Movement Variability and Perceived Motor Competence in Children with High or Low Risk Willingness in a Virtual Playground
Abstract
1. Introduction
The Current Study
2. Materials and Methods
2.1. Children with High Risk Willingness and Low Risk Willingness
2.2. Whole-Body Motion Capture
2.3. Virtual Reality Technology
2.4. Virtual Reality Playground
2.5. Perceived Motor Competence
2.6. Procedure
2.7. Playground Motor Behavior Analysis
2.8. Statistical Analysis
3. Results
3.1. Analysis for Research Question 1: Motor Behavior and Risk Willingness in the Playground
3.2. Analysis for Research Question 2: Perceived Motor Competence and Risk Willingness in Playground
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sando, O.J.; Kleppe, R.; Sandseter, E.B.H. Risk willingness in play: Exploring children’s behaviour in a virtual reality playground. Eur. Early Child. Educ. Res. J. 2025, 33, 302–318. [Google Scholar] [CrossRef]
- Little, H.; Wyver, S. Outdoor play: Does avoiding the risks reduce the benefits? Aust. J. Early Child. 2008, 33, 33–40. [Google Scholar] [CrossRef]
- Sandseter, E.B.H. ‘It tickles in my tummy!’—Understanding children’s risk-taking in play through reversal theory. J. Early Child. Res. 2010, 8, 67–88. [Google Scholar] [CrossRef]
- Kvalnes, Ø.; Hansen Sandseter, E.B. Experiences, Mastery, and Development Through Risk. In Risky Play: An Ethical Challenge; Springer International Publishing: Cham, Switzerland, 2023; pp. 31–45. [Google Scholar]
- Sandseter, E.B.H.; Kennair, L.E.O. Children’s risky play from an evolutionary perspective: The anti-phobic effects of thrilling experiences. Evol. Psychol. 2011, 9, 257–284. [Google Scholar] [CrossRef]
- Lavrysen, A.; Bertrands, E.; Leyssen, L.; Smets, L.; Vanderspikken, A.; De Graef, P. Risky-play at school. Facilitating risk perception and competence in young children. Eur. Early Child. Educ. Res. J. 2017, 25, 89–105. [Google Scholar] [CrossRef]
- Bento, G.; Dias, G. The importance of outdoor play for young children’s healthy development. Porto Biomed. J. 2017, 2, 157–160. [Google Scholar] [CrossRef] [PubMed]
- Gray, P. Risky play: Why children love and need it. In The Routledge Handbook of Designing Public Spaces for Young People; Routledge: London, UK, 2020; pp. 39–51. [Google Scholar]
- Brussoni, M.; Gibbons, R.; Gray, C.; Ishikawa, T.; Sandseter, E.B.H.; Bienenstock, A.; Chabot, G.; Fuselli, P.; Herrington, S.; Janssen, I.; et al. What is the relationship between risky outdoor play and health in children? A systematic review. Int. J. Environ. Res. Public Health 2015, 12, 6423–6454. [Google Scholar] [CrossRef]
- Brussoni, M.; Ishikawa, T.; Brunelle, S.; Herrington, S. Landscapes for play: Effects of an intervention to promote nature-based risky play in early childhood centres. J. Environ. Psychol. 2017, 54, 139–150. [Google Scholar] [CrossRef]
- Sandseter, E.B.H.; Kleppe, R.; Sando, O.J. The prevalence of risky play in young children’s indoor and outdoor free play. Early Child. Educ. J. 2021, 49, 303–312. [Google Scholar] [CrossRef]
- Storli, L.; Sandseter, E.B.H.; Lorås, H. Individual differences in children’s movement variability in a virtual reality playground task. Hum. Mov. Sci. 2024, 93, 103171. [Google Scholar] [CrossRef]
- Zuckerman, M. Behavioral Expressions and Biosocial Bases of Sensation Seeking; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Kleppe, R.; Sandseter, E.B.H.; Sando, O.J.; Brussoni, M. Children’s dynamic risk management–a comprehensive approach to children’s risk willingness, risk assessment, and risk handling. Int. J. Play 2024, 13, 395–409. [Google Scholar] [CrossRef]
- Sando, O.J.; Kleppe, R.; Sandseter, E.B.H. Children’s risk assessment in street crossing using virtual reality. J. Saf. Res. 2024, 88, 1–7. [Google Scholar] [CrossRef]
- Morrongiello, B.A.; Rennie, H. Why do boys engage in more risk taking than girls? The role of attributions, beliefs, and risk appraisals. J. Pediatr. Psychol. 1998, 23, 33–43. [Google Scholar] [CrossRef] [PubMed]
- Akdemir, K.; Banko-Bal, Ç.; Sevimli-Celik, S. Giving Children permission for risky play: Parental variables and parenting styles. J. Outdoor Environ. Educ. 2023, 26, 289–306. [Google Scholar] [CrossRef]
- Brussoni, M.; Olsen, L.L.; Pike, I.; Sleet, D.A. Risky play and children’s safety: Balancing priorities for optimal child development. Int. J. Environ. Res. Public Health 2012, 9, 3134–3148. [Google Scholar] [CrossRef]
- Adolph, K.E.; Franchak, J.M. The development of motor behavior. Wiley Interdiscip. Rev. Cogn. Sci. 2017, 8, e1430. [Google Scholar] [CrossRef]
- Hadders-Algra, M. Variation and variability: Key words in human motor development. Phys. Ther. 2010, 90, 1823–1837. [Google Scholar] [CrossRef]
- Hossner, E.J.; Zahno, S. Beyond task-space exploration: On the role of variance for motor control and learning. Front. Psychol. 2022, 13, 935273. [Google Scholar] [CrossRef]
- Gabbard, C. A developmental systems approach to the study of motor development. In Handbook of Motor Skills: Development, Impairment and Therapy; Nova Science Publisher: Hauppauge, NY, USA, 2009; pp. 259–268. [Google Scholar]
- Bernstein, N.A. Latash, M.L., Turvey, M.T., Eds.; Dexterity and Its Development, 1st ed.; Psychology Press: London, UK, 1996. [Google Scholar]
- Guimarães, A.N.; Ugrinowitsch, H.; Dascal, J.B.; Porto, A.B.; Okazaki, V.H.A. Freezing degrees of freedom during motor learning: A systematic review. Mot. Control 2020, 24, 457–471. [Google Scholar] [CrossRef]
- Bernstein, N. The Coordination and Regulation of Movements; Pergamon: Oxford, UK, 1967. [Google Scholar]
- Newell, K.M.; van Emmerik, R.E.A. The acquisition of coordination: Preliminary analysis of learning to write. Hum. Mov. Sci. 1989, 8, 17–32. [Google Scholar] [CrossRef]
- Anderson, D.L.; Sidaway, B. Coordination changes associated with practice of a soccer kick. Res. Q. Exerc. Sport 1994, 65, 93–99. [Google Scholar] [CrossRef]
- Ko, Y.G.; Challis, J.H.; Newell, K.M. Learning to coordinate redundant degrees of freedom in a dynamic balance task. Hum. Mov. Sci. 2003, 22, 47–66. [Google Scholar] [CrossRef]
- Vereijken, B.; Van Emmerik, R.E.A.; Whiting, H.T.A.; Newell, K.M. Free(z)ing 654 degrees of freedom in skill acquisitions. J. Mot. Behav. 1992, 24, 133–142. [Google Scholar] [CrossRef]
- Smith, D.R.; McCabe, D.R.; Wilkerson, J.D. An analysis of a discrete complex skill using Bernstein’s stages of learning. Percept. Mot. Ski. 2001, 93, 181–191. [Google Scholar] [CrossRef]
- Newell, K.M.; Vaillancourt, D.E. Dimensional change in motor learning. Hum. Mov. Sci. 2001, 20, 695–715. [Google Scholar] [CrossRef]
- Bongaardt, R.; Meijer, O.G. Bernstein’s theory of movement behavior: Historical development and contemporary relevance. J. Mot. Behav. 2000, 32, 57–71. [Google Scholar] [CrossRef]
- Van Ginneken, W.F.; Poolton, J.M.; Capio, C.M.; van der Kamp, J.; Choi, C.S.; Masters, R.S. Conscious control is associated with freezing of mechanical degrees of freedom during motor learning. J. Mot. Behav. 2017, 50, 436–456. [Google Scholar] [CrossRef]
- Babic, M.J.; Morgan, P.J.; Plotnikoff, R.C.; Lonsdale, C.; White, R.L.; Lubans, D.R. Physical activity and physical self-concept in youth: Systematic review and meta-analysis. Sports Med. 2014, 44, 1589–1601. [Google Scholar] [CrossRef]
- Ensrud-Skraastad, O.K.; Haga, M. Associations between motor competence, physical self-perception and autonomous motivation for physical activity in children. Sports 2020, 8, 120. [Google Scholar] [CrossRef]
- Estevan, I.; Barnett, L.M. Considerations related to the definition, measurement and analysis of perceived motor competence. Sports Med. 2018, 48, 2685–2694. [Google Scholar] [CrossRef]
- Stodden, D.F.; Goodway, J.D.; Langendorfer, S.J.; Roberton, M.A.; Rudisill, M.E.; Garcia, C. A developmental perspective on the role of motor skill competence in physical activity: An emergent relationship. Quest 2008, 60, 290–306. [Google Scholar] [CrossRef]
- Jekauc, D.; Wagner, M.O.; Herrmann, C.; Hegazy, K.; Woll, A. Does physical self-concept mediate the relationship between motor abilities and physical activity in adolescents and young adults? PLoS ONE 2017, 12, e0168539. [Google Scholar] [CrossRef]
- Nicholls, J.G. The development of the concepts of effort and ability, perceptions of own attainment, and the understanding that difficult tasks require more ability. Child Dev. 1978, 49, 800–814. [Google Scholar] [CrossRef]
- Raudsepp, L.; Liblik, R. The relationship of perceived and actual motor competence in children. Percept. Mot. Ski. 2002, 94 (Suppl. 3), 1059–1070. [Google Scholar] [CrossRef]
- Legear, M.; Greyling, L.; Sloan, R.; Bell, R.I.; Williams, B.L.; Naylor, P.J.; Temple, V.A. A window of opportunity? Motor skills and perceptions of competence of children in kindergarten. Int. J. Behav. Nutr. Phys. Act. 2012, 9, 29. [Google Scholar] [CrossRef]
- Liong, G.H.E.; Ridgers, N.D.; Barnett, L.M. Associations between skill perceptions and young children’s actual fundamental movement skills. Percept. Mot. Ski. 2015, 120, 591–603. [Google Scholar] [CrossRef]
- Carcamo-Oyarzun, J.; Estevan, I.; Herrmann, C. Association between actual and perceived motor competence in school children. Int. J. Environ. Res. Public Health 2020, 17, 3408. [Google Scholar] [CrossRef]
- Morano, M.; Bortoli, L.; Ruiz, M.C.; Campanozzi, A.; Robazza, C. Actual and perceived motor competence: Are children accurate in their perceptions? PLoS ONE 2020, 15, e0233190. [Google Scholar] [CrossRef]
- De Meester, A.; Barnett, L.M.; Brian, A.; Bowe, S.J.; Jiménez-Díaz, J.; Van Duyse, F.; Irwin, J.M.; Stodden, D.F.; D’Hondt, E.; Lenoir, M.; et al. The relationship between actual and perceived motor competence in children, adolescents and young adults: A systematic review and meta-analysis. Sports Med. 2020, 50, 2001–2049. [Google Scholar] [CrossRef]
- Sandseter, E.B.H.; Sando, O.J.; Lorås, H.; Kleppe, R.; Storli, L.; Brussoni, M.; Bundy, A.; Schwebel, D.C.; Ball, D.J.; Haga, M.; et al. Virtual risk management—Exploring effects of childhood risk experiences through innovative methods (ViRMa) for primary school children in Norway: Study protocol for the ViRMa project. JMIR Res. Protoc. 2023, 12, e45857. [Google Scholar] [CrossRef]
- Myn, U.; Link, M.; Awinda, M. Xsens Mvn User Manual; Xsens Motion Technologies BV: Enschede, The Netherlands, 2015. [Google Scholar]
- Robert-Lachaine, X.; Mecheri, H.; Larue, C.; Plamondon, A. Validation of inertial measurement units with an optoelectronic system for whole-body motion analysis. Med. Biol. Eng. Comput. 2017, 55, 609–619. [Google Scholar] [CrossRef]
- Al-Amri, M.; Nicholas, K.; Button, K.; Sparkes, V.; Sheeran, L.; Davies, J.L. Inertial Measurement Units for Clinical Movement Analysis: Reliability and Concurrent Validity. Sensors 2018, 18, 719. [Google Scholar] [CrossRef]
- Paulich, M.; Schepers, M.; Rudigkeit, N.; Bellusci, G. Xsens MTw Awinda: Miniature Wireless Inertial-Magnetic Motion Tracker for Highly Accurate 3D Kinematic Applications; Xsens: Enschede, The Netherlands, 2018; pp. 1–9. [Google Scholar]
- Pawlowski, C.S.; Madsen, C.D.; Toftager, M.; Amholt, T.T.; Schipperijn, J. The role of playgrounds in the development of children’s fundamental movement skills: A scoping review. PLoS ONE 2023, 18, e0294296. [Google Scholar] [CrossRef]
- Lorås, H.; Hansen Sandseter, E.B.; Storli, L.; Kleppe, R.; Barnett, L.; Sando, O.J. Psychometric Properties of the Pictorial Scale of Perceived Movement Skill Competence for Young Norwegian Children. Percept. Mot. Ski. 2024, 588, 637–659. [Google Scholar] [CrossRef]
- Barnett, L.M.; Vazou, S.; Abbott, G.; Bowe, S.J.; Robinson, L.E.; Ridgers, N.D.; Salmon, J. Construct validity of the pictorial scale of perceived movement skill competence. Psychol. Sport Exerc. 2016, 22, 294–302. [Google Scholar] [CrossRef]
- Valentini, N.C.; Barnett, L.M.; Bandeira, P.F.R.; Nobre, G.C.; Zanella, L.W.; Sartori, R.F. The pictorial scale of perceived movement skill competence: Determining content and construct validity for Brazilian children. J. Mot. Learn. Dev. 2018, 6, S189–S204. [Google Scholar] [CrossRef]
- Kelso, J.A.S.; Buchanan, J.J.; Wallace, S.A. Order parameters for the neural organization of single, multijoint limb movement patterns. Exp. Brain Res. 1991, 85, 432–444. [Google Scholar] [CrossRef]
- Rosengren, K.S.; Deconinck, F.J.; DiBerardino, L.A., III; Polk, J.D.; Spencer-Smith, J.; De Clercq, D.; Lenoir, M. Differences in gait complexity and variability between children with and without developmental coordination disorder. Gait Posture 2009, 29, 225–229. [Google Scholar] [CrossRef]
- Wagner, H.; Pfusterschmied, J.; Klous, M.; von Duvillard, S.P.; Müller, E. Movement variability and skill level of various throwing techniques. Hum. Mov. Sci. 2012, 31, 78–90. [Google Scholar] [CrossRef]
- Gray, R. Changes in movement coordination associated with skill acquisition in baseball batting: Freezing/freeing degrees of freedom and functional variability. Front. Psychol. 2020, 11, 1295. [Google Scholar] [CrossRef]
- Bertenthal, B.; Von Hofsten, C. Eye, head and trunk control: The foundation for manual development. Neurosci. Biobehav. Rev. 1998, 22, 515–520. [Google Scholar] [CrossRef]
- Hollands, M.A.; Patla, A.E.; Vickers, J.N. “Look where you’re going!”: Gaze behaviour associated with maintaining and changing the direction of locomotion. Exp. Brain Res. 2002, 143, 221–230. [Google Scholar] [CrossRef]
- Katz-Leurer, M.; Rotem, H.; Meyer, S. Effect of concurrent cognitive tasks on temporo-spatial parameters of gait among children with cerebral palsy and typically developed controls. Dev. Neurorehabil. 2014, 17, 363–367. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef]
- Cohen, J. The effect size. In Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1988; pp. 77–528. [Google Scholar]
- Barnett, L.M.; Ridgers, N.D.; Zask, A.; Salmon, J. Face validity and reliability of a pictorial instrument for assessing fundamental movement skill perceived competence in young children. J. Sci. Med. Sport 2015, 18, 98–102. [Google Scholar] [CrossRef]
- Wade, M.G.; Whiting, H.T.A. (Eds.) Motor Development in Children: ASPECTS of Coordination and Control; Nijhoff: Leiden, The Netherlands, 1986; pp. 107–124. [Google Scholar]
- Latash, M.L.; Scholz, J.P.; Schöner, G. Motor control strategies revealed in the structure of motor variability. Exerc. Sport Sci. Rev. 2002, 30, 26–31. [Google Scholar] [CrossRef]
- de-Juan-Ripoll, C.; Chicchi Giglioli, I.A.; Llanes-Jurado, J.; Marín-Morales, J.; Alcañiz, M. Why do we take risks? Perception of the situation and risk proneness predict domain-specific risk taking. Front. Psychol. 2021, 12, 562381. [Google Scholar] [CrossRef]
- Button, C.; Seifert, L.; Chow, J.Y.; Araújo, D.; Davids, K. Dynamics of Skill Acquisition: An Ecological Dynamics Approach; Human Kinetics Publishers: Champaign, IL, USA, 2021. [Google Scholar]
- Almeida, G.; Luz, C.; Rodrigues, L.P.; Lopes, V.; Cordovil, R. Profiles of motor competence and its perception accuracy among children: Association with physical fitness and body fat. Psychol. Sport Exerc. 2023, 68, 102458. [Google Scholar] [CrossRef]
- Lorås, H.; Sigmundsson, H. Interrelations between three fine motor skills in young adults. Percept. Mot. Ski. 2012, 115, 171–178. [Google Scholar] [CrossRef]
- Sigmundsson, H.; Newell, K.M.; Polman, R.; Haga, M. Exploration of the specificity of motor skills hypothesis in 7–8-year-old primary school children: Exploring the relationship between 12 different motor skills from two different motor competence test batteries. Front. Psychol. 2021, 12, 631175. [Google Scholar] [CrossRef]
- Obee, P.; Sandseter, E.B.H.; Gerlach, A.; Harper, N.J. Lessons learned from Norway on risky play in Early Childhood Education and Care (ECEC). Early Child. Educ. J. 2021, 49, 99–109. [Google Scholar] [CrossRef]
- Norwegian Ministry of Education & Research. Curriculum in Physical Education (KRO01-05). 2020. Available online: https://www.udir.no/lk20/kro01-05?lang=nob (accessed on 10 May 2025).
Variable | LRW (n = 29) | HRW (n = 67) | |
---|---|---|---|
Girls/boys (n) | 19/10 | 19/10 | 32/35 |
School | I | 13 | 25 |
II | 10 | 21 | |
III | 2 | 14 | |
IV | 4 | 7 | |
Grade | 2 | 9 | 7 |
3 | 17 | 25 | |
4 | 3 | 35 | |
Tried VR before (no/yes) | 15/13 | 22/40 | |
If VR felt | Not realistic | 1 | 3 |
A bit realistic | 3 | 6 | |
Quite realistic | 12 | 35 | |
Very realistic | 12 | 18 | |
Virtual reality sickness (no/yes) | 25/3 | 59/3 | |
Want to try VR again (no/yes) | 2/26 | 1/61 |
Variable | Title 2 | LRW (n = 29) | HRW (n = 67) |
---|---|---|---|
Spatiotemporal Measures Fall (no/yes) Pillar visits (n) Time in zone (%) Distance (m) Velocity (m/s2) Acceleration (m/s3) | 21/8 | 50/17 | |
0 | 5.9 (2.3) | ||
I II III IV | 17.6 (10.4) 38.5 (12.6) 31.1 (12.2) 12.8 (0.07) 29.7 (8.5) 0.27 (0.08) 0.41 (0.09) | 8.1 (0.05) 18.4 (0.05) 33.1 (0.06) 40.4 (0.06) 45.1 (12.5) 0.38 (0.09) 0.58 (0.12) | |
Whole-Body Movement Variability Head rotation (°) Shoulder abduction–adduction (°) Elbow flexion–extension (°) Arm lift (%) Hip flexion–extension (°) Knee flexion–extension (°) Ankle dorsiflexion–extension (°) Foot distance (m) | Pitch Yaw Mean Variability Anteroposterior Mediolateral Vertical | 10.45 (7.19) 10.68 (5.03) 6.21 (2.96) 17.89 (12.66) 82.51 (0.04) 0.03 (0.01) 10.12 (1.93) 12.47 (2.33) 6.95 (1.21) 0.09 (0.02) 0.09 (0.02) 0.03 (0.01) | 12.07 (8.31) 12.51 (5.49) 9.56 (3.11) 21.97 (9.68) 85.52 (0.04) 0.06 (0.03) 14.97 (3.72) 15.62 (3.17) 10.25 (1.72) 0.13 (0.02) 0.13 (0.02) 0.04 (0.01) |
Variable | LRW (n = 29) | HRW (n = 67) |
---|---|---|
Running | 3.18 (0.77) | 3.56 (0.56) |
Galloping | 2.25 (0.84) | 2.50 (0.94) |
Hopping | 3.14 (0.71) | 3.15 (0.67) |
Skipping | 2.57 (0.96) | 2.84 (0.93) |
Jumping | 2.86 (0.89) | 3.03 (0.73) |
Sliding | 3.11 (0.96) | 2.93 (0.85) |
Locomotion | 2.85 (0.44) | 3.01 (0.45) |
Cycling | 2.93 (0.85) | 3.61 (0.64) |
Scootering | 2.89 (0.96) | 3.31 (0.79) |
Board Paddle | 2.68 (1.09) | 3.10 (0.88) |
Skating | 2.54 (1.17) | 2.94 (1.17) |
Swimming | 2.25 (1.08) | 2.98 (1.08) |
Climbing | 2.29 (1.08) | 3.12 (0.78) |
Active Play | 2.79 (0.63) | 2.98 (0.45) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Storli, L.; Lorås, H. Movement Variability and Perceived Motor Competence in Children with High or Low Risk Willingness in a Virtual Playground. Children 2025, 12, 796. https://doi.org/10.3390/children12060796
Storli L, Lorås H. Movement Variability and Perceived Motor Competence in Children with High or Low Risk Willingness in a Virtual Playground. Children. 2025; 12(6):796. https://doi.org/10.3390/children12060796
Chicago/Turabian StyleStorli, Lise, and Håvard Lorås. 2025. "Movement Variability and Perceived Motor Competence in Children with High or Low Risk Willingness in a Virtual Playground" Children 12, no. 6: 796. https://doi.org/10.3390/children12060796
APA StyleStorli, L., & Lorås, H. (2025). Movement Variability and Perceived Motor Competence in Children with High or Low Risk Willingness in a Virtual Playground. Children, 12(6), 796. https://doi.org/10.3390/children12060796