological Approach in Romania. GeoHealth 2021, 5, e2021GH000461. [Google Scholar] [CrossRef] [PubMed]
- Enciu, B.G.; Tănase, A.A.; Drăgănescu, A.C.; Aramă, V.; Pițigoi, D.; Crăciun, M.-D. The COVID-19 Pandemic in Romania: A Comparative Description with Its Border Countries. Healthcare 2022, 10, 1223. [Google Scholar] [CrossRef] [PubMed]
- Vulcanescu, D.D.; Bagiu, I.C.; Avram, C.R.; Oprisoni, L.A.; Tanasescu, S.; Sorescu, T.; Susan, R.; Susan, M.; Sorop, V.B.; Diaconu, M.M.; et al. Bacterial Infections, Trends, and Resistance Patterns in the Time of the COVID-19 Pandemic in Romania—A Systematic Review. Antibiotics 2024, 13, 1219. [Google Scholar] [CrossRef]
- Vulcanescu, D.D.; Bagiu, I.C.; Dragomir, T.L.; Sorop, V.B.; Diaconu, M.; Harich, O.; Tanasescu, S.A.; Szasz, F.; Vlaicu, L.; Goian, C.; et al. The Impact of the COVID-19 Pandemic on Pediatric Microbial Resistance Patterns and Abandonment Rates in Western Romania—An Interdisciplinary Study. Antibiotics 2025, 14, 411. [Google Scholar] [CrossRef]
- Chaaban, T.; Ezzeddine, Z.; Ghssein, G. Antibiotic Misuse during the COVID-19 Pandemic in Lebanon: A Cross-Sectional Study. COVID 2024, 4, 921–929. [Google Scholar] [CrossRef]
- Plesca, D.A.; Radulescu, C.; Vilaia, A.; Plesca, V.S. Anca Cristina Dragnescu. Current systematic reviews of the burden of COVID-19 pandemic in children and adolescents. Rom. J. Pediatr. 2022, 71, 122–125. [Google Scholar] [CrossRef]
- UNICEF Romania. Rapid Assessment of the Situation of Children and Their Families, with a Focus on the Vulnerable Ones, in the Context of the COVID-19 Outbreak in Romania, Round 2. Available online: https://www.unicef.org/romania/media/2406/file (accessed on 4 February 2025).
- Miron, V.D. COVID-19 in the pediatric population and parental perceptions. Germs 2020, 10, 294. [Google Scholar] [CrossRef]
- Rossato, L.; Negrão, F.J.; Simionatto, S. Could the COVID-19 pandemic aggravate antimicrobial resistance? Am. J. Infect. Control. 2020, 48, 1129–1130. [Google Scholar] [CrossRef] [PubMed]
- Wilde, H.; Tomlinson, C.; Mateen, B.A.; Selby, D.; Kanthimathinathan, H.K.; Denaxas, S.; Flaxman, S.; Vollmer, S.; Pagel, C.; Brown, K. Trends in Pediatric Hospital Admissions Caused or Contributed by SARS-CoV-2 Infection in England. J. Pediatr. 2024, 276, 114370. [Google Scholar] [CrossRef] [PubMed]
- Miron, V.D.; Gunșahin, D.; Filimon, C.; Bar, G.; Craiu, M. Pediatric Emergencies and Hospital Admissions in the First Six Months of the COVID-19 Pandemic in a Tertiary Children’s Hospital in Romania. Children 2022, 9, 513. [Google Scholar] [CrossRef] [PubMed]
- Di Fusco, M.; Vaghela, S.; Moran, M.M.; Lin, J.; Atwell, J.E.; Malhotra, D.; Sforzolini, T.S.; Cane, A.; Nguyen, J.L.; McGrath, L.J. COVID-19-associated hospitalizations among children less than 12 years of age in the United States. J. Med. Econ. 2022, 25, 334–346. [Google Scholar] [CrossRef]
- Yang, M.C.; Su, Y.T.; Chen, P.H.; Tsai, C.C.; Lin, T.I.; Wu, J. Changing patterns of infectious diseases in children during the COVID-19 pandemic. Front. Cell. Infect. Microbiol. 2023, 13, 1200617. [Google Scholar] [CrossRef]
- Cucerea, M.; Simon, M.; Stoicescu, S.M.; Blaga, L.D.; Galiș, R.; Stamatin, M.; Olariu, G.; Ognean, M.L. Neonatal Resuscitation Practices in Romania: A Survey of the Romanian Association of Neonatology (ANR) and the Union of European Neonatal and Perinatal Societies (UENPS). J. Crit. Care Med. 2024, 10, 19–29. [Google Scholar] [CrossRef]
- McKinney, C.M.; Mitchell, M.L.; Preloger, E.; Graff, K.; Pan, A.Y.; Liegl, M.; Bushee, G.; McCarthy, P.J.; McFadden, V.; Bauer, S.C. How the Pandemic Impacted Resource Utilization in Hospitalized Children With Bacterial Infections. Clin. Pediatr. 2025, 64, 1123–1130. [Google Scholar] [CrossRef]
- Majeed, A.; Wright, T.; Guo, B.; Arora, R.S.; Lam, C.G.; Martiniuk, A.L. The Global Impact of COVID-19 on Childhood Cancer Outcomes and Care Delivery—A Systematic Review. Front. Oncol. 2022, 12, 869752. [Google Scholar] [CrossRef]
- Sahiledengle, B.; Tekalegn, Y.; Zenbaba, D.; Woldeyohannes, D.; Teferu, Z. Which Factors Predict Hospital Length-of-Stay for Children Admitted to the Neonatal Intensive Care Unit and Pediatric Ward? A Hospital-Based Prospective Study. Glob. Pediatr. Health 2020, 7, 2333794X2096871. [Google Scholar] [CrossRef]
- Jugulete, G.; Pacurar, D.; Pavelescu, M.L.; Safta, M.; Gheorghe, E.; Borcoș, B.; Pavelescu, C.; Oros, M.; Merișescu, M. Clinical and Evolutionary Features of SARS-CoV-2 Infection (COVID-19) in Children, a Romanian Perspective. Children 2022, 9, 1282. [Google Scholar] [CrossRef]
- Goff, D.A.; Gauthier, T.P.; Langford, B.J.; Prusakov, P.; Chukwuemka, M.U.; Nwomeh, B.C.; Yunis, K.A.; Saad, T.; Bergh, D.v.D.; Villegas, M.V.; et al. Global resilience and new strategies needed for antimicrobial stewardship during the COVID-19 pandemic and beyond. JACCP J. Am. Coll. Clin. Pharm. 2022, 5, 707–715. [Google Scholar] [CrossRef]
- Singer, M.M.; Văruț, R.M.; Popescu, C.; Radivojevic, K.; Rotaru, L.T.; Octavian, D.R.; Mihai-Covei, B.; Popescu, M.; Irina, O.A.; Oancea, D.; et al. Assessment of Antibiotic Resistance in Pediatric Infections: A Romanian Case Study on Pathogen Prevalence and Effective Treatments. Antibiotics 2024, 13, 879. [Google Scholar] [CrossRef]
- Pakbin, B.; Brück, W.M.; Rossen, J.W.A. Virulence Factors of Enteric Pathogenic E. coli: A Review. Int. J. Mol. Sci. 2021, 22, 9922. [Google Scholar] [CrossRef] [PubMed]
- Abbas, R.; Chakkour, M.; El Dine, H.Z.; Obaseki, E.F.; Obeid, S.T.; Jezzini, A.; Ghssein, G.; Ezzeddine, Z. General Overview of Klebsiella pneumonia: Epidemiology and the Role of Siderophores in Its Pathogenicity. Biology 2024, 13, 78. [Google Scholar] [CrossRef] [PubMed]
- Ghssein, G.; Ezzeddine, Z. The Key Element Role of Metallophores in the Pathogenicity and Virulence of S. aureus: A Review. Biology 2022, 11, 1525. [Google Scholar] [CrossRef] [PubMed]
- Marquart, M.E. Pathogenicity and virulence of S. pneumoniae: Cutting to the chase on proteases. Virulence 2021, 12, 766–787. [Google Scholar] [CrossRef]
- Fallah, F.; Karimi, A.; Azimi, L.; Ghandchi, G.; Gholinejad, Z.; Abdollahi, N.; Oskooie, N.A.; Khodaei, H.; Armin, S.; Behzad, A.; et al. The impact of the COVID-19 pandemic on pediatric bloodstream infections and al-teration in antimicrobial resistance phenotypes in Gram-positive bacteria, 2020–2022. BMC Pediatr. 2024, 24, 671. [Google Scholar] [CrossRef]
- Ghssein, G.; Ezzeddine, Z. A Review of P. aeruginosa Metallophores: Pyoverdine, Pyochelin and Pseudopaline. Biology 2022, 11, 1711. [Google Scholar] [CrossRef]
- Lopes, J.P.; Lionakis, M.S. Pathogenesis and virulence of C. albicans. Virulence 2022, 13, 89–121. [Google Scholar] [CrossRef]
- Kinross, P.; Gagliotti, C.; Merk, H.; Plachouras, D.; Monnet, D.L.; Högberg, L.D.; EARS-Net Study Group. Large increase in bloodstream infections with carbapenem-resistant Acinetobacter species during the first 2 years of the COVID-19 pandemic, EU/EEA, 2020 and 2021. Eurosurveillance 2022, 27, 2200845. [Google Scholar] [CrossRef]
- Yehya, A.; Ezzeddine, Z.; Chakkour, M.; Dhaini, Z.; Saba, M.S.B.; Saba, A.S.B.; Nohra, L.; Nassar, N.B.; Yassine, M.; Bahmad, H.F.; et al. The intricacies of A. baumannii: A multifaceted comprehensive review of a multidrug-resistant pathogen and its clinical significance and implications. Front. Microbiol. 2025, 16, 1565965. [Google Scholar] [CrossRef] [PubMed]
- Chakkour, M.; Hammoud, Z.; Farhat, S.; El Roz, A.; Ezzeddine, Z.; Ghssein, G. Overview of P. mirabilis pathogenicity and virulence. Insights into the role of metals. Front. Microbiol. 2024, 15, 1383618. [Google Scholar] [CrossRef] [PubMed]
- Bălășoiu, A.T.; Bălășoiu, M.; Zlatian, O.M.; Ghenea, A.E. Bacterial and Fungal Keratitis in a Tertiary Care Hospital from Ro-mania. Microorganisms 2024, 12, 787. [Google Scholar] [CrossRef] [PubMed]
- Dediu, M.; Ciuca, I.M.; Marc, M.S.; Boeriu, E.; Pop, L.L. Factors Influencing Lung Function in Patients with Cystic Fibrosis in Western Romania. J. Multidiscip. Healthc. 2021, 14, 1423–1429. [Google Scholar] [CrossRef]
- de Gier, B.; Marchal, N.; de Beer-Schuurman, I.; Te Wierik, M.; Hooiveld, M.; de Melker, H.E.; van Sorge, N.M.; Stuart, J.C.; Melles, D.C.; Van Dijk, K.; et al. Increase in invasive group A streptococcal (S. pyogenes) infections (iGAS) in young children in The Netherlands, 2022. Eurosurveillance 2023, 28, 2200941. [Google Scholar] [CrossRef]
- Li, C.; Chen, R.; Qiao, J.; Ge, H.; Fang, L.; Liu, R.; Liu, S.; Wang, Q.; Guo, X.; Gou, J. Distribution and molecular characterization of carbapenemase-producing gram-negative bacteria in Henan, China. Sci. Rep. 2024, 14, 14418. [Google Scholar] [CrossRef]
- Prajescu, B.; Gavriliu, L.; Iesanu, M.I.; Ioan, A.; Boboc, A.A.; Boboc, C.; Galos, F. Bacterial Species and Antibiotic Resistance-A Ret-rospective Analysis of Bacterial Cultures in a Pediatric Hospital. Antibiotics 2023, 12, 966. [Google Scholar] [CrossRef]
- Hatoun, J.; Correa, E.T.; Donahue, S.M.A.; Vernacchio, L. Social Distancing for COVID-19 and Diagnoses of Other Infectious Diseases in Children. Pediatrics 2020, 146, e2020006460. [Google Scholar] [CrossRef]
- Olsen, S.J.; Azziz-Baumgartner, E.; Budd, A.P.; Brammer, L.; Sullivan, S.; Pineda, R.F.; Cohen, C.; Fry, A.M. Decreased Influenza Activity During the COVID-19 Pandemic—United States, Australia, Chile, and South Africa, 2020. MMWR Morb. Mortal. Wkly. Rep. 2020, 69, 1305–1309. [Google Scholar] [CrossRef]
- Cohen, R.; Ashman, M.; Taha, M.-K.; Varon, E.; Angoulvant, F.; Levy, C.; Rybak, A.; Ouldali, N.; Guiso, N.; Grimprel, E. Pediatric Infectious Disease Group (GPIP) position paper on the immune debt of the COVID-19 pandemic in childhood, how can we fill the immunity gap? Infect. Dis. Now. 2021, 51, 418–423. [Google Scholar] [CrossRef]
- Brueggemann, A.B.; Jansen van Rensburg, M.J.; Shaw, D.; McCarthy, N.D.; Jolley, K.A.; Maiden, M.C.J.; van der Linden, M.P.G.; Amin-Chowdhury, Z.; Bennett, D.E.; Borrow, R.; et al. Changes in the incidence of invasive disease due to S. pneumoniae, H. influenzae, and Neisseria meningitidis during the COVID-19 pandemic in 26 countries and territories in the Invasive Respiratory Infection Surveillance Initiative: A prospective analysis of surveillance data. Lancet Digit. Health 2021, 3, e360–e370, Erratum in Lancet Digit. Health 2001, 3, e413. [Google Scholar] [CrossRef]
- Tsang, R.S.W. A Narrative Review of the Molecular Epidemiology and Laboratory Surveillance of Vaccine Preventable Bacterial Meningitis Agents: S. pneumoniae, Neisseria meningitidis, H. influenzae and Streptococcus agalactiae. Microorganisms 2021, 9, 449. [Google Scholar] [CrossRef]
- Hoang, V.T.; Gautret, P.; Al-Tawfiq, J.A. Editorial: Change in epidemiology and etiology of respiratory tract and gastroin-testinal infections during COVID-19 pandemic. Front. Microbiol. 2024, 15, 1473567. [Google Scholar] [CrossRef]
- Ghosh, T.S.; Das, M.; Jeffery, I.B.; O’Toole, P.W. Adjusting for age improves identification of gut microbiome alterations in multiple diseases. Elife 2020, 9, e50240. [Google Scholar] [CrossRef] [PubMed]
- Bacorn, M.; Romero-Soto, H.N.; Levy, S.; Chen, Q.; Hourigan, S.K. The Gut Microbiome of Children during the COVID-19 Pandemic. Microorganisms 2022, 10, 2460. [Google Scholar] [CrossRef] [PubMed]
- Porosnicu, T.M.; Sirbu, I.O.; Oancea, C.; Sandesc, D.; Bratosin, F.; Rosca, O.; Jipa, D.; Boeriu, E.; Bandi, S.S.S.; Pricop, M. The Impact of Therapeutic Plasma Exchange on Inflammatory Markers and Acute Phase Reactants in Patients with Severe SARS-CoV-2 Infection. Medicina 2023, 59, 867. [Google Scholar] [CrossRef] [PubMed]
- Bratosin, F.; Folescu, R.; Krupyshev, P.; Popa, Z.L.; Citu, C.; Ratiu, A.; Rosca, O.; Ilie, A.C. Comparative Analysis of Microbial Species and Multidrug Resistance Patterns Associated with Lower Urinary Tract Infections in Preterm and Full-Term Births. Microorganisms 2024, 12, 139. [Google Scholar] [CrossRef]
- Prodan-Barbulescu, C.; Bratosin, F.; Folescu, R.; Boeriu, E.; Popa, Z.L.; Citu, C.; Ratiu, A.; Rosca, O.; Ilie, A.C. Analysis of Vaginal Microbiota Variations in the Third Trimester of Pregnancy and Their Correlation with Preterm Birth: A Case-Control Study. Microorganisms 2024, 12, 417. [Google Scholar] [CrossRef]
Species | n (2019/2021/2023) | 2019 vs. 2021 | 2019 vs. 2023 | 2023 vs. 2021 |
---|---|---|---|---|
Total | 2483/1669/2733 | |||
Gram-positive | ||||
S. aureus | 360/255/346 | 0.95 (0.80–1.13; 0.5641) | 1.14 (0.98–1.34; 0.0937) | 0.83 (0.70–0.99; 0.0358) * |
CoNS | 119/70/190 | 1.14 (0.85–1.55; 0.3798) | 0.69 (0.54–0.87; 0.0019) * | 1.66 (1.26–2.20; 0.0004) * |
S. pneumoniae | 199/72/186 | 1.86 (1.41–2.45; <0.0001) * | 1.18 (0.96–1.45; 0.1244) | 1.58 (1.20–2.09; 0.0013) * |
Streptococcus group A | 191/14/381 | 9.19 (5.32–15.86; <0.0001) * | 0.55 (0.46–0.66; <0.0001) * | 16.67 (9.74–28.50; <0.0001) * |
Streptococcus group B | 5/5/11 | 0.67 (0.19–2.33; 0.5323) | 0.50 (0.17–1.44; 0.1990) | 1.35 (0.47–3.88; 0.5810) |
Streptococcus spp. (other) | 12/3/17 | 2.69 (0.76–9.56; 0.1252) | 0.78 (0.37–1.63; 0.5026) | 3.47 (1.02–11.80; 0.0472) * |
E. faecalis | 58/26/53 | 1.50 (0.94–2.40; 0.0875) | 1.20 (0.83–1.75; 0.3354) | 1.25 (0.78–2.00; 0.3580) |
E. faecium | 29/39/65 | 0.50 (0.31–0.81; 0.0051) * | 0.49 (0.32–0.76; 0.0015) * | 1.02 (0.68–1.53; 0.9201) |
Enterococcus spp. (other) | 15/17/83 | 0.59 (0.30–1.19; 0.1432) | 0.20 (0.11–0.35; <0.0001) * | 2.99 (1.77–5.06; <0.0001) * |
Gram-negative | ||||
E. coli | 415/313/442 | 0.89 (0.76–1.05; 0.1630) | 1.03 (0.89–1.19; 0.6664) | 0.86 (0.74–1.01; 0.0700) |
K. pneumoniae | 229/138/227 | 1.12 (0.90–1.39; 0.3229) | 1.11 (0.92–1.34; 0.2888) | 1.01 (0.81–1.26; 0.9474) |
Klebsiella spp. (other) | 28/12/18 | 1.57 (0.80–3.10; 0.1922) | 1.71 (0.94–3.10; 0.0769) | 0.92 (0.44–1.91; 0.8206) |
P. mirabilis | 85/26/65 | 2.20 (1.41–3.43; 0.0005) * | 1.44 (1.04–1.99; 0.0298) * | 1.53 (0.97–2.42; 0.0688) |
Proteus spp. (other) | 5/3/2 | 1.12 (0.27–4.70; 0.8746) | 2.75 (0.53–14.10; 0.2271) | 0.41 (0.07–2.45; 0.3268) |
Enterobacter spp. | 43/46/40 | 0.63 (0.41–0.96; 0.0309) * | 1.18 (0.77–1.82; 0.4503) | 0.53 (0.35–0.82; 0.0039) * |
Citrobacter spp. | 14/7/13 | 1.35 (0.54–3.34; 0.5211) | 1.18 (0.56–2.52; 0.6618) | 1.14 (0.45–2.86; 0.7840) |
Salmonella spp. | 4/4/15 | 0.67 (0.17–2.70; 0.5764) | 0.29 (0.10–0.88; 0.0294) * | 2.30 (0.76–6.93; 0.1401) |
S. marcescens | 57/40/22 | 0.96 (0.64–1.44; 0.8432) | 2.85 (1.74–4.67; <0.0001) * | 0.34 (0.20–0.57; <0.0001) * |
Serratia spp. (other) | 2/6/1 | 0.22 (0.05–1.11; 0.0675) | 2.20 (0.20–4.27; 0.5201) | 0.10 (0.01–0.85; 0.0347) * |
Morganella spp. | 9/3/2 | 2.02 (0.55–7.47; 0.2921) | 1.41 (0.53–3.80; 0.4928) | 1.43 (0.37–5.53; 0.6053) |
P. aeruginosa | 224/187/197 | 0.81 (0.66–0.99; 0.0388) * | 1.25 (1.02–1.53; 0.0279) * | 0.65 (0.50–0.80; <0.0001) * |
Pseudomonas spp. (other) | 5/5/15 | 0.67 (0.19–2.33; 0.5323) | 0.37 (0.13–1.01; 0.0523) | 1.84 (0.67–5.06; 0.2396) |
A. baumannii | 34/22/39 | 1.04 (0.61–1.79; 0.8849) | 0.96 (0.60–1.52; 0.8577) | 1.09 (0.64–1.84; 0.7593) |
Acinetobacter spp. (other) | 10/8/15 | 0.84 (0.33–2.14; 0.7170) | 0.73 (0.33–1.63; 0.4478) | 1.15 (0.49–2.71; 0.7526) |
S. maltophilia | 44/85/58 | 0.35 (0.24–0.50; <0.0001) * | 0.83 (0.56–1.24; 0.3687) | 0.42 (0.30–0.59; <0.0001) * |
S. paucimobilis | 18/2/2 | 6.06 (1.40–6.15; 0.0157) * | 9.90 (2.29–42.60; 0.0021) * | 0.61 (0.09–4.35; 0.6241) |
Chryseobacterium spp. | 9/14/- | 0.43 (0.19–1.00; 0.0507) | NA | NA |
Fungi | ||||
C. albicans | 122/129/135 | 0.64 (0.49–0.82; 0.0005) * | 0.99 (0.77–1.28; 0.9600) | 0.64 (0.50–0.82; 0.0005) * |
C. parapsilosis | 65/53/28 | 0.83 (0.57–1.19; 0.3081) | 2.55 (1.63–3.99; <0.0001) * | 0.32 (0.20–0.51; <0.0001) * |
C. tropicalis | 17/14/8 | 0.82 (0.40–1.66; 0.5785) | 2.34 (1.01–5.42; 0.0483) | 0.35 (0.15–0.84; 0.0181) * |
Candida spp. (other) | 36/37/27 | 0.66 (0.41–1.04; 0.0735) | 1.47 (0.89–2.42; 0.1353) | 0.45 (0.27–0.74; 0.0016) * |
Other | 20/17/9 | 0.79 (0.41–1.52; 0.4821) | 2.44 (1.11–5.38; 0.0264) | 0.32 (0.14–0.73; 0.0064) * |
Species | n (2019/2021/2023) | 2019 vs. 2021 | 2019 vs. 2023 | 2023 vs. 2021 |
---|---|---|---|---|
Total | 1438/914/1842 | |||
Gram-positive | ||||
S. aureus | 139/92/176 | 0.96 (0.73–1.27; 0.7798) | 1.01 (0.8–1.28; 0.9259) | 0.95 (0.73–1.24; 0.7084) |
CoNS | 77/46/150 | 1.07 (0.73–1.55; 0.7413) | 0.66 (0.50–0.87; 0.0037) * | 1.62 (1.15–2.28; 0.0053) * |
S. pneumoniae | 165/53/134 | 1.98 (1.44–2.73; <0.0001) * | 1.58 (1.24–2.00; 0.0002) * | 1.26 (0.91–1.74; 0.1720) |
Streptococcus group A | 104/10/238 | 6.62 (3.44–12.73; <0.0001) * | 0.56 (0.44–0.71; <0.0001) * | 11.83 (6.25–22.38; <0.0001) * |
Streptococcus group B | 1/1/7 | 0.64 (0.04–10.19; 0.7493) | 0.18 (0.02–1.49; 0.1122) | 3.48 (0.43–28.32; 0.2439) |
Streptococcus spp. (other) | 10/2/15 | 3.18 (0.70–14.55; 0.1357) | 0.85 (0.38–1.91; 0.6991) | 3.73 (0.85–16.34; 0.0809) |
E. faecium | 12/20/35 | 0.38 (0.19–0.78; 0.0088) * | 0.44 (0.23–0.85; 0.0144) * | 0.87 (0.5–1.52; 0.6223) |
E. faecalis | 50/19/47 | 1.67 (0.98–2.86; 0.0588) | 1.36 (0.91–2.04; 0.1341) | 1.23 (0.72–2.11; 0.4523) |
Enterococcus spp. (other) | 10/13/60 | 0.49 (0.21–1.12; 0.0910) | 0.21 (0.11–0.42; <0.0001) * | 2.29 (1.25–4.20; 0.0071) * |
Gram-negative | ||||
E. coli | 287/231/365 | 0.79 (0.65–0.96; 0.0165) * | 1.01 (0.85–1.19; 0.9387) | 0.79 (0.65–0.94; 0.0096) * |
K. pneumoniae | 139/91/172 | 0.97 (0.74–1.28; 0.8403) | 1.03 (0.82–1.31; 0.7755) | 0.94 (0.72–1.23; 0.6453) |
Klebsiella spp. (other) | 13/9/14 | 0.92 (0.39–2.16; 0.8465) | 1.19 (0.56–2.54; 0.6548) | 0.77 (0.33–1.79; 0.5488) |
P. mirabilis | 57/19/56 | 1.91 (1.13–3.23; 0.0159) * | 1.30 (0.90–1.90; 0.1666) | 1.46 (0.87–2.48; 0.1552) |
Proteus spp. (other) | 1/3/2 | 0.21 (0.02–2.04; 0.1796) | 0.64 (0.06–7.07; 0.7158) | 0.33 (0.06–1.99; 0.2267) |
Enterobacter spp. | 28/36/27 | 0.49 (0.30–0.82; 0.0059) * | 1.33 (0.78–2.26; 0.2974) | 0.37 (0.22–0.62; 0.0001) * |
Citrobacter spp. | 10/5/12 | 1.27 (0.43–3.74; 0.6608) | 1.07 (0.46–2.48; 0.8802) | 1.19 (0.42–3.40; 0.7412) |
Salmonella spp. | 4/3/12 | 0.85 (0.19–3.80; 0.8298) | 0.43 (0.14–1.33; 0.1410) | 1.99 (0.56–7.06; 0.2880) |
S. marcescens | 43/24/15 | 1.14 (0.69–1.89; 0.6119) | 3.67 (2.03–6.63; <0.0001) * | 0.31 (0.16–0.60; 0.0004) * |
Serratia spp. (other) | 1/3/1 | 0.21 (0.02–2.04; 0.1796) | 1.28 (0.08–20.49; 0.8614) | 0.17 (0.02–1.59; 0.1197) |
Morganella spp. | 5/1/7 | 3.18 (0.37–27.28; 0.2911) | 0.91 (0.29–2.89; 0.8788) | 3.48 (0.43–28.32; 0.2439) |
P. aeruginosa | 104/91/107 | 0.73 (0.54–0.98; 0.0333) * | 1.24 (0.94–1.64; 0.1240) | 0.58 (0.44–0.78; 0.0003) * |
Pseudomonas spp. (other) | 2/3/10 | 0.42 (0.07–2.54; 0.3480) | 0.26 (0.06–1.17; 0.0789) | 1.66 (0.45–6.03; 0.4440) |
A. baumannii | 14/9/26 | 0.99 (0.43–2.3; 0.9809) | 0.69 (0.36–1.32; 0.2645) | 1.44 (0.67–3.08; 0.3522) |
Acinetobacter spp. (other) | 4/3/6 | 0.85 (0.19–3.8; 0.8298) | 0.85 (0.24–3.03; 0.8064) | 0.99 (0.25–3.98; 0.9932) |
S. maltophilia | 13/23/7 | 0.36 (0.18–0.71; 0.0034) * | 2.38 (0.95–5.97; 0.0654) | 0.15 (0.06–0.35; <0.0001) * |
S. paucimobilis | 4/1/- | 2.54 (0.25–125.35; 0.4417) | NA | NA |
Chryseobacterium spp. | 4/1/- | 2.54 (0.25–125.35; 0.4417) | NA | NA |
H. influenzae | -/-/9 | NA | NA | NA |
Fungi | ||||
C. albicans | 64/52/94 | 0.78 (0.54–1.14; 0.2016) | 0.87 (0.63–1.21; 0.4075) | 0.90 (0.63–1.27; 0.5463) |
C. parapsilosis | 31/19/14 | 1.04 (0.58–1.85; 0.8987) | 2.83 (1.50–5.35; 0.0013) * | 0.37 (0.18–0.73; 0.0046) * |
C. tropicalis | 22/16/14 | 0.72 (0.28–1.86; 0.4931) | 3.84 (1.04–14.21; 0.0438) * | 0.19 (0.05–0.70; 0.0132) * |
Candida spp. (other) | 11/8/6 | 0.87 (0.46–1.67; 0.6867) | 2.01 (1.03–3.95; 0.0420) * | 0.43 (0.21–0.89; 0.0237) * |
Other | 64/52/94 | 0.87 (0.35–2.18; 0.7746) | 2.35 (0.87–6.36; 0.0935) | 0.37 (0.13–1.08; 0.0684) |
Species | n (2019/2021/2023) | 2019 vs. 2021 | 2019 vs. 2023 | 2023 vs. 2021 |
---|---|---|---|---|
Total | 444/192/389 | |||
Gram-positive | ||||
S. aureus | 195/123/145 | 0.69 (0.52–0.91; 0.0087) * | 1.18 (0.91–1.52; 0.2064) | 0.58 (0.43–0.78; 0.0003) * |
CoNS | 7/3/6 | 1.01 (0.26–3.94; 0.9897) | 1.02 (0.34–3.07; 0.9688) | 0.99 (0.24–3.99; 0.9855) |
S. pneumoniae | 30/17/47 | 0.76 (0.41–1.42; 0.3917) | 0.56 (0.35–0.90; 0.0171) * | 1.36 (0.76–2.44; 0.2944) |
Streptococcus group A | 87/4/134 | 9.41 (3.40–25.99; <0.0001) * | 0.57 (0.42–0.77; 0.0003) * | 16.53 (6.03–45.37; <0.0001) * |
Streptococcus group B | 3/2/2 | 0.65 (0.11–3.91; 0.6369) | 1.31 (0.22–7.91; 0.7654) | 0.49 (0.07–3.53; 0.4818) |
Streptococcus spp. (other) | 2/1/- | 0.87 (0.05–51.03; 0.8771) | NA | NA |
E. faecalis | 1/2/- | NA | NA | NA |
E. faecium | -/-/1 | NA | NA | NA |
Enterococcus spp. (other) | -/-/4 | |||
Gram-negative | NA | NA | NA | |
E. coli | 49/23/25 | 0.92 (0.55–1.56; 0.7588) | 1.72 (1.04–2.83; 0.0343) * | 0.54 (0.30–0.97; 0.0393) * |
K. pneumoniae | 31/2/3 | 6.70 (1.59–28.29; 0.0096) * | 9.05 (2.75–29.85; 0.0003) * | 0.74 (0.12–4.47; 0.7431) |
Klebsiella spp. (other) | 1/-/- | |||
P. mirabilis | 15/2/4 | 3.24 (0.73–14.32; 0.1205) | 3.29 (1.08–9.98; 0.0359) * | 0.99 (0.18–5.44; 0.9881) |
Enterobacter spp. | 1/-/1 | NA | 0.88 (0.01–68.77; 0.9340) | NA |
S. marcescens | -/1/- | NA | NA | NA |
Morganella spp. | 4/1/- | 1.73 (0.17–85.19; 0.6902) | NA | NA |
P. aeruginosa | 3/5/6 | 0.26 (0.06–1.10; 0.0666) | 0.44 (0.11–1.76; 0.2454) | 0.59 (0.18–1.97; 0.3920) |
Pseudomonas spp. (other) | -/-/1 | NA | NA | NA |
A. baumannii | 1/1/2 | 0.43 (0.03–6.95; 0.5541) | 0.44 (0.04–4.85; 0.5010) | 0.99 (0.09–10.95; 0.9916) |
Acinetobacter spp. (other) | 1/-/- | NA | NA | NA |
H. influenzae | -/-/3 | NA | NA | NA |
Fungi | ||||
C. albicans | 8/2/4 | 1.73 (0.36–8.22; 0.4908) | 1.75 (0.52–5.86; 0.3628) | 0.99 (0.18–5.44; 0.9881) |
C. parapsilosis | 5/-/- | NA | NA | NA |
Candida spp. (other) | -/3/1 | NA | NA | 0.16 (0.02–1.59; 0.1191) |
Species | n (2019/2021/2023) | 2019 vs. 2021 | 2019 vs. 2023 | 2023 vs. 2021 |
---|---|---|---|---|
Total | 601/563/502 | |||
Gram-positive | ||||
S. aureus | 26/40/25 | 0.61 (0.37–1.01; 0.0569) | 0.87 (0.49–1.52; 0.6134) | 0.71 (0.42–1.18; 0.1848) |
CoNS | 35/21/34 | 1.57 (0.90–2.72; 0.1115) | 0.86 (0.53–1.39; 0.5324) | 1.83 (1.05–3.19; 0.0336) * |
S. pneumoniae | 4/2/5 | 1.88 (0.34–10.31; 0.4670) | 0.67 (0.18–2.49; 0.5455) | 2.83 (0.55–14.63; 0.2157) |
Streptococcus group A | -/-/9 | NA | NA | NA |
Streptococcus group B | 1/2/2 | 0.47 (0.04–5.2; 0.5381) | 0.42 (0.04–4.60; 0.4744) | 1.13 (0.16–8.05; 0.9029) |
Streptococcus spp. (other) | -/-/2 | NA | NA | NA |
E. faecium | 17/19/29 | 0.84 (0.43–1.63; 0.6098) | 0.49 (0.26–0.90; 0.0211) * | 1.72 (0.96–3.11; 0.0706) |
E. faecalis | 7/5/6 | 1.32 (0.42–4.17; 0.6406) | 0.97 (0.32–2.91; 0.9575) | 1.36 (0.41–4.47; 0.6168) |
Enterococcus spp. (other) | 5/4/19 | 1.18 (0.31–4.40; 0.8106) | 0.22 (0.08–0.59; 0.0027) * | 5.37 (1.81–15.88; 0.0024) * |
Gram-negative | ||||
E. coli | 79/59/52 | 1.26 (0.88–1.80; 0.2055) | 1.26 (0.87–1.83; 0.2142) | 1.00 (0.67–1.47; 0.9837) |
K. pneumoniae | 59/45/52 | 1.23 (0.82–1.85; 0.3110) | 0.94 (0.64–1.4; 0.7726) | 1.31 (0.86–1.98; 0.2096) |
Klebsiella spp. (other) | 14/3/4 | 4.39 (1.25–15.35; 0.0206) * | 2.91 (0.95–8.90; 0.0609) | 1.51 (0.34–6.76; 0.5927) |
P. mirabilis | 13/5/5 | 2.44 (0.87–6.90; 0.0914) | 2.16 (0.77–6.11; 0.1452) | 1.13 (0.33–3.93; 0.8475) |
Proteus spp. (other) | 4/-/- | NA | NA | NA |
Enterobacter spp. | 14/10/12 | 1.32 (0.58–2.99; 0.5112) | 0.97 (0.44–2.12; 0.9402) | 1.36 (0.58–3.17; 0.4814) |
Citrobacter spp. | 4/2/1 | 1.88 (0.34–10.31; 0.4670) | 3.33 (0.37–29.87; 0.2829) | 0.57 (0.05–6.25; 0.6415) |
Salmonella spp. | -/1/3 | NA | NA | 3.39 (0.35–32.70; 0.2911) |
S. marcescens | 14/15/7 | 0.88 (0.42–1.83; 0.7282) | 1.66 (0.67–4.15; 0.2754) | 0.53 (0.21–1.3; 0.1659) |
Serratia spp. (other) | 1/3/- | 0.31 (0.03–3.02; 0.3156) | NA | NA |
Morganella spp. | -/1/- | NA | NA | NA |
P. aeruginosa | 117/91/84 | 1.21 (0.90–1.63; 0.2111) | 1.16 (0.85–1.57; 0.3426) | 1.04 (0.76–1.44; 0.7962) |
Pseudomonas spp. (other) | 3/2/4 | 1.41 (0.23–8.47; 0.7071) | 0.62 (0.14–2.80; 0.5381) | 2.26 (0.41–12.39; 0.3477) |
A. baumannii | 19/12/11 | 1.49 (0.72–3.09; 0.2867) | 1.44 (0.68–3.05; 0.3447) | 1.04 (0.45–2.37; 0.9335) |
Acinetobacter spp. (other) | 5/5/9 | 0.94 (0.27–3.26; 0.9225) | 0.46 (0.15–1.39; 0.1689) | 2.03 (0.68–6.11; 0.2058) |
S. maltophilia | 31/62/51 | 0.47 (0.30–0.73; 0.0009) * | 0.51 (0.32–0.80; 0.0038) * | 0.93 (0.63–1.37; 0.7131) |
S. paucimobilis | 14/1/2 | 13.16 (1.73–100.42; 0.0129) * | 5.82 (1.32–25.75; 0.0202) * | 2.26 (0.2–25.0; 0.5061) |
Chryseobacterium spp. | 5/13/- | 0.36 (0.13–1.02; 0.0547) | NA | NA |
H. influenzae | -/-/1 | NA | NA | NA |
Fungi | ||||
C. albicans | 50/75/37 | 0.63 (0.43–0.91; 0.0148) * | 1.12 (0.72–1.75; 0.6029) | 0.56 (0.37–0.84; 0.0054) * |
C. parapsilosis | 29/34/14 | 0.80 (0.48–1.33; 0.3947) | 1.72 (0.90–3.30; 0.1001) | 0.47 (0.25–0.88; 0.0180) * |
C. tropicalis | 8/6/5 | 1.25 (0.43–3.64; 0.6775) | 1.33 (0.43–4.09; 0.6178) | 0.94 (0.29–3.10; 0.9213) |
Candida spp. (other) | 14/18/12 | 0.73 (0.36–1.48; 0.3860) | 0.97 (0.44–2.12; 0.9402) | 0.75 (0.36–1.58; 0.4533) |
Other | 9/9/3 | 0.94 (0.37–2.39; 0.8965) | 2.50 (0.67–9.27; 0.1718) | 0.38 (0.10–1.40; 0.1447) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vulcanescu, D.D.; Bagiu, I.C.; Susan, M.; Sorop, V.B.; Harich, O.; Oprisoni, A.; Galis, R.; Horhat, F.G. Temporal Shifts in Pathogen Profiles Due to the COVID-19 Pandemic in a Romanian Pediatric Tertiary Hospital. Children 2025, 12, 1258. https://doi.org/10.3390/children12091258
Vulcanescu DD, Bagiu IC, Susan M, Sorop VB, Harich O, Oprisoni A, Galis R, Horhat FG. Temporal Shifts in Pathogen Profiles Due to the COVID-19 Pandemic in a Romanian Pediatric Tertiary Hospital. Children. 2025; 12(9):1258. https://doi.org/10.3390/children12091258
Chicago/Turabian StyleVulcanescu, Dan Dumitru, Iulia Cristina Bagiu, Monica Susan, Virgiliu Bogdan Sorop, Octavia Harich, Andrada Oprisoni, Radu Galis, and Florin George Horhat. 2025. "Temporal Shifts in Pathogen Profiles Due to the COVID-19 Pandemic in a Romanian Pediatric Tertiary Hospital" Children 12, no. 9: 1258. https://doi.org/10.3390/children12091258
APA StyleVulcanescu, D. D., Bagiu, I. C., Susan, M., Sorop, V. B., Harich, O., Oprisoni, A., Galis, R., & Horhat, F. G. (2025). Temporal Shifts in Pathogen Profiles Due to the COVID-19 Pandemic in a Romanian Pediatric Tertiary Hospital. Children, 12(9), 1258. https://doi.org/10.3390/children12091258