Respiratory Muscle Function in Children and Adolescents with Cystic Fibrosis in the Era of CFTR Modulator Therapies
Abstract
1. Introduction
2. Methods
2.1. Study Design and Ethical Considerations
2.2. Participants
2.3. Variables
2.3.1. Lung Function
2.3.2. Maximal Expiratory and Inspiratory Pressures
2.3.3. Diet Quality
2.3.4. Physical Activity
2.4. Statistical Analysis
3. Results
3.1. Characteristics of the Sample
3.2. MIP and MEP Results
4. Discussion
4.1. Clinical Implications
4.2. Limitations and Future Research Lines
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mall, M.A.; Burgel, P.R.; Castellani, C.; Davies, J.C.; Salathe, M.; Taylor-Cousar, J.L. Cystic Fibrosis. Nat. Rev. Dis. Primers 2024, 10, 53. [Google Scholar] [CrossRef] [PubMed]
- Pérez, M.; Groeneveld, I.F.; Santana-Sosa, E.; Fiuza-Luces, C.; Gonzalez-Saiz, L.; Villa-Asensi, J.R.; Lõpez-Mojares, L.M.; Rubio, M.; Lucia, A. Aerobic Fitness Is Associated with Lower Risk of Hospitalization in Children with Cystic Fibrosis. Pediatr. Pulmonol. 2014, 49, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Gruet, M.; Troosters, T.; Verges, S. Peripheral Muscle Abnormalities in Cystic Fibrosis: Etiology, Clinical Implications and Response to Therapeutic Interventions. J. Cyst. Fibros. 2017, 16, 538–552. [Google Scholar] [CrossRef] [PubMed]
- Poulimeneas, D.; Grammatikopoulou, M.G.; Devetzi, P.; Petrocheilou, A.; Kaditis, A.G.; Papamitsou, T.; Doudounakis, S.E.; Vassilakou, T. Adherence to Dietary Recommendations, Nutrient Intake Adequacy and Diet Quality among Pediatric Cystic Fibrosis Patients: Results from the GreeCF Study. Nutrients 2020, 12, 3126. [Google Scholar] [CrossRef]
- Silva, I.S.; Fregonezi, G.A.F.; Dias, F.A.L.; Ribeiro, C.T.D.; Guerra, R.O.; Ferreira, G.M.H. Inspiratory Muscle Training for Asthma. Cochrane Database Syst. Rev. 2013, 2013, CD003792. [Google Scholar] [CrossRef]
- Radtke, T.; Smith, S.; Nevitt, S.J.; Hebestreit, H.; Kriemler, S. Physical Activity and Exercise Training in Cystic Fibrosis. Cochrane Database Syst. Rev. 2022, 2022, CD002768. [Google Scholar] [CrossRef]
- Zhai, J.; Emond, M.J.; Spangenberg, A.; Stern, D.A.; Vasquez, M.M.; Blue, E.E.; Buckingham, K.J.; Sherrill, D.L.; Halonen, M.; Gibson, R.L.; et al. Club Cell Secretory Protein and Lung Function in Children with Cystic Fibrosis. J. Cyst. Fibros. 2022, 21, 811. [Google Scholar] [CrossRef]
- Rowe, S.M.; Daines, C.; Ringshausen, F.C.; Kerem, E.; Wilson, J.; Tullis, E.; Nair, N.; Simard, C.; Han, L.; Ingenito, E.P.; et al. Tezacaftor-Ivacaftor in Residual-Function Heterozygotes with Cystic Fibrosis. N. Engl. J. Med. 2017, 377, 2024–2035. [Google Scholar] [CrossRef]
- Burgel, P.R.; Burnet, E.; Regard, L.; Martin, C. The Changing Epidemiology of Cystic Fibrosis: The Implications for Adult Care. Chest 2023, 163, 89–99. [Google Scholar] [CrossRef]
- Campos, N.E.; Vendrusculo, F.M.; Pérez-Ruiz, M.; Donadio, M.V.F. Ventilatory Threshold and Risk of Pulmonary Exacerbations in Cystic Fibrosis. Respir. Care 2023, 68, 620–627. [Google Scholar] [CrossRef]
- Coverstone, A.M.; Ferkol, T.W. Early Diagnosis and Intervention in Cystic Fibrosis: Imagining the Unimaginable. Front. Pediatr. 2021, 8, 608821. [Google Scholar] [CrossRef] [PubMed]
- Leroy, S.; Perez, T.; Neviere, R.; Aguilaniu, B.; Wallaert, B. Determinants of Dyspnea and Alveolar Hypoventilation during Exercise in Cystic Fibrosis: Impact of Inspiratory Muscle Endurance. J. Cyst. Fibros. 2011, 10, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Stanford, G.; Ryan, H.; Solis-Moya, A. Respiratory Muscle Training for Cystic Fibrosis. Cochrane Database Syst. Rev. 2020, 2020, CD006112. [Google Scholar] [CrossRef]
- Donadio, M.V.F.; Cobo-Vicente, F.; San Juan, A.F.; Sanz-Santiago, V.; Fernández-Luna, Á.; Iturriaga, T.; Villa Asensi, J.R.; Pérez-Ruiz, M. Is Exercise and Electrostimulation Effective in Improving Muscle Strength and Cardiorespiratory Fitness in Children with Cystic Fibrosis and Mild-to-Moderate Pulmonary Impairment?: Randomized Controlled Trial. Respir. Med. 2022, 196, 106798. [Google Scholar] [CrossRef]
- Wilkes, D.L.; Schneiderman, J.E.; Nguyen, T.; Heale, L.; Moola, F.; Ratjen, F.; Coates, A.L.; Wells, G.D. Exercise and Physical Activity in Children with Cystic Fibrosis. Paediatr. Respir. Rev. 2009, 10, 105–109. [Google Scholar] [CrossRef]
- Smith, M.D.; Chang, A.T.; Hodges, P.W. Balance Recovery Is Compromised and Trunk Muscle Activity Is Increased in Chronic Obstructive Pulmonary Disease. Gait Posture 2016, 43, 101–107. [Google Scholar] [CrossRef]
- Zeren, M.; Cakir, E.; Gurses, H.N. Effects of Inspiratory Muscle Training on Postural Stability, Pulmonary Function and Functional Capacity in Children with Cystic Fibrosis: A Randomised Controlled Trial. Respir. Med. 2019, 148, 24–30. [Google Scholar] [CrossRef]
- Hart, N.; Polkey, M.I.; Clément, A.; Boulé, M.; Moxham, J.; Lofaso, F.; Fauroux, B. Changes in pulmonary mechanics with increasing disease severity in children and young adults with cystic fibrosis. Am. J. Respir. Crit. Care Med. 2002, 166, 61–66. [Google Scholar] [CrossRef]
- Despotes, K.A.; Donaldson, S.H. Current State of CFTR Modulators for Treatment of Cystic Fibrosis. Curr. Opin. Pharmacol. 2022, 65, 102239. [Google Scholar] [CrossRef]
- Giallongo, A.; Parisi, G.F.; Papale, M.; Manti, S.; Mulé, E.; Aloisio, D.; Terlizzi, V.; Rotolo, N.; Leonardi, S. Effects of Elexacaftor/Tezacaftor/Ivacaftor on Cardiorespiratory Polygraphy Parameters and Respiratory Muscle Strength in Cystic Fibrosis Patients with Severe Lung Disease. Genes 2023, 14, 449. [Google Scholar] [CrossRef]
- Carnovale, V.; Iacotucci, P.; Terlizzi, V.; Colangelo, C.; Ferrillo, L.; Pepe, A.; Francalanci, M.; Taccetti, G.; Buonaurio, S.; Celardo, A.; et al. Elexacaftor/Tezacaftor/Ivacaftor in Patients with Cystic Fibrosis Homozygous for the F508del Mutation and Advanced Lung Disease: A 48-Week Observational Study. J. Clin. Med. 2022, 11, 1021. [Google Scholar] [CrossRef] [PubMed]
- Fajac, I.; Burgel, P.R.; Martin, C. New Drugs, New Challenges in Cystic Fibrosis Care. Eur. Respir. Rev. 2024, 33, 240045. [Google Scholar] [CrossRef] [PubMed]
- Leo-Hansen, C.; Faurholt-Jepsen, D.; Qvist, T.; Højte, C.; Nielsen, B.U.; Bryrup, T.; Henriksen, E.H.; Katzenstein, T.; Skov, M.; Mathiesen, I.H.; et al. Lung Function Improvement on Triple Modulators–High-Resolution Nationwide Data From the Danish Cystic Fibrosis Cohort. ERJ Open Res. 2024, 00339–02024. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, M.K.; Sibley, K.M.; Lakhani, B.; Romano, J.; Mathur, S.; Goldstein, R.S.; Brooks, D. Impairments in Systems Underlying Control of Balance in COPD. Chest 2012, 141, 1496–1503. [Google Scholar] [CrossRef]
- Graeber, S.Y.; Mall, M.A. The Future of Cystic Fibrosis Treatment: From Disease Mechanisms to Novel Therapeutic Approaches. Lancet 2023, 402, 1185–1198. [Google Scholar] [CrossRef]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P.; for the STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. PLoS Med. 2007, 4, 1623–1627. [Google Scholar] [CrossRef]
- Graham, B.L.; Steenbruggen, I.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; Miller, M.R.; et al. Standardization of Spirometry 2019 Update. An Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 200, E70–E88. [Google Scholar] [CrossRef]
- Quanjer, P.H.; Stanojevic, S.; Cole, T.J.; Baur, X.; Hall, G.L.; Culver, B.H.; Enright, P.L.; Hankinson, J.L.; Ip, M.S.M.; Zheng, J.; et al. Multi-Ethnic Reference Values for Spirometry for the 3-95-Yr Age Range: The Global Lung Function 2012 Equations. Eur. Respir. J. 2012, 40, 1324–1343. [Google Scholar] [CrossRef]
- Pellegrino, R.; Viegi, G.; Brusasco, V.; Crapo, R.O.; Burgos, F.; Casaburi, R.; Coates, A.; van der Grinten, C.P.M.; Gustafsson, P.; Hankinson, J.; et al. Interpretative Strategies for Lung Function Tests. Eur. Respir. J. 2005, 26, 948–968. [Google Scholar] [CrossRef]
- ATS/ERS Statement on Respiratory Muscle Testing. Am. J. Respir. Crit. Care Med. 2002, 166, 518–624. [CrossRef]
- Pradi, N.; Rocha Vieira, D.S.; Ramalho, O.; Lemes, Í.R.; Cordeiro, E.C.; Arpini, M.; Hulzebos, E.; Lanza, F.; Montemezzo, D. Normal Values for Maximal Respiratory Pressures in Children and Adolescents: A Systematic Review with Meta-Analysis. Braz. J. Phys. Ther. 2024, 28, 100587. [Google Scholar] [CrossRef] [PubMed]
- Koo, P.; Oyieng’o, D.O.; Gartman, E.J.; Sethi, J.M.; Eaton, C.B.; McCool, F.D. The Maximal Expiratory-to-Inspiratory Pressure Ratio and Supine Vital Capacity as Screening Tests for Diaphragm Dysfunction. Lung 2017, 195, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Núñez, I.; Torres, G.; Luarte-Martinez, S.; Manterola, C.; Zenteno, D. Respiratory muscle impairment evaluated with MEP/MIP ratio in children and adolescents with chronic respiratory disease. Rev. Paul. Pediatr. 2020, 39, e2019414. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Ribas, L.; Ngo, J.; Ortega, R.M.; García, A.; Pérez-Rodrigo, C.; Aranceta, J. Food, Youth and the Mediterranean Diet in Spain. Development of KIDMED, Mediterranean Diet Quality Index in Children and Adolescents. Public Health Nutr. 2004, 7, 931–935. [Google Scholar] [CrossRef]
- Benítez-Porres, J.; López-Fernández, I.; Raya, J.F.; Álvarez Carnero, S.; Alvero-Cruz, J.R.; Álvarez Carnero, E. Reliability and Validity of the PAQ-C Questionnaire to Assess Physical Activity in Children. J. Sch. Health 2016, 86, 677–685. [Google Scholar] [CrossRef]
- Martínez-Gómez, D.; Martínez-de-Haro, V.; Pozo, T.; Welk, G.; Villagra, A.; Calle, M.E.; Marcos, A.; Veiga, Ó. Reliability and Validity of the PAQ-A Questionnaire to Assess Physical Activity in Spanish Adolescents. Rev. Esp. Salud Publica 2009, 3, 427–439. [Google Scholar] [CrossRef]
- Kapouni, N.; Moustaki, M.; Douros, K.; Loukou, I. Efficacy and Safety of Elexacaftor-Tezacaftor-Ivacaftor in the Treatment of Cystic Fibrosis: A Systematic Review. Children 2023, 10, 554. [Google Scholar] [CrossRef]
- Emirza, C.; Aslan, G.K.; Kilinc, A.A.; Cokugras, H. Effect of Expiratory Muscle Training on Peak Cough Flow in Children and Adolescents with Cystic Fibrosis: A Randomized Controlled Trial. Pediatr. Pulmonol. 2021, 56, 939–947. [Google Scholar] [CrossRef]
- Dekerlegand, R.L.; Hadjiliadis, D.; Swisher, A.K.; Parrott, J.S.; Heuer, A.J.; Myslinski, M.J. Inspiratory Muscle Strength Relative to Disease Severity in Adults with Stable Cystic Fibrosis Study Group. Inspiratory muscle strength relative to disease severity in adults with stable cystic fibrosis. J. Cyst. Fibros. 2015, 14, 639–645. [Google Scholar] [CrossRef]
- Divangahi, M.; Balghi, H.; Danialou, G.; Comtois, A.S.; Demoule, A.; Ernest, S.; Haston, C.; Robert, R.; Hanrahan, J.W.; Radzioch, D.; et al. Lack of CFTR in Skeletal Muscle Predisposes to Muscle Wasting and Diaphragm Muscle Pump Failure in Cystic Fibrosis Mice. PLoS Genet. 2009, 5, e1000586. [Google Scholar] [CrossRef]
- Wells, G.D.; Wilkes, D.L.; Schneiderman, J.E.; Rayner, T.; Elmi, M.; Selvadurai, H.; Dell, S.D.; Noseworthy, M.D.; Ratjen, F.; Tein, I.; et al. Skeletal Muscle Metabolism in Cystic Fibrosis and Primary Ciliary Dyskinesia. Pediatr. Res. 2011, 69, 40–45. [Google Scholar] [CrossRef] [PubMed]
- Gusev, E.; Liang, F.; Bhattarai, S.; Broering, F.E.; Leduc-Gaudet, J.P.; Hussain, S.N.; Radzioch, D.; Petrof, B.J. Characterization of skeletal muscle wasting pathways in diaphragm and limb muscles of cystic fibrosis mice. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2022, 322, R551–R561. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez, I.; Arriagada, R.; Fuentes, C.; Zenteno, D. Aspectos Fisiopatológicos de La Rehabilitación Respiratoria En Fibrosis Quística. Neumología Pediátrica 2021, 7, 51–57. [Google Scholar] [CrossRef]
- Lamhonwah, A.M.; Bear, C.E.; Huan, L.J.; Chiaw, P.K.; Ackerley, C.A.; Tein, I. Cystic Fibrosis Transmembrane Conductance Regulator in Human Muscle: Dysfunction Causes Abnormal Metabolic Recovery in Exercise. Ann. Neurol. 2010, 67, 802–808. [Google Scholar] [CrossRef]
- Guerra-Morillo, M.O.; Rabasco-Álvarez, A.M.; González-Rodríguez, M.L.; Guerra-Morillo, M.O.; Rabasco-Álvarez, A.M.; González-Rodríguez, M.L. Fibrosis Quística: Tratamiento Actual y Avances Con La Nanotecnología. Ars Pharm. (Internet) 2020, 61, 81–96. [Google Scholar]
- Sovtic, A.; Minic, P.; Markovic-Sovtic, G.; Trajkovic, G.Z. Respiratory Muscle Strength and Exercise Performance in Cystic Fibrosis-A Cross Sectional Study. Front. Pediatr. 2018, 6, 244. [Google Scholar] [CrossRef]
- Zenteno, A.D.; Torres, P.G.; Cox, L.V.; Zenteno, A.D.; Torres, P.G.; Cox, L.V. Indicaciones de Rehabilitación Respiratoria En Niños y Adolescentes Con Enfermedades Respiratorias Crónicas. Rev. Chil. Enferm. Respir. 2022, 38, 26–32. [Google Scholar] [CrossRef]
- Torres, G.; Rodríguez-Núñez, I.; Zenteno, D.; Navarro, X.; Medina, K.; Tapia, J. Pediatric Pulmonary Rehabilitation Program at a Chilean Public Hospital. Arch. Argent. Pediatr. 2019, 117, E576–E583. [Google Scholar] [CrossRef]
- Arikan, H.; Yatar, I.; Calik-Kutukcu, E.; Aribas, Z.; Saglam, M.; Vardar-Yagli, N.; Savci, S.; Inal-Ince, D.; Ozcelik, U.; Kiper, N. A Comparison of Respiratory and Peripheral Muscle Strength, Functional Exercise Capacity, Activities of Daily Living and Physical Fitness in Patients with Cystic Fibrosis and Healthy Subjects. Res. Dev. Disabil. 2015, 45–46, 147–156. [Google Scholar] [CrossRef]
- Dassios, T.; Katelari, A.; Doudounakis, S.; Mantagos, S.; Dimitriou, G. Respiratory Muscle Function in Patients with Cystic Fibrosis. Pediatr. Pulmonol. 2013, 48, 865–873. [Google Scholar] [CrossRef]
- Ho, S.; Rock, K.; Addison, O.; Marchese, V. Relationships between Diaphragm Ultrasound, Spirometry, and Respiratory Mouth Pressures in Children. Respir. Physiol. Neurobiol. 2022, 305, 103950. [Google Scholar] [CrossRef] [PubMed]
- Chino, K.; Ohya, T.; Suzuki, Y. Association between Expiratory Mouth Pressure and Abdominal Muscle Activity in Healthy Young Males. Eur. J. Appl. Physiol. 2024, 124, 2139–2151. [Google Scholar] [CrossRef] [PubMed]
- Ishida, H.; Suehiro, T.; Kurozumi, C.; Ono, K.; Watanabe, S. Correlation Between Abdominal Muscle Thickness and Maximal Expiratory Pressure. J. Ultrasound Med. 2015, 34, 2001–2005. [Google Scholar] [CrossRef] [PubMed]
HEALTHY (n = 24) | CF (n = 24) | p Value | Cohen’s d | |
---|---|---|---|---|
Demographics | ||||
Age (mean ± SD) | 12.03 ± 3.18 | 12.51 ± 2.76 | 0.572 | −0.164 |
Sex, men (n (%)) | 14 (57.3 %) | 15 (62.5 %) | 1.000 | |
Anthropometrics | ||||
Height (cm) | 147.54 ± 15.63 | 148.62 ± 12.89 | 0.795 | −0.075 |
Height (z-score) | 0.06 ± 0.99 | −0.28 ± 0.80 | 0.202 | 0.372 |
Weight (kg) | 41.63 ± 13.05 | 41.63 ± 12.78 | 0.998 | −0.001 |
Weight (z-score) | 0.06 ± 0.63 | −0.32 ± 1.03 | 0.127 | 0.453 |
BMI (kg/m2) | 18.56 ± 2.44 | 18.46 ± 3.62 | 0.913 | 0.032 |
BMI z score | 0.15 ± 0.60 | −0.27 ± 1.03 | 0.317 | 0.242 |
Lung Function | |
---|---|
FEV1 (L) | 2.51 ± 0.71 |
FEV1 (%) | 101.19 ± 14.03 |
FEV1 z-score | 0.11 ± 1.19 |
FVC (l) | 2.97 ± 0.89 |
FVC (z-score) | 0.34 ± 1.24 |
Genotype, n (%) | |
F508del homozygous | 10 (41.7) |
F508del heterozygous | 14 (58.3) |
Clinical diagnoses, n (%) | |
Exocrine pancreatic insufficiency | 22 (91.7) |
CF-related diabetes mellitus | 1 (4.2) |
Liver disease | 10 (41.7) |
Microbiology, n (%) | |
Chronic Pseudomonas aeruginosa | 4 (16.7) |
Chronic methicillin-resistant | 0 (0.0) |
Chronic Burkholderia cepacia | 0 (0.0) |
HEALTHY (n = 24) | CF (n = 24) | p-Value | Cohen’s d | |
---|---|---|---|---|
MEP and MIP | ||||
MEP max | 88.97 ± 17.51 | 84.92 ± 16.95 | 0.440 | 0.225 |
MIP max | 84.88 ± 20.77 | 93.21 ± 26.56 | 0.206 | −0.371 |
MEPmax/MIPmax ratio | 1.05 ± 0.33 | 0.911 ± 0.32 | 0.152 | 0.423 |
Lifestyle | ||||
KIDMED score | 8.67 ± 1.44 | 7.54 ± 1.84 | 0.022 | 0.682 |
PAQ C | 3.39 ± 0.47 | 2.94 ± 0.52 | 0.023 | 0.896 |
PAQ A | 2.69 ± 0.44 | 2.25 ± 0.60 | 0.091 | 0.824 |
PAQ total | 3.12 ± 0.57 | 2.65 ± 0.64 | 0.010 | 0.774 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Pérez-de-Sevilla, G.; Blanco Velasco, Á.; Yvert, T.; Sanz-Santiago, V.; Tirado, A.M.; López Neyra, A.; de Manuel, C.; Ruiz Valbuena, M.; Pérez-Ruiz, M. Respiratory Muscle Function in Children and Adolescents with Cystic Fibrosis in the Era of CFTR Modulator Therapies. Children 2025, 12, 878. https://doi.org/10.3390/children12070878
García-Pérez-de-Sevilla G, Blanco Velasco Á, Yvert T, Sanz-Santiago V, Tirado AM, López Neyra A, de Manuel C, Ruiz Valbuena M, Pérez-Ruiz M. Respiratory Muscle Function in Children and Adolescents with Cystic Fibrosis in the Era of CFTR Modulator Therapies. Children. 2025; 12(7):878. https://doi.org/10.3390/children12070878
Chicago/Turabian StyleGarcía-Pérez-de-Sevilla, Guillermo, Ángela Blanco Velasco, Thomas Yvert, Verónica Sanz-Santiago, Ana Morales Tirado, Alejandro López Neyra, Cristina de Manuel, Marta Ruiz Valbuena, and Margarita Pérez-Ruiz. 2025. "Respiratory Muscle Function in Children and Adolescents with Cystic Fibrosis in the Era of CFTR Modulator Therapies" Children 12, no. 7: 878. https://doi.org/10.3390/children12070878
APA StyleGarcía-Pérez-de-Sevilla, G., Blanco Velasco, Á., Yvert, T., Sanz-Santiago, V., Tirado, A. M., López Neyra, A., de Manuel, C., Ruiz Valbuena, M., & Pérez-Ruiz, M. (2025). Respiratory Muscle Function in Children and Adolescents with Cystic Fibrosis in the Era of CFTR Modulator Therapies. Children, 12(7), 878. https://doi.org/10.3390/children12070878