Growth Failure in Children with Congenital Heart Disease
Abstract
:1. Introduction
2. Methods
3. Results
3.1. Somatic Growth in Children with Congenital Heart Disease
3.1.1. Prenatal Growth
3.1.2. Postnatal Growth
3.1.3. Genetic Abnormalities Linked to Congenital Heart Disease and Growth Failure
Syndrome | Gene | % CHD | Cardiac Phenotype | Other Clinical Findings | Reference |
---|---|---|---|---|---|
Chromosomal aneuploidy associated with CHD | |||||
Trisomy 21 (Down syndrome) | Unknown | 40–50% | AVSD, ASD, VSD, TOF, PDA | Short stature, cognitive deficits, immune system dysfunction, hypotonia, hypothyroidism | [46,47] |
Turner syndrome (Monosomy X) | Unknown | 25–35% | CoA, HLHS, BAV, AS | Short stature, cognitive deficits, lymphedema, webbed neck, primary amenorrhea | [48,49,50] |
Copy number variations (CNVs) | |||||
22q11.2 deletion (DiGeorge syndrome) | TBX1 | 75–85% | TOF, IAA, Truncus arteriosus, aortic arch anomalies, VSD, ASD | Growth retardation, growth hormone deficiency, skeletal abnormalities, hypothyroidism, hypoparathyroidism, immunodeficiency, hypocalcemia, distinctive facial features, feeding difficulties | [51,52] |
Williams–Beuren syndrome | 7q11.23 Deletion (ELN) | 50–85% | SVAS, PPS, VSD, ASD | Dysmorphic facies, thick lips, growth abnormalities, short stature, connective tissue and skeletal abnormalities, intellectual disabilities, infantile hypercalcemia, renal disorders, hypothyroidism, feeding difficulties | [53,54] |
Jacobsen syndrome | ETS1, FLI1 | 56% | HLHS, TOF, AS, VSD, CoA, Shone’s complex | Distinctive facial features, growth retardation, developmental delay, thrombocytopenia, strabismus, hammertoes | [55,56,57] |
Single-gene variation | |||||
CHARGE syndrome | CHD7 | 75–85% | TOF, PDA, DORV, AVSD, VSD | Coloboma, choanal atresia, genital and/or urinary hypoplasia, ear anomalies, growth retardation, developmental delay, intellectual disability | [58] |
Costello syndrome | HRAS | 44–52% | PS, ASD, VSD, HCM, arrhythmias | Short stature, feeding difficulties, developmental delay, broad facies, bitemporal narrowing, intellectual disability | [59] |
Noonan syndrome | PTPN11, SOS1, RAF1, KRAS, NRAS, RIT1, SHOC2, SOS2, BRAF | 75% | PS with dysplastic pulmonary valve, AVSD, TOF, ASD, VSD, PDA, HCM | Short stature, webbed neck, hypertelorism, pectus deformity, cryptorchidism, abnormal facies, ptosis, developmental delay | [60,61] |
Kabuki syndrome | KMT2D, KDM6A | 50% | CoA, VSD, TOF, TGA, HLHS | Growth deficiency, wide palpebral fissures, arched eyebrows, a flat or depressed nasal tip, large protuberant ears, intellectual disability, clinodactyly | [62,63] |
3.2. Growth Challenges in Congenital Heart Disease
3.2.1. Low Oxygen Levels in Blood
3.2.2. Kidney Dysfunction
3.2.3. Pulmonary Hypertension
3.2.4. Effects on Growth-Related Hormone
3.3. Nutrition in Children with Congenital Heart Disease
3.3.1. Malnutrition in Children with Congenital Heart Disease
3.3.2. Nutritional Intervention for Children with Congenital Heart Disease
3.4. Clinical and Psychological Aspects of Growth in Congenital Heart Disease
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CHD | Congenital heart disease |
WAZ | Weight for age z-score |
HAZ | Height for age z-score |
WHZ | Weight for height z-score |
PH | Pulmonary hypertension |
References
- Micheletti, A. Congenital heart disease classification, epidemiology, diagnosis, treatment, and outcome. In Congenital Heart Disease; Springer: Cham, Switzerland, 2019; pp. 1–67. [Google Scholar]
- Blasquez, A.; Clouzeau, H.; Fayon, M.; Mouton, J.; Thambo, J.; Enaud, R.; Lamireau, T. Evaluation of nutritional status and support in children with congenital heart disease. Eur. J. Clin. Nutr. 2016, 70, 528–531. [Google Scholar] [CrossRef] [PubMed]
- El-Koofy, N.; Mahmoud, A.M.; Fattouh, A.M. Nutritional rehabilitation for children with congenital heart disease with left to right shunt. Turk. J. Pediatr. 2017, 59, 442–451. [Google Scholar] [CrossRef] [PubMed]
- Harrison, J.F.; Shingleton, A.W.; Callier, V. Stunted by developing in hypoxia: Linking comparative and model organism studies. Physiol. Biochem. Zool. 2015, 88, 455–470. [Google Scholar] [CrossRef] [PubMed]
- Dinleyici, E.C.; Kilic, Z.; Buyukkaragoz, B.; Ucar, B.; Alatas, O.; Aydogdu, S.D.; Dogruel, N. Serum IGF-1, IGFBP-3 and growth hormone levels in children with congenital heart disease: Relationship with nutritional status, cyanosis and left ventricular functions. Neuroendocrinol. Lett. 2007, 28, 279–283. [Google Scholar]
- Vogt, K.N.; Manlhiot, C.; Van Arsdell, G.; Russell, J.L.; Mital, S.; McCrindle, B.W. Somatic growth in children with single ventricle physiology: Impact of physiologic state. J. Am. Coll. Cardiol. 2007, 50, 1876–1883. [Google Scholar] [CrossRef]
- Chen, C.W.; Li, C.Y.; Wang, J.K. Growth and development of children with congenital heart disease. J. Adv. Nurs. 2007, 47, 260–269. [Google Scholar] [CrossRef]
- Cole, S.Z.; Lanham, J.S. Failure to thrive: An update. Am. Fam. Physician 2011, 83, 829–834. [Google Scholar]
- Monteiro, F.P.M.; Araujo, T.L.D.; Cavalcante, T.F.; Leandro, T.A.; Filho, S.P.C.S. Child growth: Concept analysis. Texto Contexto-Enferm. 2016, 25, e3300014. [Google Scholar] [CrossRef]
- Aguilar, D.C.; Raff, G.W.; Tancredi, D.J.; Griffin, I.J. Childhood growth patterns following congenital heart disease. Cardiol. Young 2015, 25, 1044–1053. [Google Scholar] [CrossRef]
- Cohen, M.S.; Zak, V.; Atz, A.M.; Printz, B.F.; Pinto, N.; Lambert, L.; Pemberton, V.; Li, J.S.; Margossian, R.; Dunbar-Masterson, C.; et al. Anthropometric measures after Fontan procedure: Implications for suboptimal functional outcome. Am. Heart J. 2010, 160, 1092–1098.e1091. [Google Scholar] [CrossRef]
- Irving, S.Y.; Medoff-Cooper, B.; Stouffer, N.O.; Schall, J.I.; Ravishankar, C.; Compher, C.W.; Marino, B.S.; Stallings, V.A. Resting energy expenditure at 3 months of age following neonatal surgery for congenital heart disease. Congenit. Heart Dis. 2013, 8, 343–351. [Google Scholar] [CrossRef] [PubMed]
- Lambert, L.M.; McCrindle, B.W.; Pemberton, V.L.; Hollenbeck-Pringle, D.; Atz, A.M.; Ravishankar, C.; Campbell, M.J.; Dunbar-Masterson, C.; Uzark, K.; Rolland, M.; et al. Longitudinal study of anthropometry in Fontan survivors: Pediatric heart network Fontan study. Am. Heart J. 2020, 224, 192–200. [Google Scholar] [CrossRef] [PubMed]
- Nousi, D.; Christou, A. Factors affecting the quality of life in children with congenital heart disease. Health Sci. J. 2010, 4, 94. [Google Scholar]
- Whittemore, R.; Chao, A.; Jang, M.; Minges, K.E.; Park, C. Methods for knowledge synthesis: An overview. Heart Lung 2014, 43, 453–461. [Google Scholar] [CrossRef]
- Paré, G.; Kitsiou, S. Methods for literature reviews. In Handbook of eHealth Evaluation: An Evidence-Based Approach; University of Victoria: Victoria, BC, Canada, 2017; Chaptre 9. [Google Scholar]
- Ghanchi, A.; Derridj, N.; Bonnet, D.; Bertille, N.; Salomon, L.J.; Khoshnood, B. Children born with congenital heart defects and growth restriction at birth: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2020, 17, 3056. [Google Scholar] [CrossRef]
- Sochet, A.A.; Ayers, M.; Quezada, E.; Braley, K.; Leshko, J.; Amankwah, E.K.; Quintessenza, J.A.; Jeffrey, P.; Dadlani, G. The importance of small for gestational age in the risk assessment of infants with critical congenital heart disease. Cardiol. Young 2013, 23, 896–904. [Google Scholar] [CrossRef]
- Wallenstein, M.; Harper, L.; Odibo, A.; Roehl, K.; Macones, G.; Cahill, A. Fetal congenital heart disease and intrauterine growth restriction: A retrospective cohort study. Am. J. Obstet. Gynecol. 2011, 204, S171. [Google Scholar] [CrossRef]
- Brown, L.D.; Hay, W.W. Impact of placental insufficiency on fetal skeletal muscle growth. Mol. Cell. Endocrinol. 2016, 435, 69–77. [Google Scholar] [CrossRef]
- Limperopoulos, C.; Wessel, D.L.; Plessis, A.J.D. Understanding the Maternal-Fetal Environment and the Birth of Prenatal Pediatrics. J. Am. Heart Assoc. 2022, 11, e023807. [Google Scholar] [CrossRef]
- Ho, D.Y.; Josowitz, R.; Katcoff, H.; Griffis, H.M.; Tian, Z.; Gaynor, J.W.; Rychik, J. Mid-gestational fetal placental blood flow is diminished in the fetus with congenital heart disease. Prenat. Diagn. 2020, 40, 1432–1438. [Google Scholar] [CrossRef]
- Jones, H.N.; Olbrych, S.K.; Smith, K.L.; Cnota, J.F.; Habli, M.; Ramos-Gonzales, O.; Owens, K.J.; Hinton, A.C.; Muglia, L.J.; Hinton, R.B. Hypoplastic left heart syndrome is associated with structural and vascular placental abnormalities and leptin dysregulation. Placenta 2015, 36, 1078–1086. [Google Scholar] [CrossRef] [PubMed]
- Matthiesen, N.B.; Østergaard, J.R.; Hjortdal, V.E.; Henriksen, T.B. Congenital heart defects and the risk of spontaneous preterm birth. J. Pediatr. 2021, 229, 168–174.e165. [Google Scholar] [CrossRef] [PubMed]
- Miller, B.S.; Johnson, D.E.; Kang, J.E.; Petryk, A. Growth Failure in International Adoptees. In Handbook of Growth and Growth Monitoring in Health and Disease; Springer: New York, NY, USA, 2012; pp. 2003–2021. [Google Scholar]
- Khadilkar, V.; Khadilkar, A. Growth charts: A diagnostic tool. Indian J. Endocrinol. Metab. 2011, 15, S166–S171. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.M.; Corkins, M.R.; Lyman, B.; Malone, A.; Goday, P.S.; Carney, L.; Monczka, J.L.; Plogsted, S.W.; Schwenk, W.F. Defining pediatric malnutrition: A paradigm shift toward etiology-related definitions. J. Parenter. Enter. Nutr. 2013, 37, 460–481. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, L.; Huang, R.; Sun, C.; Bao, N.; Xu, Z. Risk factors of malnutrition in Chinese children with congenital heart defect. BMC Pediatr. 2020, 20, 213. [Google Scholar] [CrossRef]
- Radman, M.; Mack, R.; Barnoya, J.; Castañeda, A.; Rosales, M.; Azakie, A.; Mehta, N.; Keller, R.; Datar, S.; Oishi, P.; et al. The effect of preoperative nutritional status on postoperative outcomes in children undergoing surgery for congenital heart defects in San Francisco (UCSF) and Guatemala City (UNICAR). J. Thorac. Cardiovasc. Surg. 2014, 147, 442–450. [Google Scholar] [CrossRef]
- Cheung, M.M.; Davis, A.M.; Wilkinson, J.L.; Weintraub, R.G. Long term somatic growth after repair of tetralogy of Fallot: Evidence for restoration of genetic growth potential. Heart 2003, 89, 1340–1343. [Google Scholar] [CrossRef]
- Forchielli, M.L.; McColl, R.; Walker, W.A.; Lo, C. Children with congenital heart disease: A nutrition challenge. Nutr. Rev. 1994, 52, 348–353. [Google Scholar] [CrossRef]
- Hapuoja, L.; Kretschmar, O.; Rousson, V.; Dave, H.; Naef, N.; Latal, B. Somatic growth in children with congenital heart disease at 10 years of age: Risk factors and longitudinal growth. Early Hum. Dev. 2021, 156, 105349. [Google Scholar] [CrossRef]
- Daymont, C.; Neal, A.; Prosnitz, A.; Cohen, M.S. Growth in children with congenital heart disease. Pediatrics 2013, 131, e236–e242. [Google Scholar] [CrossRef]
- Cameron, J.W.; Rosenthal, A.; Olson, A.D. Malnutrition in hospitalized children with congenital heart disease. Arch. Pediatr. Adolesc. Med. 1995, 149, 1098–1102. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.I.; Bush, D.M.; Ferry, R.J., Jr.; Spray, T.L.; Moshang, T., Jr.; Wernovsky, G.; Vetter, V.L. Somatic growth failure after the Fontan operation. Cardiol. Young 2000, 10, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Rychik, J. Protein-losing enteropathy after Fontan operation. Congenit. Heart Dis. 1995, 2, 288–300. [Google Scholar] [CrossRef]
- Gordon-Walker, T.T.; Bove, K.; Veldtman, G. Fontan-associated liver disease: A review. J. Cardiol. 2019, 74, 223–232. [Google Scholar] [CrossRef]
- Burch, P.T.; Gerstenberger, E.; Ravishankar, C.; Hehir, D.A.; Davies, R.R.; Colan, S.D.; Sleeper, L.A.; Newburger, J.W.; Clabby, M.L.; Williams, I.A. Longitudinal assessment of growth in hypoplastic left heart syndrome: Results from the single ventricle reconstruction trial. J. Am. Heart Assoc. 2014, 3, e000079. [Google Scholar] [CrossRef]
- Sandberg, C.; Rinnström, D.; Dellborg, M.; Thilén, U.; Sörensson, P.; Nielsen, N.-E.; Christersson, C.; Wadell, K.; Johansson, B. Height, weight and body mass index in adults with congenital heart disease. Int. J. Cardiol. 2015, 187, 219–226. [Google Scholar] [CrossRef]
- Bernstein, D. Evaluation of the cardiovascular system. Nelson Textb. Pediatr. 2004, 20, 2170–2612. [Google Scholar]
- Hartman, R.J.; Rasmussen, S.A.; Botto, L.D.; Riehle-Colarusso, T.; Martin, C.L.; Cragan, J.D.; Shin, M.; Correa, A. The contribution of chromosomal abnormalities to congenital heart defects: A population-based study. Pediatr. Cardiol. 2011, 32, 1147–1157. [Google Scholar] [CrossRef]
- Yasuhara, J.; Garg, V. Genetics of congenital heart disease: A narrative review of recent advances and clinical implications. Transl. Pediatr. 2021, 10, 2366. [Google Scholar] [CrossRef]
- Ehrlich, L.; Prakash, S.K. Copy-number variation in congenital heart disease. Curr. Opin. Genet. Dev. 2022, 77, 101986. [Google Scholar] [CrossRef]
- Pierpont, M.E.; Brueckner, M.; Chung, W.K.; Garg, V.; Lacro, R.V.; McGuire, A.L.; Mital, S.; Priest, J.R.; Pu, W.T.; Roberts, A. Genetic basis for congenital heart disease: Revisited: A scientific statement from the American Heart Association. Circulation 2018, 138, e653–e711. [Google Scholar] [CrossRef] [PubMed]
- Zaidi, S.; Brueckner, M. Genetics and genomics of congenital heart disease. Circ. Res. 2017, 120, 923–940. [Google Scholar] [CrossRef] [PubMed]
- Bittles, A.H.; Bower, C.; Hussain, R.; Glasson, E.J. The four ages of Down syndrome. Eur. J. Public Health 2007, 17, 221–225. [Google Scholar] [CrossRef]
- Allen, H.D.; Driscoll, D.J.; Shaddy, R.E.; Feltes, T.F. Moss & Adams’ Heart Disease in Infants, Children, and Adolescents: Including the Fetus and Young Adult, 3rd ed.; Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2013; Volume 3, pp. 560–644. [Google Scholar]
- Sybert, V.P. Cardiovascular malformations and complications in Turner syndrome. Pediatrics 1998, 101, e11. [Google Scholar] [CrossRef]
- Guarneri, M.P.; Abusrewil, S.A.; Bernasconi, S.; Bona, G.; Cavallo, L.; Cicognani, A.; Di, B.E.; Salvatoni, A. Turner’s syndrome. J. Pediatr. Endocrinol. Metab. 2001, 14, 959–965. [Google Scholar] [CrossRef]
- Gravholt, C.H.; Andersen, N.H.; Christin-Maitre, S.; Davis, S.M.; Duijnhouwer, A.; Gawlik, A.; Gawlik, A.; Maciel-Guerra, A.T.; Gutmark-Little, I.; Fleischer, K.; et al. Clinical practice guidelines for the care of girls and women with Turner syndrome: Proceedings from the 2023 Aarhus International Turner Syndrome Meeting. Eur. J. Endocrinol. 2024, 190, G53–G151. [Google Scholar] [CrossRef]
- Christiansen, J.; Dyck, J.D.; Elyas, B.G.; Lilley, M.; Bamforth, J.S.; Hicks, M.; Sprysak, K.A.; Tomaszewski, R.; Haase, S.M.; Vicen-Wyhony, L.M.; et al. Chromosome 1q21. 1 contiguous gene deletion is associated with congenital heart disease. Circ. Res. 2004, 94, 1429–1435. [Google Scholar] [CrossRef]
- Bernier, R.; Steinman, K.J.; Reilly, B.; Wallace, A.S.; Sherr, E.H.; Pojman, N.; Mefford, H.C.; Gerdts, J.; Earl, R.; Hanson, E.; et al. Clinical phenotype of the recurrent 1q21. 1 copy-number variant. Genet. Med. 2016, 18, 341–349. [Google Scholar] [CrossRef]
- Morris, C.A.; Lenhoff, H.M.; Wang, P.P. Williams-Beuren Syndrome: Research, Evaluation, and Treatment; JHU Press: Baltimore, MD, USA, 2006; pp. 3–123. [Google Scholar]
- Pober, B.R. Williams–Beuren syndrome. N. Engl. J. Med. 2010, 362, 239–252. [Google Scholar] [CrossRef]
- Jacobsen, P.; Hauge, M.; Henningsen, K.; Hobolth, N.; Mikkelsen, M.; Philip, J. An (11; 21) translocation in four generations with chromosome 11 abnormalities in the offspring: A clinical, cytogenetical, and gene marker study. Hum. Hered. 1973, 23, 568–585. [Google Scholar] [CrossRef]
- Favier, R.; Akshoomoff, N.; Mattson, S.; Grossfeld, P. Jacobsen syndrome: Advances in our knowledge of phenotype and genotype. Am. J. Med. Genet. Part C Semin. Med. Genet. 2015, 3, 223–250. [Google Scholar] [CrossRef] [PubMed]
- Grossfeld, P.D.; Mattina, T.; Lai, Z.; Favier, R.; Jones, K.L.; Cotter, F.; Jones, C. The 11q terminal deletion disorder: A prospective study of 110 cases. Am. J. Med. Genet. Part A 2004, 129, 51–61. [Google Scholar] [CrossRef] [PubMed]
- Trider, C.L.; Arra-Robar, A.; van Ravenswaaij-Arts, C.; Blake, K. Developing a CHARGE syndrome checklist: Health supervision across the lifespan (from head to toe). Am. J. Med. Genet. Part A 2017, 173, 684–691. [Google Scholar] [CrossRef] [PubMed]
- Lin, A.E.; Alexander, M.E.; Colan, S.D.; Kerr, B.; Rauen, K.A.; Noonan, J.; Baffa, J.; Hopkins, E.; Sol-Church, K.; Limongelli, G.; et al. Clinical, pathological, and molecular analyses of cardiovascular abnormalities in Costello syndrome: A Ras/MAPK pathway syndrome. Am. J. Med. Genet. Part A 2011, 155, 486–507. [Google Scholar] [CrossRef]
- Romano, A.A.; Allanson, J.E.; Dahlgren, J.; Gelb, B.D.; Hall, B.; Pierpont, M.E.; Mary, E.; Roberts, A.E.; Robinson, W.; Noonan, J.A.; et al. Noonan syndrome: Clinical features, diagnosis, and management guidelines. Pediatrics 2010, 126, 746–759. [Google Scholar] [CrossRef]
- Kratz, C.P.; Zampino, G.; Kriek, M.; Kant, S.G.; Leoni, C.; Pantaleoni, F.; Oudesluys-Murphy, A.M.; Di Rocco, C.; Kloska, S.P.; Tartaglia, M.; et al. Craniosynostosis in patients with Noonan syndrome caused by germline KRAS mutations. Am. J. Med. Genet. Part A 2009, 149, 1036–1040. [Google Scholar] [CrossRef]
- Wessels, M.W.; Brooks, A.S.; Hoogeboom, J.; Niermeijer, M.F.; Willems, P.J. Kabuki syndrome: A review study of three hundred patients. Clin. Dysmorphol. 2002, 11, 95–102. [Google Scholar] [CrossRef]
- McMahon, C.J.; Reardon, W. The spectrum of congenital cardiac malformations encountered in six children with Kabuki syndrome. Cardiol. Young 2006, 16, 30–33. [Google Scholar] [CrossRef]
- Galvis, M.M.O.; Bhakta, R.T.; Tarmahomed, A.; Mendez, M.D. Cyanotic Heart Disease; StatPearls: Treasure Island, FL, USA, 2023. [Google Scholar]
- Dundar, B.; Akcoral, A.; Saylam, G.; Unal, N.; Mese, T.; Hudaoglu, S.; Büyükgebiz, Β.; Böber, Ε.; Buyukgebiz, A. Chronic hypoxemia leads to reduced serum IGF-I levels in cyanotic congenital heart disease. J. Pediatr. Endocrinol. Metab. 2000, 13, 431–436. [Google Scholar] [CrossRef]
- Simmen, S.; Maane, M.; Rogler, S.; Baebler, K.; Lang, S.; Cosin-Roger, J.; Atrott, K.; Frey-Wagner, I.; Spielmann, P.; Wenger, R.H.; et al. Hypoxia reduces the transcription of fibrotic markers in the intestinal mucosa. Inflamm. Intest. Dis. 2021, 6, 87–100. [Google Scholar] [CrossRef]
- Singhal, R.; Shah, Y.M. Oxygen battle in the gut: Hypoxia and hypoxia-inducible factors in metabolic and inflammatory responses in the intestine. J. Biol. Chem. 2020, 295, 10493–10505. [Google Scholar] [CrossRef] [PubMed]
- Zeitouni, N.E.; Chotikatum, S.; von Köckritz-Blickwede, M.; Naim, H.Y. The impact of hypoxia on intestinal epithelial cell functions: Consequences for invasion by bacterial pathogens. Mol. Cell. Pediatr. 2016, 3, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Obeagu, E.I.; Mohamod, A.H. An update on Iron deficiency anaemia among children with congenital heart disease. Int. J. Curr. Res. Chem. Pharm. Sci. 2023, 10, 45–48. [Google Scholar]
- Mukherjee, S.; Sharma, M.; Devgan, A.; Jatana, S. Iron deficiency anemia in children with cyanotic congenital heart disease and effect on cyanotic spells. Med. J. Armed Forces India 2018, 74, 235–240. [Google Scholar] [CrossRef]
- Said, Y.H.; Assenga, E.; Munubhi, E.; Kisenge, R. Prevalence of iron deficiency and iron deficiency anaemia among children with congenital heart defects at tertiary hospitals in Dar es Salaam, Tanzania: A cross-sectional study. Pan Afr. Med. J. 2022, 43. [Google Scholar] [CrossRef]
- Hamano, H.; Niimura, T.; Horinouchi, Y.; Zamami, Y.; Takechi, K.; Goda, M.; Imanishi, M.; Chuma, M.; Izawa-Ishizawa, Y.; Miyamoto, L.; et al. Proton pump inhibitors block iron absorption through direct regulation of hepcidin via the aryl hydrocarbon receptor-mediated pathway. Toxicol. Lett. 2020, 318, 86–91. [Google Scholar] [CrossRef]
- Shalev, H.; Quider, A.A.; Harosh, M.B.; Kapelushnik, J. Proton pump inhibitors use suppresses iron absorption in congenital dyserythropoietic anemia. Pediatr. Hematol Oncol 2016, 33, 457–461. [Google Scholar] [CrossRef]
- Soliman, A.T.; Al Dabbagh, M.M.; Habboub, A.H.; Adel, A.; Humaidy, N.A.; Abushahin, A. Linear Growth in Children with Iron Deficiency Anemia Before and After Treatment. J. Trop. Pediatr. 2009, 55, 324–327. [Google Scholar] [CrossRef]
- Okoromah, C.A.; Ekure, E.N.; Lesi, F.E.; Okunowo, W.O.; Tijani, B.O.; Okeiyi, J.C. Prevalence, profile and predictors of malnutrition in children with congenital heart defects: A case–control observational study. Arch. Dis. Child. 2011, 96, 354–360. [Google Scholar] [CrossRef]
- Rahman, M.; Dipti, D.I.; Ahmed, M.Y. Iron Deficiency Anemia among Children with Congenital Heart Disease-A Cross-Sectional Study. Sch. J. Appl. Med. Sci. 2025, 4, 908–913. [Google Scholar] [CrossRef]
- Laron, Z. Insulin-like growth factor 1 (IGF-1): A growth hormone. Mol. Pathol. 2001, 54, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Fuhrman, D.Y.; Nguyen, L.; Joyce, E.L.; Priyanka, P.; Kellum, J.A. Outcomes of adults with congenital heart disease that experience acute kidney injury in the intensive care unit. Cardiol Young 2021, 31, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Hamed, D.R. Renal dysfunction in children with congenital cyanotic heart disease. Zagazig Univ. Med. J. 2023, 29, 38–43. [Google Scholar] [CrossRef]
- Li, S.; Krawczeski, C.D.; Zappitelli, M.; Devarajan, P.; Thiessen-Philbrook, H.; Coca, S.G.; Kim, R.W.; Parikh, C.R. Incidence, risk factors, and outcomes of acute kidney injury after pediatric cardiac surgery: A prospective multicenter study. Crit. Care Med. 2011, 39, 1493–1499. [Google Scholar] [CrossRef]
- Morgan, C.J.; Zappitelli, M.; Robertson, C.M.; Alton, G.Y.; Sauve, R.S.; Joffe, A.R.; Ross, D.B.; Rebeyka, I.M. Risk factors for and outcomes of acute kidney injury in neonates undergoing complex cardiac surgery. J. Pediatr. 2013, 162, 120–127.e121. [Google Scholar] [CrossRef]
- Parikh, C.R.; Devarajan, P.; Zappitelli, M.; Sint, K.; Thiessen-Philbrook, H.; Li, S.; Kim, R.W.; Richard, W.; Koyner, J.L.; Coca, S.G.; et al. Postoperative biomarkers predict acute kidney injury and poor outcomes after pediatric cardiac surgery. J. Am. Soc. Nephrol. 2011, 22, 1737–1747. [Google Scholar] [CrossRef]
- Lindle, K.A.; Dinh, K.; Moffett, B.S.; Kyle, W.B.; Montgomery, N.M.; Denfield, S.D.; Susan, D.; Knudson, J.D. Angiotensin-converting enzyme inhibitor nephrotoxicity in neonates with cardiac disease. Pediatr. Cardiol. 2014, 35, 499–506. [Google Scholar] [CrossRef]
- Phelps, C.M.; Eshelman, J.; Cruz, E.D.; Pan, Z.; Kaufman, J. Acute kidney injury after cardiac surgery in infants and children: Evaluation of the role of angiotensin-converting enzyme inhibitors. Pediatr. Cardiol. 2012, 33, 1–7. [Google Scholar] [CrossRef]
- Mak, R.H.; Ikizler, A.T.; Kovesdy, C.P.; Raj, D.S.; Stenvinkel, P.; Kalantar-Zadeh, K. Wasting in chronic kidney disease. J. Cachexia Sarcopenia Muscle 2011, 2, 9–25. [Google Scholar] [CrossRef]
- Furth, S.L. Growth and nutrition in children with chronic kidney disease. Adv. Chronic Kidney Dis. 2005, 12, 366–371. [Google Scholar] [CrossRef]
- Rees, L.; Mak, R.H. Nutrition and growth in children with chronic kidney disease. Nat. Rev. Nephrol. 2011, 7, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Mahesh, S.; Kaskel, F. Growth hormone axis in chronic kidney disease. Pediatr. Nephrol. 2008, 23, 41–48. [Google Scholar] [CrossRef] [PubMed]
- Opotowsky, A.R. Clinical evaluation and management of pulmonary hypertension in the adult with congenital heart disease. Circulation 2015, 131, 200–210. [Google Scholar] [CrossRef] [PubMed]
- Kelleher, D.K.; Laussen, P.; Teixeira-Pinto, A.; Duggan, C. Growth and correlates of nutritional status among infants with hypoplastic left heart syndrome (HLHS) after stage 1 Norwood procedure. Nutrition 2006, 22, 237–244. [Google Scholar] [CrossRef]
- Peterson, R.E.; Wetzel, G.T. Growth failure in congenital heart disease: Where are we now? Curr. Opin. Cardiol. 2004, 19, 81–83. [Google Scholar] [CrossRef]
- Ross, F.J.; Radman, M.; Jacobs, M.L.; Sassano-Miguel, C.; Joffe, D.C.; Hill, K.D.; Chirswell, K.; Feng, L.; Jacobs, J.P.; Vener, D.F.; et al. Associations between anthropometric indices and outcomes of congenital heart operations in infants and young children: An analysis of data from the society of thoracic surgeons database. Am. Heart J. 2020, 224, 85–97. [Google Scholar] [CrossRef]
- Hassan, B.A.; Albanna, E.A.; Morsy, S.M.; Siam, A.G.; Al Shafie, M.M.; Elsaadany, H.F.; Sherbiny, H.S.; Shehab, M.; Grollmuss, O. Nutritional status in children with un-operated congenital heart disease: An Egyptian center experience. Front. Pediatr. 2015, 3, 53. [Google Scholar] [CrossRef]
- Woldesenbet, R.; Murugan, R.; Mulugeta, F.; Moges, T. Nutritional status and associated factors among children with congenital heart disease in selected governmental hospitals and cardiac center, Addis Ababa Ethiopia. BMC Pediatr. 2021, 21, 538. [Google Scholar] [CrossRef]
- Pascall, E.; Tulloh, R.M. Pulmonary hypertension in congenital heart disease. Future Cardiol. 2018, 14, 343–353. [Google Scholar] [CrossRef]
- Diller, G.-P.; Gatzoulis, M.A. Pulmonary vascular disease in adults with congenital heart disease. Circulation 2007, 115, 1039–1050. [Google Scholar] [CrossRef]
- Moledina, S.; Hislop, A.; Foster, H.; Schulze-Neick, I.; Haworth, S. Childhood idiopathic pulmonary arterial hypertension: A national cohort study. Heart 2010, 96, 1401–1406. [Google Scholar] [CrossRef] [PubMed]
- Alsaied, T.; Lubert, A.M.; Goldberg, D.J.; Schumacher, K.; Rathod, R.; Katz, D.A.; Opotowsky, A.R.; Jenkins, M.; Smith, C.; Rychik, J.; et al. Protein losing enteropathy after the Fontan operation. Int. J. Cardiol. Congenit. Heart Dis. 2022, 7, 100338. [Google Scholar] [CrossRef] [PubMed]
- Soliman, A.; Yassin, H.; Saeed, S.; Khellah, A.; Elalaily, R.; Elawwa, A. 505 Linear Growth in Children with Congenital Acyanotic Heart Disease (Chd) before Versus after Surgical Intervention. Arch. Dis. Child. 2012, 97, A147. [Google Scholar] [CrossRef]
- Kubicki, R.; Grohmann, J.; Kunz, K.-G.; Stiller, B.; Schwab, K.O.; Van der Werf-Grohmann, N. Frequency of thyroid dysfunction in pediatric patients with congenital heart disease exposed to iodinated contrast media–a long-term observational study. J. Pediatr. Endocrinol. Metab. 2020, 33, 1409–1415. [Google Scholar] [CrossRef]
- Hauck, A.; Porta, N.; Lestrud, S.; Berger, S. The pulmonary circulation in the single ventricle patient. Children 2017, 4, 71. [Google Scholar] [CrossRef] [PubMed]
- Coutant, R.; Bouhours-Nouet, N. Endocrine control and regulation of growth hormone: An overview. In Handbook of Growth and Growth Monitoring in Health and Disease; Springer: New York, NY, USA, 2012; pp. 73–92. [Google Scholar]
- Soliman, A.T.; ElAwwa, A. Catch-up growth: Role of GH–IGF-I axis and thyroxine. In Handbook of Growth and Growth Monitoring in Health and Disease; Springer: New York, NY, USA, 2012; pp. 935–962. [Google Scholar]
- De Staebel, O. Malnutrition in Belgian children with congenital heart disease on admission to hospital. J. Clin. Nurs. 2000, 9, 784–791. [Google Scholar] [CrossRef]
- Lewis, M.I.; Li, H.; Huang, Z.-S.; Biring, M.S.; Cercek, B.; Fournier, M. Influence of varying degrees of malnutrition on IGF-I expression in the rat diaphragm. J. Appl. Physiol. 2003, 95, 555–562. [Google Scholar] [CrossRef]
- Mousikou, M.; Kyriakou, A.; Skordis, N. Stress and Growth in Children and Adolescents. Horm. Res. Paediatr. 2023, 96, 25–33. [Google Scholar] [CrossRef]
- Kraemer, W.J.; Ratamess, N.A.; Hymer, W.C.; Nindl, B.C.; Fragala, M.S. Growth hormone (s), testosterone, insulin-like growth factors, and cortisol: Roles and integration for cellular development and growth with exercise. Front. Endocrinol. 2020, 11, 33. [Google Scholar] [CrossRef]
- Geukers, V.G.; Li, Z.; Ackermans, M.T.; Bos, A.P.; Jinfeng, L.; Sauerwein, H.P. High-carbohydrate/low-protein-induced hyperinsulinemia does not improve protein balance in children after cardiac surgery. Nutrition 2012, 28, 644–650. [Google Scholar] [CrossRef]
- Chrousos, G. The role of stress and the hypothalamic–pituitary–adrenal axis in the pathogenesis of the metabolic syndrome: Neuro-endocrine and target tissue-related causes. Int. J. Obes. 2000, 24, S50–S55. [Google Scholar] [CrossRef] [PubMed]
- Nassef, Y.E.; Hamed, M.A.; Aly, H.F. Inflammatory cytokines, apoptotic, tissue injury and remodeling biomarkers in children with congenital heart disease. Indian J. Clin. Biochem. 2014, 29, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Zorzanelli, L.; Maeda, N.; Clavé, M.; Thomaz, A.; Galas, F.; Rabinovitch, M.; Lopes, A. Relation of cytokine profile to clinical and hemodynamic features in young patients with congenital heart disease and pulmonary hypertension. Am. J. Cardiol. 2017, 119, 119–125. [Google Scholar] [CrossRef]
- Noori, N.M.; Shahramian, I.; Teimouri, A.; Keyvani, B.; Mahjoubifard, M. Serum levels of tumor necrosis factor-α and interleukins in children with congenital heart disease. J. Tehran Univ. Heart Cent. 2017, 12, 15. [Google Scholar]
- Greenhalgh, C.J.; Alexander, W.S. Suppressors of cytokine signalling and regulation of growth hormone action. Growth Horm. IGF Res. 2004, 14, 200–206. [Google Scholar] [CrossRef]
- Cammisa, I.; Rigante, D.; Cipolla, C. A Theoretical Link Between the GH/IGF-1 Axis and Cytokine Family in Children: Current Knowledge and Future Perspectives. Children 2025, 12, 495. [Google Scholar] [CrossRef]
- Lerner, R.K.; Gruber, N.; Pollak, U. Congenital heart disease and thyroid dysfunction: Combination, association, and implication. World J. Pediatr. Congenit. Heart Surg. 2019, 10, 604–615. [Google Scholar] [CrossRef]
- Scavone, M.; Tallarico, V.; Stefanelli, E.; Parisi, F.; De Sarro, R.; Salpietro, C.; Ceravolo, G.; Sestito, S.; Pensabene, L.; Chimenz, R.; et al. Cardiac malformations in children with congenital hypothyroidism. J. Biol. Regul. Homeost. Agents 2020, 34, 91–97. [Google Scholar]
- Batra, Y.K.; Singh, B.; Chavan, S.; Chari, P.; Dhaliwal, R.S.; Ramprabu, K. Effects of cardiopulmonary bypass on thyroid function. Ann. Card. Anaesth. 2000, 3, 3–6. [Google Scholar]
- Marks, S.D.; Haines, C.; Rebeyka, I.M.; Couch, R.M. Hypothalamic-pituitary-thyroid axis changes in children after cardiac surgery. J. Clin. Endocrinol. Metab. 2009, 94, 2781–2786. [Google Scholar] [CrossRef]
- Saranac, L.; Zivanovic, S.; Stamenkovic, H.; Stankovic, T.; Djuric, Z. Growth in Children with Thyroid Dysfunction. In Current Topics in Hypothyroidism with Focus on Development; IntechOpen: London, UK, 2013. [Google Scholar]
- Tarım, Ö. Thyroid hormones and growth in health and disease. J. Clin. Res. Pediatr. Endocrinol. 2011, 3, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Fitria, L.; Caesa, P.; Joe, J.; Marwali, E.M. Did malnutrition affect post-operative somatic growth in pediatric patients undergoing surgical procedures for congenital heart disease? Pediatr. Cardiol. 2019, 40, 431–436. [Google Scholar] [CrossRef] [PubMed]
- Weintraub, R.G.; Menahem, S. Growth and congenital heart disease. J. Pediatr. Child Health 1993, 29, 95–98. [Google Scholar] [CrossRef]
- Barton, J.; Hindmarsh, P.; Scrimgeour, C.; Rennie, M.; Preece, M. Energy expenditure in congenital heart disease. Arch. Dis. Child. 1994, 70, 5–9. [Google Scholar] [CrossRef]
- Toole, B.J.; Toole, L.E.; Kyle, U.G.; Cabrera, A.G.; Orellana, R.A.; Coss-Bu, J.A. Perioperative nutritional support and malnutrition in infants and children with congenital heart disease. Congenit. Heart Dis. 2014, 9, 15–25. [Google Scholar] [CrossRef]
- Unger, R.; DeKleermaeker, M.; Gidding, S.S.; Christoffel, K.K. Calories count: Improved weight gain with dietary intervention in congenital heart disease. Am. J. Dis. Child. 1992, 146, 1078–1084. [Google Scholar] [CrossRef]
- Menon, G.; Poskitt, E. Why does congenital heart disease cause failure to thrive? Arch. Dis. Child. 1985, 60, 1134–1139. [Google Scholar] [CrossRef]
- Nydegger, A.; Walsh, A.; Penny, D.J.; Henning, R.; Bines, J.E. Changes in resting energy expenditure in children with congenital heart disease. Eur. J. Clin. Nutr. 2009, 63, 392–397. [Google Scholar] [CrossRef]
- Lees, M.H.; Bristow, J.D.; Griswold, H.E.; Olmsted, R.W. Relative hypermetabolism in infants with heart disease and undernutrition. Pediatrics 1965, 36, 183–191. [Google Scholar] [CrossRef]
- Trabulsi, J.C.; Irving, S.; Papas, M.; Hollowell, C.; Ravishankar, C.; Marino, B.; Medoff-Cooper, B.; Schall, J.I.; Stallings, V. Total energy expenditure of infants with congenital heart disease who have undergone surgical intervention. Pediatr. Cardiol. 2015, 36, 1670–1679. [Google Scholar] [CrossRef]
- Williams, R.V.; Zak, V.; Ravishankar, C.; Altmann, K.; Anderson, J.; Atz, A.M.; Dunbar-Masterson, C.; Ghanayem, N.; Lambert, L.; Lurito, K.; et al. Factors affecting growth in infants with single ventricle physiology: A report from the Pediatric Heart Network Infant Single Ventricle Trial. J. Pediatr. 2011, 159, 1017–1022.e1012. [Google Scholar] [CrossRef] [PubMed]
- Hansson, L.; Lind, T.; Wiklund, U.; Öhlund, I.; Rydberg, A. Fluid restriction negatively affects energy intake and growth in very low birthweight infants with haemodynamically significant patent ductus arteriosus. Acta Paediatr. 2019, 108, 1985–1992. [Google Scholar] [CrossRef] [PubMed]
- Herridge, J.; Tedesco-Bruce, A.; Gray, S.; Floh, A.A. Feeding the child with congenital heart disease: A narrative review. Pediatr. Med. 2021, 4. [Google Scholar] [CrossRef]
- Larson-Nath, C.; Goday, P. Malnutrition in children with chronic disease. Nutr. Clin. Pract. 2019, 34, 349–358. [Google Scholar] [CrossRef]
- Alten, J.A.; Rhodes, L.A.; Tabbutt, S.; Cooper, D.S.; Graham, E.M.; Ghanayem, N.; Marino, B.S.; Figueroa, M.I.; Chanani, N.K.; Jacobs, J.P. Perioperative feeding management of neonates with CHD: Analysis of the Pediatric Cardiac Critical Care Consortium (PC4) registry. Cardiol. Young 2015, 25, 1593–1601. [Google Scholar] [CrossRef]
- Natarajan, G.; Anne, S.R.; Aggarwal, S. Enteral feeding of neonates with congenital heart disease. Neonatology 2010, 98, 330–336. [Google Scholar] [CrossRef]
- Luca, A.C.; Miron, I.C.; Mîndru, D.E.; Curpăn, A.; Stan, R.C.; Țarcă, E.; Luca, F.-A.; Pădureț, A.I. Optimal Nutrition Parameters for Neonates and Infants with Congenital Heart Disease. Nutrients 2022, 14, 1671. [Google Scholar] [CrossRef]
- Becker, K.C.; Hornik, C.P.; Cotten, C.M.; Clark, R.H.; Hill, K.D.; Smith, P.B.; Lenfestey, R.W. Necrotizing enterocolitis in infants with ductal-dependent congenital heart disease. Am. J. Perinatol. 2014, 32, 633–638. [Google Scholar] [CrossRef]
- Coss-Bu, J.A.; Hamilton-Reeves, J.; Patel, J.J.; Morris, C.R.; Hurt, R.T. Protein Requirements of the Critically Ill Pediatric Patient. Nutr. Clin. Pract. 2017, 32, 128s–141s. [Google Scholar] [CrossRef]
- Şimşek, T.; Şimşek, H.U.; Cantürk, N.Z. Response to trauma and metabolic changes: Posttraumatic metabolism. Turk. J. Surg. 2014, 30, 153. [Google Scholar] [CrossRef]
- Mehta, N.M.; Duggan, C.P. Nutritional deficiencies during critical illness. Pediatr. Clin. 2009, 56, 1143–1160. [Google Scholar] [CrossRef] [PubMed]
- Argent, A.C.; Balachandran, R.; Vaidyanathan, B.; Khan, A.; Kumar, R.K. Management of undernutrition and failure to thrive in children with congenital heart disease in low-and middle-income countries. Cardiol. Young 2017, 27, S22–S30. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Li, L.; Hu, C.; Shi, H.; Li, J.; Gupta, R.K.; Liang, H.; Chen, X.; Gong, S. Effects and Tolerance of Protein and Energy-Enriched Formula in Infants Following Congenital Heart Surgery: A Randomized Controlled Trial. J. Parenter. Enter. Nutr. 2018, 42, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Gu, Y.; Mi, Y.; Jin, Y.; Fu, W.; Latour, J.M. High-energy nutrition in paediatric cardiac critical care patients: A randomized controlled trial. Nurs. Crit. Care 2019, 24, 97–102. [Google Scholar] [CrossRef]
- Justice, L.; Buckley, J.R.; Floh, A.; Horsley, M.; Alten, J.; Anand, V.; Schwartz, S.M. Nutrition considerations in the pediatric cardiac intensive care unit patient. World J. Pediatr. Congenit. Heart Surg. 2018, 9, 333–343. [Google Scholar] [CrossRef]
- Avitzur, Y.; Singer, P.; Dagan, O.; Kozer, E.; Abramovitch, D.; Dinari, G.; Shamir, R. Resting energy expenditure in children with cyanotic and noncyanotic congenital heart disease before and after open heart surgery. J. Parenter. Enter. Nutr. 2003, 27, 47–51. [Google Scholar] [CrossRef]
- Davenport, M.L.; Crowe, B.J.; Travers, S.H.; Rubin, K.; Ross, J.L.; Fechner, P.Y.; Gunther, D.F.; Liu, C.; Geffner, M.E.; Thrailkill, K.; et al. Growth hormone treatment of early growth failure in toddlers with Turner syndrome: A randomized, controlled, multicenter trial. J. Clin. Endocrinol. Metab. 2007, 92, 3406–3416. [Google Scholar] [CrossRef]
- Mehta, N.M.; Bechard, L.J.; Zurakowski, D.; Duggan, C.P.; Heyland, D.K. Adequate enteral protein intake is inversely associated with 60-d mortality in critically ill children: A multicenter, prospective, cohort study. Am. J. Clin. Nutr. 2015, 102, 199–206. [Google Scholar] [CrossRef]
- Newcombe, J.; Fry-Bowers, E. A post-operative feeding protocol to improve outcomes for neonates with critical congenital heart disease. J. Pediatr. Nurs. 2017, 35, 139–143. [Google Scholar] [CrossRef]
- Panchal, A.K.; Manzi, J.; Connolly, S.; Christensen, M.; Wakeham, M.; Goday, P.S.; Mikhailov, T.A. Safety of enteral feedings in critically ill children receiving vasoactive agents. J. Parenter. Enter. Nutr. 2016, 40, 236–241. [Google Scholar] [CrossRef]
- Kim, J.-Y.; Sarnaik, A.; Farooqi, A.; Cashen, K. Contemporary feeding practices in postoperative patients with Congenital Heart Disease. Cardiol. Young 2022, 32, 1938–1943. [Google Scholar] [CrossRef] [PubMed]
- Reyes, A.J.; Leary, W.P.; Lockett, C.J.; Alcocer, L. Diuretics and zinc. S. Afr. Med. J. 1982, 62, 373–375. [Google Scholar] [PubMed]
- Fritzen, R.; Davies, A.; Veenhuizen, M.; Campbell, M.; Pitt, S.J.; Ajjan, R.A.; Stewart, A.J. Magnesium Deficiency and Cardiometabolic Disease. Nutrients 2023, 15, 2355. [Google Scholar] [CrossRef] [PubMed]
- Chan, B.; Woodbury, A.; Hazelwood, L.; Singh, Y. Feeding Approach to Optimizing Nutrition in Infants with Congenital Heart Disease. J. Cardiovasc. Dev. Dis. 2025, 12, 38. [Google Scholar] [CrossRef]
- Jochum, F.; Moltu, S.J.; Senterre, T.; Nomayo, A.; Goulet, O.; Iacobelli, S.; Braegger, C.; Bronsky, J.; Cai, W.; Campoy, C.; et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Fluid and electrolytes. Clin. Nutr. 2018, 37, 2344–2353. [Google Scholar] [CrossRef]
- Anderson, B.R.; Eckels, V.L.B.; Crook, S.; Duchon, J.M.; Kalfa, D.; Bacha, E.A.; Krishnamurthy, G. The risks of being tiny: The added risk of low weight for neonates undergoing congenital heart surgery. Pediatr. Cardiol. 2020, 41, 1623–1631. [Google Scholar] [CrossRef]
- Kopf, G.S.; Mello, D.M. Surgery for congenital heart disease in low-birth weight neonates: A comprehensive statewide Connecticut program to improve outcomes. Conn. Med. 2003, 67, 327–332. [Google Scholar]
- Knowles, R.L.; Bull, C.; Wren, C.; Wade, A.; Goldstein, H. Modelling Survival and Mortality Risk to 15 Years of Age for a National Cohort of Children with Serious Congenital Heart Defects Diagnosed in Infancy. PLoS ONE 2014, 9, 9. [Google Scholar] [CrossRef]
- Anderson, J.B.; Kalkwarf, H.J.; Kehl, J.E.; Eghtesady, P.; Marino, B.S. Low weight-for-age z-score and infection risk after the Fontan procedure. Ann. Thorac. Surg. 2011, 91, 1460–1466. [Google Scholar] [CrossRef]
- Hoddinott, J.; Maluccio, J.; Behrman, J.R.; Martorell, R.; Melgar, P.; Quisumbing, A.R.; Ramirez-Zea, M.; Stein, A.D.; Yount, K.M. The consequences of early childhood growth failure over the life course. Int. Food Policy Res. Inst. Discuss. Pap. 2011, 1073, 5. [Google Scholar]
- Medoff-Cooper, B.; Irving, S.Y.; Hanlon, A.L.; Golfenshtein, N.; Radcliffe, J.; Stallings, V.A.; Marino, B.; Ravishankar, C. The association among feeding mode, growth, and developmental outcomes in infants with complex congenital heart disease at 6 and 12 months of age. J. Pediatr. 2016, 169, 154–159.e151. [Google Scholar] [CrossRef] [PubMed]
- Mussatto, K.A.; Hoffmann, R.; Hoffman, G.; Tweddell, J.S.; Bear, L.; Cao, Y.; Tanum, J.; Brosig, C. Risk factors for abnormal developmental trajectories in young children with congenital heart disease. Circulation 2015, 132, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Stieh, J.; Kramer, H.; Harding, P.; Fischer, G. Gross and fine motor development is impaired in children with cyanotic congenital heart disease. Neuropediatrics 1999, 30, 77–82. [Google Scholar] [CrossRef] [PubMed]
- Roberts, J.V.; Herman, C.P. The psychology of height: An empirical review. In Physical Appearance, Stigma, and Social Behavior; Routledge: Abingdon, UK, 2022; pp. 113–140. [Google Scholar]
- Young, T.J.; French, L.A. Height and perceived competence of US presidents. Percept. Mot. Ski. 1996, 82, 1002. [Google Scholar] [CrossRef]
- Kim, Y.-J.; Kim, K.-S. Body image, self esteem and quality of life in grown-up congenital heart patients. Korean J. Rehabil. Nurs. 2004, 7, 127–139. [Google Scholar]
- Masi, G.; Brovedani, P. Adolescents with congenital heart disease: Psychopathol. implications. Adolescence 1999, 34, 185–192. [Google Scholar]
- Csapo, M. Psychosocial adjustment of children with short stature (Achondroplasia): Social competence, behavior problems, self-esteem, family functioning, body image, and reaction to frustrations. Behav. Disord. 1991, 16, 219–224. [Google Scholar] [CrossRef]
- Gordon, M.; Crouthamel, C.; Post, E.M.; Richman, R.A. Psychosocial aspects of constitutional short stature: Social competence, behavior problems, self-esteem, and family functioning. J. Pediatr. 1982, 101, 477–480. [Google Scholar] [CrossRef]
- Ghaemmaghami, Z.; Khajali, Z.; Dalili, M.; Fotovati, Z.; Moradian, M.; Sheikhfathollahi, M. Pubertal status of children with congenital heart disease. Cardiol. Young 2022, 32, 574–578. [Google Scholar] [CrossRef]
- Thomet, C.; Moons, P.; Schwerzmann, M.; Schwitz, F. Development of quality indicators of transfer and transition in adolescents and young adults with congenital heart disease. BMC Health Serv. Res. 2023, 23, 1154. [Google Scholar] [CrossRef]
Z-Score (%) Cut-Off (WHO Growth Chart) | Percentile Cut-Off (CDC Growth Chart) | Weight for Age (WAZ) | Height for Age (HAZ) | Weight for Height (WHZ) | Body Mass Index (BMI) for Age |
---|---|---|---|---|---|
≥+3 (99%) | ≥95th | - | - | Obese | Obese |
≥+2 (97%) | ≥85th and <95th | Overweight | Overweight | ||
≥+1 (85%) | Normal | Normal | Possible risk of overweight | ||
<−1 (15%) | Slightly underweight | Slightly stunted | Slightly wasted | ||
<−2 (3%) | <5th | Underweight | Stunted | Wasted | Underweight |
<−3 (1%) | Severely underweight | Severely stunted | Severely wasted |
Electrolytes | Day 1 | Day 2 | Day 3 | Day 4 | Day 5 | Intermediate Phase |
---|---|---|---|---|---|---|
Sodium (mmol/kg/d) | 0–2 | 0–2 | 0–2 | 1–3 | 1–3 | 2–3 |
Potassium (mmol/kg/d) | 0–3 | 0–3 | 0–3 | 2–3 | 2–3 | 1–3 |
Calcium (mmol/kg/d) | 0.8–1.5 | 0.8–1.5 | 0.8–1.5 | 0.8–1.5 | 0.8–1.5 | 0.5 |
Chloride (mmol/kg/d) | 0–3 | 0–3 | 0–3 | 2–5 | 2–5 | 2–3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Marshall, T.; Buck, H.; Pamela, M.; Daack-Hirsch, S. Growth Failure in Children with Congenital Heart Disease. Children 2025, 12, 616. https://doi.org/10.3390/children12050616
Lee J, Marshall T, Buck H, Pamela M, Daack-Hirsch S. Growth Failure in Children with Congenital Heart Disease. Children. 2025; 12(5):616. https://doi.org/10.3390/children12050616
Chicago/Turabian StyleLee, Jihye, Teresa Marshall, Harleah Buck, Mulder Pamela, and Sandra Daack-Hirsch. 2025. "Growth Failure in Children with Congenital Heart Disease" Children 12, no. 5: 616. https://doi.org/10.3390/children12050616
APA StyleLee, J., Marshall, T., Buck, H., Pamela, M., & Daack-Hirsch, S. (2025). Growth Failure in Children with Congenital Heart Disease. Children, 12(5), 616. https://doi.org/10.3390/children12050616