Does Breastfeeding Small for Gestational Age Neonates Promote a Healthier Growth Pattern? A Narrative Review
Abstract
1. Introduction
1.1. Small for Gestational Age (SGA)
1.2. Human Milk Composition
1.3. Infant Formula Composition
1.4. Breastfeeding
2. Methods
3. Results
3.1. Preterm SGA Neonates and Breastfeeding
3.2. Full-Term SGA Neonates and Breastfeeding
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Matonti, L.; Blasetti, A.; Chiarelli, F. Nutrition and growth in children. Minerva Pediatr. 2020, 72, 462–471. [Google Scholar] [CrossRef]
- Ren, H.; Zhou, Y.; Liu, J. Nutrition in Early Life and Its Impact Through the Life Course. Nutrients 2025, 17, 632. [Google Scholar] [CrossRef]
- Meiliana, M.; Alexander, T.; Bloomfield, F.H.; Cormack, B.E.; Harding, J.E.; Walsh, O.; Lin, L. Nutrition guidelines for preterm infants: A systematic review. JPEN J. Parenter. Enteral Nutr. 2024, 48, 11–26. [Google Scholar] [CrossRef]
- Moutquin, J.M. Classification and heterogeneity of preterm birth. Br. J. Obstet. Gynaecol. 2003, 110 (Suppl. S20), 30–33. [Google Scholar] [CrossRef]
- Hong, Y.H.; Chung, S. Small for gestational age and obesity related comorbidities. Ann. Pediatr. Endocrinol. Metab. 2018, 23, 4–8. [Google Scholar] [CrossRef]
- Cutland, C.L.; Lackritz, E.M.; Mallett-Moore, T.; Bardají, A.; Chandrasekaran, R.; Lahariya, C.; Nisar, M.I.; Tapia, M.D.; Pathirana, J.; Kochhar, S.; et al. Low birth weight: Case definition & guidelines for data collection, analysis, and presentation of maternal immunization safety data. Vaccine 2017, 35, 6492–6500. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Expert Committee on Physical Status: The Use and Interpretation of Anthropometry. In Physical Status: The Use and Interpretation of Anthropometry: Report of a WHO Expert Committee; World Health Organization: Geneva, Switzerland, 1995. [Google Scholar]
- Kosmeri, C.; Giapros, V.; Rallis, D.; Balomenou, F.; Serbis, A.; Baltogianni, M. Classification and Special Nutritional Needs of SGA Infants and Neonates of Multiple Pregnancies. Nutrients 2023, 15, 2736. [Google Scholar] [CrossRef]
- Hokken-Koelega, A.C.S.; van der Steen, M.; Boguszewski, M.C.S.; Cianfarani, S.; Dahlgren, J.; Horikawa, R.; Mericq, V.; Rapaport, R.; Alherbish, A.; Braslavsky, D.; et al. International Consensus Guideline on Small for Gestational Age: Etiology and Management from Infancy to Early Adulthood. Endocr. Rev. 2023, 44 (Suppl. S3), 539–565. [Google Scholar] [CrossRef] [PubMed]
- Beune, I.M.; Bloomfield, F.H.; Ganzevoort, W.; Embleton, N.D.; Rozance, P.J.; van Wassenaer-Leemhuis, A.G.; Wynia, K.; Gordijn, S.J. Consensus Based Definition of Growth Restriction in the Newborn. J. Pediatr. 2018, 196, 71–76.e1. [Google Scholar] [CrossRef]
- Haksari, E.L.; Hakimi, M.; Ismail, D. Neonatal mortality in small for gestational age infants based on reference local newborn curve at secondary and tertiary hospitals in Indonesia. BMC Pediatr. 2023, 23, 214. [Google Scholar] [CrossRef]
- Lu, D.; Yu, Y.; Ludvigsson, J.F.; Oberg, A.S.; Sørensen, H.T.; László, K.D.; Li, J.; Cnattingius, S. Birth Weight, Gestational Age, and Risk of Cardiovascular Disease in Early Adulthood: Influence of Familial Factors. Am. J. Epidemiol. 2023, 192, 866–877. [Google Scholar] [CrossRef]
- Ludvigsson, J.F.; Lu, D.; Hammarström, L.; Cnattingius, S.; Fang, F. Small for gestational age and risk of childhood mortality: A Swedish population study. PLoS Med. 2018, 15, e1002717. [Google Scholar] [CrossRef]
- Haksari, E.L.; Hakimi, M.; Ismail, D. Respiratory distress in small for gestational age infants based on local newborn curve prior to hospital discharge. Front. Pediatr. 2022, 10, 986695. [Google Scholar] [CrossRef]
- Bæk, O.; Ren, S.; Brunse, A.; Sangild, P.T.; Nguyen, D.N. Impaired Neonatal Immunity and Infection Resistance Following Fetal Growth Restriction in Preterm Pigs. Front. Immunol. 2020, 11, 1808. [Google Scholar] [CrossRef]
- Cartwright, R.D.; Anderson, N.H.; Sadler, L.C.; Harding, J.E.; McCowan, L.M.E.; McKinlay, C.J.D. Neonatal morbidity and small and large size for gestation: A comparison of birthweight centiles. J. Perinatol. 2020, 40, 732–742. [Google Scholar] [CrossRef] [PubMed]
- Chang, H.Y.; Chiang Chiau, J.S.; Chang, J.H.; Hsu, C.H.; Lin, C.Y.; Ko, M.H.; Lee, H.C. Characteristics of Gut Microbiota in Small for Gestational Age Infants with Very Low Birth Weight. Nutrients 2022, 14, 5158. [Google Scholar] [CrossRef] [PubMed]
- Pagano, F.; Gaeta, E.; Morlino, F.; Riccio, M.T.; Giordano, M.; De Bernardo, G. Long-term benefits of exclusive human milk diet in small for gestational age neonates: A systematic review of the literature. Ital. J. Pediatr. 2024, 50, 88. [Google Scholar] [CrossRef] [PubMed]
- Cauzzo, C.; Chiavaroli, V.; Di Valerio, S.; Chiarelli, F. Birth size, growth trajectory and later cardio-metabolic risk. Front. Endocrinol. 2023, 14, 1187261. [Google Scholar] [CrossRef]
- Eves, R.; Mendonça, M.; Bartmann, P.; Wolke, D. Small for gestational age-cognitive performance from infancy to adulthood: An observational study. Br. J. Obstet. Gynaecol. 2020, 127, 1598–1606. [Google Scholar] [CrossRef]
- Sacchi, C.; Marino, C.; Nosarti, C.; Vieno, A.; Visentin, S.; Simonelli, A. Association of Intrauterine Growth Restriction and Small for Gestational Age Status with Childhood Cognitive Outcomes: A Systematic Review and Meta-analysis. JAMA Pediatr. 2020, 174, 772–781. [Google Scholar] [CrossRef]
- Dulloo, A.G. Regulation of fat storage via suppressed thermogenesis: A thrifty phenotype that predisposes individuals with catch-up growth to insulin resistance and obesity. Horm. Res. 2006, 65 (Suppl. S3), 90–97. [Google Scholar] [CrossRef]
- Ibáñez, L.; Ong, K.; Dunger, D.B.; de Zegher, F. Early development of adiposity and insulin resistance after catch-up weight gain in small-for-gestational-age children. J. Clin. Endocrinol. Metab. 2006, 91, 2153–2158. [Google Scholar] [CrossRef]
- Goedegebuure, W.J.; Van der Steen, M.; Smeets, C.C.J.; Kerkhof, G.F.; Hokken-Koelega, A.C.S. SGA-born adults with postnatal catch-up have a persistently unfavourable metabolic health profile and increased adiposity at age 32 years. Eur. J. Endocrinol. 2022, 187, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Cho, W.K.; Suh, B.K. Catch-up growth and catch-up fat in children born small for gestational age. Korean J. Pediatr. 2016, 59, 1–7. [Google Scholar] [CrossRef]
- Kelishadi, R.; Haghdoost, A.A.; Jamshidi, F.; Aliramezany, M.; Moosazadeh, M. Low birthweight or rapid catch-up growth: Which is more associated with cardiovascular disease and its risk factors in later life? A systematic review and cryptanalysis. Paediatr. Int. Child Health 2015, 35, 110–123. [Google Scholar] [CrossRef]
- Kim, S.Y.; Yi, D.Y. Components of human breast milk: From macronutrient to microbiome and microRNA. Clin. Exp. Pediatr. 2020, 63, 301–309. [Google Scholar] [CrossRef]
- Martin, C.R.; Ling, P.R.; Blackburn, G.L. Review of infant feeding: Key features of breast milk and infant formula. Nutrients 2016, 8, 279. [Google Scholar] [CrossRef]
- Plaza-Díaz, J.; Fontana, L.; Gil, A. Human milk oligosaccharides and immune system development. Nutrients 2018, 10, 1038. [Google Scholar] [CrossRef] [PubMed]
- Bobiński, R.; Bobińska, J. Fatty acids of human milk—A review. Int. J. Vitam. Nutr. Res. 2022, 92, 280–291. [Google Scholar] [CrossRef] [PubMed]
- Szyller, H.; Antosz, K.; Batko, J.; Mytych, A.; Dziedziak, M.; Wrześniewska, M.; Braksator, J.; Pytrus, T. Bioactive components of human milk and their impact on child’s health and development, literature review. Nutrients 2024, 16, 1487. [Google Scholar] [CrossRef]
- Ballard, O.; Morrow, A.L. Human milk composition: Nutrients and bioactive factors. Pediatr. Clin. N. Am. 2013, 60, 49–74. [Google Scholar] [CrossRef]
- Young, L.; McGuire, W. Immunologic properties of human milk and clinical implications in the neonatal population. Neoreviews 2020, 21, e809–e816. [Google Scholar] [CrossRef]
- Palmeira, P.; Carneiro-Sampaio, M. Immunology of breast milk. Rev. Assoc. Med. Bras. 2016, 62, 584–593. [Google Scholar] [CrossRef]
- Rio-Aige, K.; Azagra-Boronat, I.; Castell, M.; Selma-Royo, M.; Collado, M.C.; Rodríguez-Lagunas, M.J.; Pérez-Cano, F.J. The breast milk immunoglobulinome. Nutrients 2021, 13, 1810. [Google Scholar] [CrossRef]
- Kiełbasa, A.; Gadzała-Kopciuch, R.; Buszewski, B. Cytokines—Biogenesis and their role in human breast milk and determination. Int. J. Mol. Sci. 2021, 22, 6238. [Google Scholar] [CrossRef] [PubMed]
- Gidrewicz, D.A.; Fenton, T.R. A systematic review and meta-analysis of the nutrient content of preterm and term breast milk. BMC Pediatr. 2014, 14, 216. [Google Scholar] [CrossRef]
- Gregory, K.E.; Walker, W.A. Immunologic factors in human milk and disease prevention in the preterm infant. Curr. Pediatr. Rep. 2013, 1, 10. [Google Scholar] [CrossRef]
- Araújo, E.D.; Gonçalves, A.K.; Cornetta, M.C.; Cunha, H.; Cardoso, M.L.; Morais, S.S.; Giraldo, P.C. Evaluation of the secretory immunoglobulin a levels in the colostrum and milk of mothers of term and pre-term newborns. Braz. J. Infect. Dis. 2005, 9, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Castellote, C.; Casillas, R.; Ramírez-Santana, C.; Pérez-Cano, F.J.; Castell, M.; Moretones, M.G.; López-Sabater, M.C.; Franch, A. Premature delivery influences the immunological composition of colostrum and transitional and mature human milk. J. Nutr. 2011, 141, 1181–1187. [Google Scholar] [CrossRef] [PubMed]
- Arslanoglu, S.; Boquien, C.Y.; King, C.; Lamireau, D.; Tonetto, P.; Barnett, D.; Bertino, E.; Gaya, A.; Gebauer, C.; Grovslien, A.; et al. Fortification of human milk for preterm infants: Update and recommendations of the European Milk Bank Association (EMBA) Working Group on Human Milk Fortification. Front. Pediatr. 2019, 7, 76. [Google Scholar] [CrossRef]
- Valverde, R.; Dinerstein, N.A.; Vain, N. Mother’s own milk and donor milk. World Rev. Nutr. Diet. 2021, 122, 212–224. [Google Scholar] [CrossRef]
- Li, Y.; Chi, C.; Li, C.; Song, J.; Song, Z.; Wang, W.; Sun, J. Efficacy of donated milk in early nutrition of preterm infants: A meta-analysis. Nutrients 2022, 14, 1724. [Google Scholar] [CrossRef]
- Gates, A.; Hair, A.B.; Salas, A.A.; Thompson, A.B.; Stansfield, B.K. Nutrient composition of donor human milk and comparisons to preterm human milk. J. Nutr. 2023, 153, 2622–2630. [Google Scholar] [CrossRef]
- Bakshi, S.; Paswan, V.K.; Yadav, S.P.; Bhinchhar, B.K.; Kharkwal, S.; Rose, H.; Kanetkar, P.; Kumar, V.; Al-Zamani, Z.A.S.; Bunkar, D.S. A comprehensive review on infant formula: Nutritional and functional constituents, recent trends in processing and its impact on infants’ gut microbiota. Front. Nutr. 2023, 10, 1194679. [Google Scholar] [CrossRef]
- Chong, H.Y.; Tan, L.T.; Law, J.W.; Hong, K.W.; Ratnasingam, V.; Ab Mutalib, N.S.; Lee, L.H.; Letchumanan, V. Exploring the potential of human milk and formula milk on infants’ gut and health. Nutrients 2022, 14, 3554. [Google Scholar] [CrossRef] [PubMed]
- Hay, W.W., Jr.; Hendrickson, K.C. Preterm formula use in the preterm very low birth weight infant. Semin. Fetal Neonatal Med. 2017, 22, 15–22. [Google Scholar] [CrossRef] [PubMed]
- Eidelman, A.I.; Schanler, R.J.; Johnston, M.; Landers, S.; Noble, L.; Szucs, K.; Viehmann, L. Breastfeeding and the use of human milk. Pediatrics 2012, 129, e827–e841. [Google Scholar] [CrossRef] [PubMed]
- Muro-Valdez, J.C.; Meza-Rios, A.; Aguilar-Uscanga, B.R.; Lopez-Roa, R.I.; Medina-Díaz, E.; Franco-Torres, E.M.; Zepeda-Morales, A.S.M. Breastfeeding-related health benefits in children and mothers: Vital organs perspective. Medicina 2023, 59, 1535. [Google Scholar] [CrossRef]
- Embleton, N.D.; Moltu, S.J.; Lapillonne, A.; van den Akker, C.H.P.; Carnielli, V.; Fusch, C.; Gerasimidis, K.; van Goudoever, J.B.; Haiden, N.; Iacobelli, S.; et al. Enteral nutrition in preterm infants (2022): A position paper from the ESPGHAN Committee on Nutrition and invited experts. J. Pediatr. Gastroenterol. Nutr. 2023, 76, 248–268. [Google Scholar] [CrossRef]
- World Health Organization. Breastfeeding. Available online: https://www.who.int/health-topics/breastfeeding (accessed on 20 August 2025).
- Victora, C.G.; Bahl, R.; Barros, A.J.D.; França, G.V.A.; Horton, S.; Krasevec, J.; Murch, S.; Sankar, M.J.; Walker, N.; Rollins, N.C. Short-Term Effects of Breastfeeding: A Systematic Review on the Benefits of Breastfeeding on Diarrhoea and Pneumonia Mortality; World Health Organization: Geneva, Switzerland, 2013; ISBN 978-92-4-150612-0. Available online: https://www.who.int/publications/i/item/9789241506120 (accessed on 21 August 2025).
- Horta, B.L. Breastfeeding: Investing in the future. Breastfeed. Med. 2019, 14, S11–S12. [Google Scholar] [CrossRef]
- Fan, H.S.L.; Fong, D.Y.T.; Lok, K.Y.W.; Chooniedass, R.; Wittenberg, K.; Tarrant, M. Effect of expressed human milk feeding on breastfeeding duration in term infants: A systematic review and meta-analysis. Int. J. Gynaecol. Obstet. 2025; in press. [Google Scholar] [CrossRef]
- Greer, F.R.; Sicherer, S.H.; Burks, A.W.; COMMITTEE ON NUTRITION; SECTION ON ALLERGY AND IMMUNOLOGY. The effects of early nutritional interventions on the development of atopic disease in infants and children: The role of maternal dietary restriction, breastfeeding, hydrolyzed formulas, and timing of introduction of allergenic complementary foods. Pediatrics 2019, 143, e20190281. [Google Scholar] [CrossRef] [PubMed]
- Chantry, C.J.; Howard, C.R.; Auinger, P. Full breastfeeding duration and associated decrease in respiratory tract infection in US children. Pediatrics 2006, 117, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Kramer, M.S.; Aboud, F.; Mironova, E.; Vanilovich, I.; Platt, R.W.; Matush, L.; Igumnov, S.; Fombonne, E.; Bogdanovich, N.; Ducruet, T.; et al. Breastfeeding and child cognitive development: New evidence from a large randomized trial. Arch. Gen. Psychiatry 2008, 65, 578–584. [Google Scholar] [CrossRef]
- Li, S.; Wang, X.; Li, X.; Zhang, W.; Guo, Y.; Xu, N.; Luo, J.; Zhu, S.; He, W. Breastfeeding in infancy and cardiovascular disease in middle-aged and older adulthood: A prospective study of 0.36 million UK Biobank participants. J. Nutr. Health Aging 2024, 28, 100347. [Google Scholar] [CrossRef]
- Boquien, C.Y. Human milk: An ideal food for nutrition of preterm newborn. Front. Pediatr. 2018, 6, 295. [Google Scholar] [CrossRef]
- Chehrazi, M.; Lanoue, J.; Ougham, K.; Moss, B.; Uthaya, S.; Modi, N. Outcomes in very preterm infants receiving an exclusive human milk diet, or their own mother’s milk supplemented with preterm formula. Early Hum. Dev. 2023, 187, 105880. [Google Scholar] [CrossRef]
- Nejsum, F.M.; Måstrup, R.; Torp-Pedersen, C.; Løkkegaard, E.C.L.; Wiingreen, R.; Hansen, B.M. Exclusive breastfeeding: Relation to gestational age, birth weight, and early neonatal ward admission. A nationwide cohort study of children born after 35 weeks of gestation. PLoS ONE 2023, 18, e0285476. [Google Scholar] [CrossRef]
- Ruys, C.A.; Hollanders, J.J.; Bröring, T.; van Schie, P.E.M.; van der Pal, S.M.; van de Lagemaat, M.; Lafeber, H.N.; Rotteveel, J.; Finken, M.J.J. Early-life growth of preterm infants and its impact on neurodevelopment. Pediatr. Res. 2019, 85, 283–292. [Google Scholar] [CrossRef]
- Hu, F.; Tang, Q.; Wang, Y.; Wu, J.; Ruan, H.; Lu, L.; Tao, Y.; Cai, W. Analysis of nutrition support in very low-birth-weight infants with extrauterine growth restriction. Nutr. Clin. Pract. 2019, 34, 436–443. [Google Scholar] [CrossRef] [PubMed]
- Fleig, L.; Hagan, J.; Lee, M.L.; Abrams, S.A.; Hawthorne, K.M.; Hair, A.B. Growth outcomes of small for gestational age preterm infants before and after implementation of an exclusive human milk-based diet. J. Perinatol. 2021, 41, 1859–1864. [Google Scholar] [CrossRef]
- Visuthranukul, C.; Abrams, S.A.; Hawthorne, K.M.; Hagan, J.L.; Hair, A.B. Premature small for gestational age infants fed an exclusive human milk-based diet achieve catch-up growth without metabolic consequences at 2 years of age. Arch. Dis. Child Fetal Neonatal Ed. 2019, 104, F242–F247. [Google Scholar] [CrossRef] [PubMed]
- Belfort, M.B.; Edwards, E.M.; Greenberg, L.T.; Parker, M.G.; Ehret, D.Y.; Horbar, J.D. Diet, weight gain, and head growth in hospitalized US very preterm infants: A 10-year observational study. Am. J. Clin. Nutr. 2019, 109, 1373–1379. [Google Scholar] [CrossRef]
- Hofi, L.; Flidel-Rimon, O.; Hershkovich-Shporen, C.; Zaharoni, H.; Birk, R. Differences in growth patterns and catch-up growth of small for gestational age preterm infants fed on fortified mother’s own milk vs. preterm formula. Br. J. Nutr. 2023, 129, 2046–2053. [Google Scholar] [CrossRef]
- Bushati, C.; Chan, B.; Harmeson Owen, A.; Woodbury, A.; Yang, M.; Fung, C.; Lechtenberg, E.; Rigby, M.; Baserga, M. Challenges in implementing exclusive human milk diet to extremely low-birth-weight infants in a Level III neonatal intensive care unit. Nutr. Clin. Pract. 2021, 36, 1198–1206. [Google Scholar] [CrossRef]
- Vesel, L.; Bellad, R.M.; Manji, K.; Saidi, F.; Velasquez, E.; Sudfeld, C.R.; Miller, K.; Bakari, M.; Lugangira, K.; Kisenge, R.; et al. Feeding practices and growth patterns of moderately low birthweight infants in resource-limited settings: Results from a multisite, longitudinal observational study. BMJ Open 2023, 13, e067316. [Google Scholar] [CrossRef]
- Vizzari, G.; Morniroli, D.; Tiraferri, V.; Macchi, M.; Gangi, S.; Consales, A.; Ceroni, F.; Cerasani, J.; Mosca, F.; Giannì, M.L. Postnatal growth of small for gestational age late preterm infants: Determinants of catch-up growth. Pediatr. Res. 2023, 94, 365–370. [Google Scholar] [CrossRef]
- Santiago, A.C.T.; Cunha, L.P.M.D.; Costa, M.L.; Lyra, P.P.R.; Oliveira, P.R.; Conceição, G.C.D.; Moreira, L.M.O.; Alves, C.A.D. Cardiometabolic evaluation of small for gestational age children: Protective effect of breast milk. Nutr. Hosp. 2021, 38, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Díaz, M.; Bassols, J.; Sebastiani, G.; López-Bermejo, A.; Ibáñez, L.; de Zegher, F. Circulating GLP-1 in infants born small-for-gestational-age: Breast-feeding versus formula-feeding. Int. J. Obes. 2015, 39, 1501–1503. [Google Scholar] [CrossRef] [PubMed]
- Modi, N.; Thomas, E.L.; Harrington, T.A.; Uthaya, S.; Doré, C.J.; Bell, J.D. Determinants of adiposity during preweaning postnatal growth in appropriately grown and growth-restricted term infants. Pediatr. Res. 2006, 60, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Lu, Y.; Qie, D.; Feng, L.; He, G.; Yang, S.; Yang, F. Early-life weight gain patterns of term small-for-gestational-age infants and the predictive ability for later childhood overweight/obesity: A prospective cohort study. Front. Endocrinol. 2022, 13, 1030216. [Google Scholar] [CrossRef]
- de Zegher, F.; Sebastiani, G.; Díaz, M.; Sánchez-Infantes, D.; Lopez-Bermejo, A.; Ibáñez, L. Body composition and circulating high-molecular-weight adiponectin and IGF-I in infants born small for gestational age: Breast-versus formula-feeding. Diabetes 2012, 61, 1969–1973. [Google Scholar] [CrossRef]
- Gupta, M.; Zaheer, J.; Jora, R.; Kaul, V.; Gupta, R. Breastfeeding and insulin levels in low birth weight neonates: A randomized study. Indian J. Pediatr. 2010, 77, 509–513. [Google Scholar] [CrossRef]
- Lind, M.V.; Larnkjær, A.; Mølgaard, C.; Michaelsen, K.F. Breastfeeding, breast milk composition, and growth outcomes. In Recent Research in Nutrition and Growth: 89th Nestlé Nutrition Institute Workshop, Dubai, March 2017; S. Karger: Berlin/Heidelberg, Germany, 2018; Volume 89, pp. 63–77. [Google Scholar] [CrossRef]
- Ziegler, E.E. Growth of breast-fed and formula-fed infants. Nestle Nutr. Workshop Ser. Pediatr. Program 2006, 58, 51–59. [Google Scholar] [CrossRef]
- Azad, M.B.; Vehling, L.; Chan, D.; Klopp, A.; Nickel, N.C.; McGavock, J.M.; Becker, A.B.; Mandhane, P.J.; Turvey, S.E.; Moraes, T.J.; et al. Infant feeding and weight gain: Separating breast milk from breastfeeding and formula from food. Pediatrics 2018, 142, e20181092. [Google Scholar] [CrossRef]
- Giannì, M.L.; Consales, A.; Morniroli, D.; Vizzari, G.; Mosca, F. The “breastfeeding paradox” as a guide for the assessment of premature infants growth: It is more than just weigh-ins. Breastfeed. Med. 2023, 18, 385–387. [Google Scholar] [CrossRef] [PubMed]
- Rozé, J.C.; Darmaun, D.; Boquien, C.Y.; Flamant, C.; Picaud, J.C.; Savagner, C.; Claris, O.; Lapillonne, A.; Mitanchez, D.; Branger, B.; et al. The apparent breastfeeding paradox in very preterm infants: Relationship between breast feeding, early weight gain and neurodevelopment based on results from two cohorts, EPIPAGE and LIFT. BMJ Open 2012, 2, e000834. [Google Scholar] [CrossRef] [PubMed]
- Dewey, K.G. Growth characteristics of breast-fed compared to formula-fed infants. Biol. Neonate 1998, 74, 94–105. [Google Scholar] [CrossRef] [PubMed]
- Bell, K.A.; Wagner, C.L.; Feldman, H.A.; Shypailo, R.J.; Belfort, M.B. Associations of infant feeding with trajectories of body composition and growth. Am. J. Clin. Nutr. 2017, 106, 491–498. [Google Scholar] [CrossRef]
- Agostoni, C.; Grandi, F.; Giannì, M.L.; Silano, M.; Torcoletti, M.; Giovannini, M.; Riva, E. Growth patterns of breast fed and formula fed infants in the first 12 months of life: An Italian study. Arch. Dis. Child. 1999, 81, 395–399. [Google Scholar] [CrossRef]
- Lucas, A.; Fewtrell, M.S.; Davies, P.S.; Bishop, N.J.; Clough, H.; Cole, T.J. Breastfeeding and catch-up growth in infants born small for gestational age. Acta Paediatr. 1997, 86, 564–569. [Google Scholar] [CrossRef]
- Santiago, A.C.T.; Cunha, L.P.M.D.; Vieira, N.S.A.; Oliveira Moreira, L.M.; Oliveira, P.R.; Lyra, P.P.R.; Alves, C.A.D. Breastfeeding in children born small for gestational age and future nutritional and metabolic outcomes: A systematic review. J. Pediatr. 2019, 95, 264–274. [Google Scholar] [CrossRef]
- Lang Morović, M.; Musić Milanović, S. Breastfeeding duration as a predictor of childhood lifestyle habits, overweight and obesity in second- and third-grade schoolchildren in Croatia. Acta Clin. Croat. 2019, 58, 481–490. [Google Scholar] [CrossRef]
- Dalle Molle, R.; Bischoff, A.R.; Portella, A.K.; Silveira, P.P. The fetal programming of food preferences: Current clinical and experimental evidence. J. Dev. Orig. Health Dis. 2016, 7, 222–230. [Google Scholar] [CrossRef]
- Disantis, K.I.; Collins, B.N.; Fisher, J.O.; Davey, A. Do infants fed directly from the breast have improved appetite regulation and slower growth during early childhood compared with infants fed from a bottle? Int. J. Behav. Nutr. Phys. Act. 2011, 8, 89. [Google Scholar] [CrossRef] [PubMed]
- Ross, M.G.; Desai, M. Developmental programming of appetite/satiety. Ann. Nutr. Metab. 2014, 64 (Suppl. S1), 36–44. [Google Scholar] [CrossRef]
- Farrow, C.; Blissett, J. Does maternal control during feeding moderate early infant weight gain? Pediatrics 2006, 118, e293–e298. [Google Scholar] [CrossRef]
- Gopalakrishna, K.P.; Hand, T.W. Influence of maternal milk on the neonatal intestinal microbiome. Nutrients 2020, 12, 823. [Google Scholar] [CrossRef]
- Gila-Diaz, A.; Arribas, S.M.; Algara, A.; Martín-Cabrejas, M.A.; López de Pablo, Á.L.; Sáenz de Pipaón, M.; Ramiro-Cortijo, D. A review of bioactive factors in human breastmilk: A focus on prematurity. Nutrients 2019, 11, 1307. [Google Scholar] [CrossRef] [PubMed]
- Le Doare, K.; Holder, B.; Bassett, A.; Pannaraj, P.S. Mother’s milk: A purposeful contribution to the development of the infant microbiota and immunity. Front. Immunol. 2018, 9, 361. [Google Scholar] [CrossRef] [PubMed]
- Fields, D.A.; Schneider, C.R.; Pavela, G. A narrative review of the associations between six bioactive components in breast milk and infant adiposity. Obesity 2016, 24, 1213–1221. [Google Scholar] [CrossRef]
- Tudehope, D.; Vento, M.; Bhutta, Z.; Pachi, P. Nutritional requirements and feeding recommendations for small for gestational age infants. J. Pediatr. 2013, 162 (Suppl. S3), S81–S89. [Google Scholar] [CrossRef] [PubMed]
- Agostoni, C. Small-for-gestational-age infants need dietary quality more than quantity for their development: The role of human milk. Acta Paediatr. 2005, 94, 827–829. [Google Scholar] [CrossRef]
- Sachs, M.; Dykes, F.; Carter, B. Feeding by numbers: An ethnographic study of how breastfeeding women understand their babies’ weight charts. Int. Breastfeed. J. 2006, 1, 29. [Google Scholar] [CrossRef]
- Sachs, M.; Dykes, F.; Carter, B. Weight monitoring of breastfed babies in the United Kingdom—Interpreting, explaining and intervening. Matern. Child Nutr. 2006, 2, 3–18. [Google Scholar] [CrossRef]
- Fenton, T.R.; Kim, J.H. A systematic review and meta-analysis to revise the Fenton growth chart for preterm infants. BMC Pediatr. 2013, 13, 59. [Google Scholar] [CrossRef]
- Perumal, N.; Ohuma, E.O.; Prentice, A.M.; Shah, P.S.; Al Mahmud, A.; Moore, S.E.; Roth, D.E. Implications for quantifying early life growth trajectories of term-born infants using INTERGROWTH-21st newborn size standards at birth in conjunction with World Health Organization child growth standards in the postnatal period. Paediatr. Perinat. Epidemiol. 2022, 36, 839–850. [Google Scholar] [CrossRef]
- Grummer-Strawn, L.M.; Reinold, C.; Krebs, N.F.; Centers for Disease Control and Prevention (CDC). Use of World Health Organization and CDC growth charts for children aged 0–59 months in the United States. MMWR Recomm. Rep. 2010, 59, 1–15. [Google Scholar]
- Zhu, B.; Zhang, J.; Qiu, L.; Binns, C.; Shao, J.; Zhao, Y.; Zhao, Z. Breastfeeding rates and growth charts—The Zhejiang Infant Feeding Trial. Int. J. Environ. Res. Public Health 2015, 12, 7337–7347. [Google Scholar] [CrossRef] [PubMed]
- Perrella, S.; Gridneva, Z.; Lai, C.T.; Stinson, L.; George, A.; Bilston-John, S.; Geddes, D. Human milk composition promotes optimal infant growth, development and health. Semin. Perinatol. 2021, 45, 151380. [Google Scholar] [CrossRef] [PubMed]
- O’Connor, D.L.; Jacobs, J.; Hall, R.; Adamkin, D.; Auestad, N.; Castillo, M.; Connor, W.E.; Connor, S.L.; Fitzgerald, K.; Groh-Wargo, S.; et al. Growth and development of premature infants fed predominantly human milk, predominantly premature infant formula, or a combination of human milk and premature formula. J. Pediatr. Gastroenterol. Nutr. 2003, 37, 437–446. [Google Scholar] [CrossRef]
- Moreira, D.H.; Gregory, S.B.; Younge, N.E. Human milk fortification and use of infant formulas to support growth in the neonatal intensive care unit. Nutr. Clin. Pract. 2023, 38 (Suppl. S2), S56–S65. [Google Scholar] [CrossRef] [PubMed]
- Rossiter, C.; Cheng, H.; Denney-Wilson, E. Primary healthcare professionals’ role in monitoring infant growth: A scoping review. J. Child Health Care 2024, 28, 880–897. [Google Scholar] [CrossRef] [PubMed]
Study | Type of Study | Population | Study Groups | Gestational Age | Duration of Breastfeeding | Mother’s Own Milk or Donor Milk | Type of Fortification | Type of Measurements | Growth Findings | Other Findings |
---|---|---|---|---|---|---|---|---|---|---|
Fleig et al., 2021 [64] | Multicenter retrospective cohort | 420 SGA neonates, BW < 1250 g | 197 CM, 223 HM | 28 weeks (median) | Hospital discharge | MOM | CMF | Weight, HC, weight gain velocity, and head growth rate | Improved z-scores | Reduction in NEC, surgical NEC, and LOS |
Visuthranukul et al., 2019 [65] | Single-center, longitudinal cohort study | 51 preterm neonates, BW < 1250 g | 33 AGA HM, 18 SGA HM | 26.4 weeks (AGA), 29.3 weeks (SGA) | 34 weeks CA | ND | ND | Anthropometric measurements, serum glucose, non-fasting insulin (12–15 months CA), and X-ray absorptiometry (18–22 months CA) | SGA neonates demonstrated greater catch-up growth without increased adiposity | No increased risk of insulin resistance compared to AGA |
Belford et al., 2019 [66] | Multicenter observational study | 138,703, GA < 32 weeks | 8977 HM, 65,706 HM and CM/HM and FHM, and 64,020 CM | 29 weeks (HM), 29 weeks (HM and CM/HM and HMF), and 28 weeks CM | Hospital discharge | ND | ND | Weight, HC, weight gain velocity, and head growth rate | Unfortified HM nutrition was associated with lower weight and HC | SGA neonates had higher absolute weight gain and head circumference growth compared to AGA |
Hofi et al., 2022 [67] | Retrospective cohort | 80 SGA preterm | 40 HM, 40 CM | 33.8 weeks (HM), 34.7 weeks (CM) | ND | MOM | ND | Weight, length/height, and HC | HM was associated with a twofold loss in weight and length z-scores compared to CM; CM was associated with a fourfold increase in HC z-scores compared to HM | At 2 years CA, both groups had similar positive change in weight and HC z-scores; weight catch-up: 69% HM vs. 86% CM (p = 0.10); height catch-up: 40% HM vs. 68% CM (p = 0.02); HC catch-up: HM: 43% vσ; and PF: 71%, (p = 0.05) |
Bushati et al., 2021 [68] | Prospective observational with historical control | 64 preterm, BW < 1000 g | 15 HM (40% SGA), 49 FHM (18.4% SGA) | 28 weeks (HM), 26 weeks (FHM) | HM group: Transition to FHM after 34 weeks CA | MOM or donor HM | CMF | Tolerability of HM compared to FHM; assessment of growth parameters | Better tolerability of HM (only when unadjusted for SGA status); HM group had significantly lower discharge z-scores in weight and length compared to FHM | Nutrition with HM offered no benefit on the incidence of NEC, LOS, and parenteral nutrition days compared to FHM |
Vesel et al., 2023 [69] | Multicenter prospective observational cohort study | 1114 neonates, BW 1500–2000 g | Variable | ND | ND | Feeding practices, birthweight at 2 weeks and 6 months | Preterm SGA infants had 1.89 and 2.32 times greater risks of being stunted and underweight at 6 months compared to preterm AGA; full-term SGA infants had 2.33, 2.89, and 1.99 times higher risks of being stunted, underweight, and wasted compared with preterm AGA | SGA status (full-term or preterm) and lack of birth weight regain by 2 weeks are important risk parameters for growth failure | ||
Vizzari et al., 2023 [70] | Retrospective study | 175 SGA neonates, GA 34–36 weeks | 18% HM, 36% HM and CM, and 46% CM | 35.2 | ND | MOM | CMF | Weight, length/height, and HC | Infants receiving any HM at discharge had a lower risk of failing to achieve catch-up growth in weight and length at 36 months | Growth trajectory during early infancy and catch-up growth during the first year could be affected by different variables such as being born singleton, having IUGR, and being breastfed |
Study | Type of Study | Population | Study Groups | Duration of Breastfeeding | Duration of Follow-Up | Objective of the Study | Type of Measurements | Growth Findings | Further Findings |
---|---|---|---|---|---|---|---|---|---|
Santiago et al., 2020 [71] | Prospective cohort study | 32 neonates | 20 SGA, 12 AGA | 180 days | Until preschool age | Evaluation of the cardiometabolic profile of SGA infants and comparison to that of AGA | Weight, height, head, neck and waist circumference, skinfolds, fasting blood glucose, insulin, HOMA-IR, and blood pressure (at preschool age) | 85% of SGA infants had recovery of anthropometric parameters for age within the first six months; weight gain velocity was significantly higher than that of AGAs (p < 0.001); and no overweight/obese | Similar cardiometabolic risk factors at preschool AGA and SGA, potentially due to the protective effect of exclusive breastfeeding |
Díaz et al., 2015 [72] | Retrospective cohort study | 117 neonates | 63 AGA HM, 28 SG HM, and 26 CM | ND | Until 4 months | Evaluation of the circulating concentrations of GLP-1 in the study groups | Auxological assessments (at birth, 2 weeks, and 4 months) of GLP-1 levels (birth, 4 months) | Breastfeeding positively affects weight and length | Lower long-term risk of diabetes by preserving normal GLP-1 levels |
Modi et al., 2006 [73] | Prospective cohort study | 35 neonates | 25 AGA, 10 growth-restricted | 6 weeks | Until 6 weeks | Assessment of the adipose tissue content and distribution (birth, 6 weeks) in relation to intrauterine growth restriction, extrauterine growth, and infant nutrition | MRI (to assess adipose tissue content and distribution) | SGA infants exhibited complete catch-up in head growth and adiposity by six weeks | Lower risk of obesity in exclusively breastfed infants |
Li et al., 2022 [74] | Prospective cohort study | 296 SGA | ND | Until 5 years | Evaluation of the utility of early postnatal growth of SGA infants as a predictor for later obesity | Weight, length, and height | Excessive catch-up rates were lower in exclusively breastfed infants; breastfeeding promotes optimal growth | Excessive catch-up weight growth in SGA infants aged 0–2 years increases the risk of obesity at 2–5 years of age | |
Zegher et al., 2012 [75] | Prospective cohort study | 176 neonates | 72 AGA HM, 46 HM SGA, and 56 CM SGA | 4 months | 4 months | Evaluation of the effects of HM vs. CM on weight partitioning and endocrine state of SGA infants | Body composition assessment, high-molecular-weight adiponectin, and IGF-I (birth, 4 months) | Lean mass recovery over fat mass | Normal levels of high-molecular-weight adiponectin, IGF I in SGA HM, and elevated in SGA CM |
Gupta et al., 2010 [76] | Randomized study | 52 neonates, BW < 2500 g | 26 SGA HM, 26 SGA FHM | 3 months | Until 3 months | Weight, length, height (every 15 days until 3 months), and 4 h fasting glucose and insulin levels (birth, 3 months) | Slower and steadier weight gain in HM compared to FHM | Reduced risk of early hyperinsulinemia and insulin resistance in HM (lower 4 h fasting glucose and insulin levels in HM group compared to FHM) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atzemoglou, N.; Tzavellas, N.P.; Dermitzaki, N.; Baltogianni, M.; Balomenou, F.; Serbis, A.; Giapros, V. Does Breastfeeding Small for Gestational Age Neonates Promote a Healthier Growth Pattern? A Narrative Review. Children 2025, 12, 1227. https://doi.org/10.3390/children12091227
Atzemoglou N, Tzavellas NP, Dermitzaki N, Baltogianni M, Balomenou F, Serbis A, Giapros V. Does Breastfeeding Small for Gestational Age Neonates Promote a Healthier Growth Pattern? A Narrative Review. Children. 2025; 12(9):1227. https://doi.org/10.3390/children12091227
Chicago/Turabian StyleAtzemoglou, Natalia, Nikolaos P. Tzavellas, Niki Dermitzaki, Maria Baltogianni, Foteini Balomenou, Anastasios Serbis, and Vasileios Giapros. 2025. "Does Breastfeeding Small for Gestational Age Neonates Promote a Healthier Growth Pattern? A Narrative Review" Children 12, no. 9: 1227. https://doi.org/10.3390/children12091227
APA StyleAtzemoglou, N., Tzavellas, N. P., Dermitzaki, N., Baltogianni, M., Balomenou, F., Serbis, A., & Giapros, V. (2025). Does Breastfeeding Small for Gestational Age Neonates Promote a Healthier Growth Pattern? A Narrative Review. Children, 12(9), 1227. https://doi.org/10.3390/children12091227