Unraveling Metabolic Syndrome in Youth: The Obesity Epidemic’s Hidden Complication
Abstract
:1. Introduction
Motivation and Aim of the Narrative Review
2. Materials and Methods
3. Results
3.1. Definition of MetS in Children and Adolescents
3.2. Prevalence of MetS
- -
- -
- -
- (1)
- Dietary Habits and Their Impact on MetS
- (2)
- Unhealthy Dietary Patterns That Exacerbate MetS
- (3)
- Dietary Modifications to Improve MetS
- (4)
- Nutritional Components and Their Influence on MetS
- Nutrients That Contribute to MetS:
- Nutrients That Offer Protective Effects Against MetS:
- (5)
- Lifestyle Factors and Their Role in MetS
3.3. Useful Indices in MetS
3.4. Pathophysiology of MetS
3.4.1. Insulin Resistance and MetS
3.4.2. Obesity and MetS
3.4.3. Oxidative Stress and MetS
3.4.4. Adipocytokines and MetS
3.4.5. Renin-Angiotensin System and MetS
3.4.6. Epigenetics and MetS
3.4.7. Gut Microbiota in MetS
The Role of Gut Microbiota in MetS
Gut Microbiota and Its Mechanisms in Metabolic Regulation
Microbial Diversity and Its Association with MetS
3.5. Screening of MetS
- -
- Parental obesity
- -
- Family history of T2DM (first or second-degree relatives)
- -
- Racial/ethnic background (e.g., Native American, African American, Asian, Latino)
- -
- Indicators of IR, such as acanthosis nigricans, HTN, PCOS, or dyslipidaemia
- -
- A history of being small for gestational age
- -
- Maternal history of gestational diabetes [137].
4. Discussion
Research Gaps and Future Directions in Metabolic Syndrome: Paving the Way for Next-Generation Insights
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
A1C | Glycated hemoglobin |
ABSI | A body shape index |
ADA | American Diabetes Association |
AHA | American Heart Association |
ALAT | alanine aminotransferase |
AMPK | AMP-activated protein kinase |
APOA1 | apolipoprotein A1 |
ASAT | aspartate aminotransferase |
BIA | Bioelectrical impedance analysis |
BMI | Body Mass Index |
BRI | Body round index |
BP | blood presure |
C-RP | C-reactive protein |
CVD | cardiovascular disease |
DBP | diastolic blood pressure |
DHA | docohexaenoic acid |
EGIR | European Group for the Study of Insulin Resistance |
FPG | fasting plasma glucose |
FFAs | free fatty acids |
GGT | gamma-glutamyl transferase |
HDL | high-density lipoproteins |
HFpEF | preserved ejection fraction |
HTN | hypertension |
IDEFICS | Identification and Prevention of Dietary- and Lifestyle-Induced Health Effects in Children and Infants |
IDF | International Diabetes Federation |
IFG | Impaired Fasting Glycemia |
IGT | Impaired Glucose Tolerance |
IR | insulin resistance |
LDL | low-density lipoproteins |
LPS | lipopolysaccharide |
MDA | malondialdehyde |
MetS | Metabolic syndrome |
NAFLD | non-alcoholic fatty liver disease |
NCEP-ATP III | National Cholesterol Education Program—Adult Treatment Panel III |
OGTT | Oral Glucose Tolerance Test |
PON1 | paraoxonase 1 |
PCOS | polycystic ovary syndrome |
PI | ponderal index |
RBP4 | retinol-binding protein 4 |
RAS | renin-angiotensin system |
SBP | systolic blood pressure |
SCFAs | short-chain fatty acids |
T2DM | type 2 diabetes melitus |
TG | triglycerides |
VLDL | very low-density lipoproteins |
WHtR | Waist-to-height ratio |
WC | waist circumference |
WHO | World Health Organization |
VAI | Visceral adiposity index |
References
- Sliwowska, J.H.; Wojcik, M.; El Ghoch, M.; Delvecchio, M. Metabolic consequences in children and adolescents with obesity: Latest insights. Front. Endocrinol. 2023, 14, 1223129. [Google Scholar] [CrossRef]
- World Health Organization. Available online: http://www.who.int/mediacentre/factsheets/fs311/en/ (accessed on 5 December 2023).
- Bussler, S.; Penke, M.; Flemming, G.; Elhassan, Y.; Kratzsch, J.; Sergeyev, E.; Lipek, T.; Vogel, M.; Spielau, U.; Körner, A.; et al. Novel Insights in the Metabolic Syndrome in Childhood and Adolescence. Horm. Res. Paediatr. 2017, 88, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.H. The Prevalence of Abdominal Obesity and Metabolic Syndrome in Korean Children and Adolescents. J. Obes. Metab. Syndr. 2023, 32, 103–105. [Google Scholar] [CrossRef] [PubMed]
- Fornari, E.; Maffeis, C. Treatment of Metabolic Syndrome in Children. Front. Endocrinol. 2019, 10, 702. [Google Scholar] [CrossRef]
- Wang, H.H.; Lee, D.K.; Liu, M.; Portincasa, P.; Wang, D.Q.H. Novel Insights into the Pathogenesis and Management of the Metabolic Syndrome. Pediatr. Gastroenterol. Hepatol. Nutr. 2020, 23, 189–230. [Google Scholar] [CrossRef]
- Frías, J.R.G.; Cadena, L.H.; Villarreal, A.B.; Piña, B.G.B.; Mejía, M.C.; Cerros, L.A.D.; Gil, G.B.; Montes, J.O.A. Effect of ultra-processed food intake on metabolic syndrome components and body fat in children and adolescents: A systematic review based on cohort studies. Nutrition 2023, 111, 112038. [Google Scholar] [CrossRef]
- Dobrowolski, P.; Prejbisz, A.; Kuryłowicz, A.; Baska, A.; Burchardt, P.; Chlebus, K.; Dzida, G.; Jankowski, P.; Jaroszewicz, J.; Jaworski, P.; et al. Metabolic syndrome—A new definition and management guidelines. Arch. Med. Sci. 2022, 5, 1134–1156. [Google Scholar] [CrossRef]
- Barutcu, A.; Ornek, C.; Kozanoglu, E. A growing problem in childhood and adolescence: Metabolic syndrome and its relationship with physical activity and fitness. Marmara Med. J. 2023, 36, 255–261. [Google Scholar] [CrossRef]
- Engin, A. The Definition and Prevalence of Obesity and Metabolic Syndrome. In Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2017; pp. 1–17. [Google Scholar] [CrossRef]
- Bitew, Z.W.; Alemu, A.; Ayele, E.G.; Tenaw, Z.; Alebel, A.; Worku, T.; Ayele, E.G. Prevalence of Metabolic Syndrome among Children and Adolescents in High-Income Countries: A Systematic Review and Meta-Analysis of Observational Studies. Bio. Med. Res. Int. 2021, 2021, 6661457. [Google Scholar] [CrossRef]
- Leister, K.R.; Cilhoroz, B.T.; Rosenberg, J.; Brown, E.C.; Kim, J.Y. Metabolic syndrome: Operational definitions and aerobic and resistance training benefits on physical and metabolic health in children and adolescents. Diabetes Metab. Syndr. 2022, 16, 102530. [Google Scholar] [CrossRef]
- Magge, S.N.; Goodman, E.; Armstrong, S.C. The Metabolic Syndrome in Children and Adolescents: Shifting the Focus to Cardiometabolic Risk Factor Clustering. Pediatrics 2017, 140, e20171603. [Google Scholar] [CrossRef] [PubMed]
- Steinberger, J.; Daniels, S.R.; Eckel, R.H.; Hayman, L.; Lustig, R.H.; McCrindle, B.; Mietus-Snyder, M.L. Progress and challenges in metabolic syndrome in children and adolescents: A scientific statement from the American Heart Association Atherosclerosis, Hypertension, and Obesity in the Young Committee of the Council on Cardiovascular Disease in the Young; Council on Cardiovascular Nursing; and Council on Nutrition, Physical Activity, and Metabolism. Circulation 2009, 119, 628–647. [Google Scholar] [CrossRef] [PubMed]
- DeBoer, M.D. Assessing and Managing the Metabolic Syndrome in Children and Adolescents. Nutrients 2019, 11, 1788. [Google Scholar] [CrossRef] [PubMed]
- Reisinger, C.; Nkeh-Chungag, B.N.; Fredriksen, P.M.; Goswami, N. The prevalence of pediatric metabolic syndrome—A critical look on the discrepancies between definitions and its clinical importance. Int. J. Obes. 2021, 45, 12–24. [Google Scholar] [CrossRef]
- Zimmet, P.; Alberti, K.G.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; Caprio, S. IDF Consensus Group. The metabolic syndrome in children and adolescents—An IDF consensus report. Pediatr. Diabetes 2007, 8, 299–306. [Google Scholar] [CrossRef]
- Ford, E.S.; Giles, W.H. A comparison of the prevalence of the metabolic syndrome using two proposed definitions. Diabetes Care 2003, 26, 575–581. [Google Scholar] [CrossRef]
- Ford, E.S.; Li, C. Defining the metabolic syndrome in children and adolescents: Will the real definition please stand up? J. Pediatr. 2008, 152, 160–164. [Google Scholar] [CrossRef]
- Morrison, J.A.; Friedman, L.A.; Wang, P.; Glueck, C.J. Metabolic syndrome in childhood predicts adult metabolic syndrome and type 2 diabetes mellitus 25 to 30 years later. J. Pediatr. 2008, 152, 201–206. [Google Scholar] [CrossRef]
- Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) Expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 2001, 285, 2486–2497. [Google Scholar] [CrossRef]
- Cook, S.; Weitzman, M.; Auinger, P.; Nguyen, M.; Dietz, W.H. Prevalence of a metabolic syndrome phenotype in adolescents: Findings from the third National Health and Nutrition Examination Survey, 1988–1994. Arch. Pediatr. Adolesc. Med. 2003, 157, 821–827. [Google Scholar] [CrossRef]
- de Ferranti, S.D.; Gauvreau, K.; Ludwig, D.S.; Neufeld, E.J.; Newburger, J.W.; Rifai, N. Prevalence of the metabolic syndrome in American adolescents: Findings from the Third National Health and Nutrition Examination Survey. Circulation 2004, 110, 2494–2497. [Google Scholar] [CrossRef] [PubMed]
- International Diabetic Federation. The IDF Consensus Definition of the Metabolic Syndrome in Children and Adolescents. 2007. Available online: http://www.idf.org/publications/idf-consensus-definition-metabolic-syndrome-children (accessed on 24 April 2024).
- Ahrens, W.; Moreno, L.A.; Mårild, S.; Molnár, D.; Siani, A.; De Henauw, S. Metabolic syndrome in young children: Definitions and results of the IDEFICS study. Int. J. Obes. 2014, 38, S4–S14. [Google Scholar] [CrossRef] [PubMed]
- Zong, X.; Bovet, P.; Xi, B. A Proposal to Unify the Definition of the Metabolic Syndrome in Children and Adolescents. Front. Endocrinol. 2022, 13, 925976. [Google Scholar] [CrossRef]
- Noubiap, J.J.; Nansseu, J.R.; Lontchi-Yimagou, E.; Nkeck, J.R.; Nyaga, U.F.; Ngouo, A.T.; Tounouga, D.N.; Tianyi, F.L.; Foka, A.J.; Ndoadoumgue, A.L.; et al. Global, regional, and country estimates of metabolic syndrome burden in children and adolescents in 2020: A systematic review and modelling analysis. Lancet Child Adolesc. Health 2022, 6, 158–170. [Google Scholar] [CrossRef]
- Sánchez-Delgado, A.; Sánchez-Parente, S.; Martínez-Gómez, D.; Gómez-Martínez, S.; Veiga, O.L.; Marcos, A.; Castro-Piñero, J.; Pérez-Bey, A. Objective measured physical activity and metabolic syndrome score in children and adolescents: The UP&DOWN longitudinal study. Scand. J. Med. Sci. Sports 2023, 33, 2299–2312. [Google Scholar] [CrossRef]
- Wattigney, W.A.; Webber, L.S.; Srinivasan, S.R.; Berenson, G.S. The emergence of clinically abnormal levels of cardiovascular disease risk factor variables among young adults: The Bogalusa Heart Study. Prev. Med. 1995, 24, 617–626. [Google Scholar] [CrossRef]
- Friend, A.; Craig, L.; Turner, S. The prevalence of metabolic syndrome in children: A systematic review of the literature. Metab. Syndr. Relat. Disord. 2013, 11, 71–80. [Google Scholar] [CrossRef]
- Fu, L.; Xie, N.; Qu, F.; Zhou, J.; Wang, F. The Association Between Polycystic Ovary Syndrome and Metabolic Syndrome in Adolescents: A Systematic Review and Meta-analysis. Reprod. Sci. 2023, 30, 28–40. [Google Scholar] [CrossRef]
- Soliman, H.M.; Mosaad, Y.O.; Ibrahim, A. The prevalence and the clinical profile of metabolic syndrome in children and adolescents with Type 1 diabetes. Diabetes Metab. Syndr. 2019, 13, 1723–1726. [Google Scholar] [CrossRef]
- Bitew, Z.W.; Alemu, A.; Ayele, E.G.; Tenaw, Z.; Alebel, A.; Worku, T. Metabolic syndrome among children and adolescents in low and middle income countries: A systematic review and meta-analysis. Diabetol. Metab. Syndr. 2020, 12, 93. [Google Scholar] [CrossRef]
- Misra, A.; Khurana, L. The metabolic syndrome in South Asians: Epidemiology, determinants, and prevention. Metab. Syndr. Relat. Disord. 2009, 7, 497–514. [Google Scholar] [CrossRef] [PubMed]
- Misra, A.; Soares, M.J.; Mohan, V.; Anoop, S.; Abhishek, V.; Vaidya, R.; Pradeepa, R. Body fat, metabolic syndrome and hyperglycemia in South Asians. J. Diabetes Complicat. 2018, 32, 1068–1075. [Google Scholar] [CrossRef] [PubMed]
- Dodani, S.; Henkhaus, R.; Wick, J.; Vacek, J.; Gupta, K.; Dong, L.; Butler, M.G. Metabolic syndrome in South Asian immigrants: More than low HDL requiring aggressive management. Lipids Health Dis. 2011, 10, 45. [Google Scholar] [CrossRef]
- Csábi, G.; Török, K.; Jeges, S.; Molnár, D. Presence of metabolic cardiovascular syndrome in obese children. Eur. J. Pediatr. 2000, 159, 91–94. [Google Scholar] [CrossRef]
- Pelin, A.M.; Mătăsaru, S. Metabolic syndrome in obese children and adolescents. Rev. Med. Chir. Soc. Med. Nat. Iasi. 2012, 116, 957–961. [Google Scholar]
- Smetanina, N.; Valickas, R.; Vitkauskiene, A.; Albertsson-Wikland, K.; Verkauskienė, R. Prevalence of Metabolic Syndrome and Impaired Glucose Metabolism among 10- to 17-Year-Old Overweight and Obese Lithuanian Children and Adolescents. Obes. Facts 2021, 14, 271–282. [Google Scholar] [CrossRef]
- Jankowska, A.; Brzeziński, M.; Romanowicz-Sołtyszewska, A.; Szlagatys Sidorkiewicz, A. Metabolic Syndrome in Obese Children—Clinical Prevalence and Risk Factors. Int. J. Environ. Res. Public Health 2021, 18, 1060. [Google Scholar] [CrossRef]
- Jurkovičová, J.; Hirošová, K.; Vondrová, D.; Samohýl, M.; Štefániková, Z.; Filová, A.; Kachútová, I.; Babjaková, J.; Argalášová, Ľ. The Prevalence of Insulin Resistance and the Associated Risk Factors in a Sample of 14–18-Year-Old Slovak Adolescents. Int. J. Environ. Res. Public Health 2021, 18, 909. [Google Scholar] [CrossRef]
- Jolliffe, C.J.; Janssen, I. Development of age-specific adolescent metabolic syndrome criteria that are linked to the Adult Treatment Panel III and International Diabetes Federation criteria. J. Am. Coll. Cardiol. 2007, 49, 891–898. [Google Scholar] [CrossRef]
- Ford, E.S.; Li, C.; Zhao, G.; Pearson, W.S.; Mokdad, A.H. Prevalence of the metabolic syndrome among U.S. adolescents using the definition from the International Diabetes Federation. Diabetes Care 2008, 31, 587–589. [Google Scholar] [CrossRef]
- Walker, S.E.; Gurka, M.J.; Oliver, M.N.; Johns, D.W.; DeBoer, M.D. Racial/ethnic discrepancies in the metabolic syndrome begin in childhood and persist after adjustment for environmental factors. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Setayeshgar, S.; Whiting, S.J.; Vatanparast, H. Metabolic syndrome in Canadian adults and adolescents: Prevalence and associated dietary intake. ISRN Obes. 2012, 2012, 816846. [Google Scholar] [CrossRef] [PubMed]
- de Almeida Melo, D.; Dos Santos, A.M.; da Cruz Silveira, V.N.; Silva, M.B.; da Silva Diniz, A. Prevalence of metabolic syndrome in adolescents based on three diagnostic definitions: A cross-sectional study. Arch. Endocrinol. Metab. 2023, 67, e000634. [Google Scholar] [CrossRef]
- Rivadeneyra-Domínguez, E.; Díaz-Vallejo, J.J.; Prado-Bobadilla, A.G.; Rodríguez-Landa, J.F. A Comparative Study of Metabolic Syndrome Using NCEP—ATP III and IDF Criteria in Children and Its Relationship with Biochemical Indicators in Huatusco, Veracruz, Mexico. Children 2023, 10, 473. [Google Scholar] [CrossRef]
- Romaní-Romaní, F.; Pachacama Ramirez, L.F.; Pichihua Grandez, J.D.; Guevara Rodríguez, D.M.; Cornejo Luyo, V.; Sheen Vargas, C.E.; Ninatanta-Ortiz, J.A.; Abanto Villar, M.V.; Pérez Cieza, K.M.; Chávez Farro, R.R.; et al. Concordance between five criteria of metabolic syndrome in teenagers from a Peruvian high Andes region. Rev. Peru. Med. Exp. Salud Publica 2023, 40, 150–160. [Google Scholar] [CrossRef]
- Yoshinaga, M.; Tanaka, S.; Shimago, A.; Sameshima, K.; Nishi, J.; Nomura, Y.; Kawano, Y.; Hashiguchi, J.; Ichiki, T.; Shimizu, S. Metabolic syndrome in overweight and obese Japanese children. Obes. Res. 2005, 13, 1135–1140. [Google Scholar] [CrossRef]
- Atabek, M.E.; Pirgon, O.; Kurtoglu, S. Prevalence of metabolic syndrome in obese Turkish children and adolescents. Diabetes Res. Clin. Pract. 2006, 72, 315–321. [Google Scholar] [CrossRef]
- Lee, M.S.; Wahlqvist, M.L.; Yu, H.L.; Pan, W.H. Hyperuricemia and metabolic syndrome in Taiwanese children. Asia. Pac. J. Clin. Nutr. 2007, 16 (Suppl. S2), 594–600. [Google Scholar]
- Taheri, F.; Namakin, K.; Zardast, M.; Chakandi, T.; Kazemi, T.; Bijari, B. Cardiovascular Risk Factors: A Study on the Prevalence of MS among 11–18 Years Old School Children in East of Iran, 2012. Nutr. Food Sci. Res. 2015, 2, 27–34. [Google Scholar]
- Kim, S.; So, W.Y. Prevalence of Metabolic Syndrome among Korean Adolescents According to the National Cholesterol Education Program, Adult Treatment Panel III and International Diabetes Federation. Nutrients. 2016, 8, 588. [Google Scholar] [CrossRef]
- Zhu, Y.; Zheng, H.; Zou, Z.; Jing, J.; Ma, Y.; Wang, H.; Zhao, H.; Pan, D.; Sangild, P.; Karmacharya, B.M.; et al. Metabolic Syndrome and Related Factors in Chinese Children and Adolescents: Analysis from a Chinese National Study. J. Atheroscler. Thromb. 2020, 27, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Das, R.R.; Mangaraj, M.; Panigrahi, S.K.; Satapathy, A.K.; Mahapatro, S.; Ray, P.S. Metabolic Syndrome and Insulin Resistance in Schoolchildren From a Developing Country. Front. Nutr. 2020, 7, 31. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Yoon, T.W.; Yu, M.H.; Kang, D.R.; Choi, S. Gender and age differences in the prevalence and associated factors of metabolic syndrome among children and adolescents in South Korea. Child Health Nurs. Res. 2021, 27, 160–170. [Google Scholar] [CrossRef] [PubMed]
- Ramesh, S.; Abraham, R.A.; Sarna, A.; Sachdev, H.S.; Porwal, A.; Khan, N.; Acharya, R.; Agrawal, P.K.; Ashraf, S.; Ramakrishnan, L. Prevalence of metabolic syndrome among adolescents in India: A population-based study. BMC Endocr. Disord. 2022, 22, 258. [Google Scholar] [CrossRef]
- Mouane, N.; Dekkaki, I.C.; Ettair, S.; Meskini, T.; Khalloufi, N.; Bouklouze, A.; Barkat, A. Metabolic profil in a group of obese Moroccan children enrolled in schools in the city of Rabat. Pan. Afr. Med. J. 2014, 19, 377. [Google Scholar] [CrossRef]
- Sekokotla, M.A.; Goswami, N.; Sewani-Rusike, C.R.; Iputo, J.E.; Nkeh-Chungag, B.N. Prevalence of metabolic syndrome in adolescents living in Mthatha, South Africa. Ther. Clin. Risk Manag. 2017, 13, 131–137. [Google Scholar] [CrossRef]
- Jmal, L.; Jmal, A.; Abdennebi, M.; Feki, M.; Boukthir, S. Prevalence of metabolic syndrome in Tunisian overweight and obese children. Tunis Med. 2019, 97, 133–139. [Google Scholar]
- Afolabi, B.M.; Holdbrooke, S.J. Obesity, Dyslipidemia and other Risks Factors for Metabolic Syndrome among Indigenous Black African Secondary School Students in Lagos, Nigeria. Qeios 2023, S522VG. [Google Scholar] [CrossRef]
- Bowo-Ngandji, A.; Kenmoe, S.; Ebogo-Belobo, J.T.; Kenfack-Momo, R.; Takuissu, G.R.; Kengne-Ndé, C.; Mbaga, D.S.; Tchatchouang, S.; Kenfack-Zanguim, J.; Lontuo Fogang, R.; et al. Prevalence of the metabolic syndrome in African populations: A systematic review and meta-analysis. PLoS ONE 2023, 18, e0289155. [Google Scholar] [CrossRef]
- Kim, U.J.; Choi, E.J.; Park, H.; Lee, H.A.; Park, B.; Min, J.; Park, E.A.; Cho, S.J.; Kim, H.S.; Lee, H. BMI trajectory and inflammatory effects on metabolic syndrome in adolescents. Pediatr. Res. 2023, 94, 153–160. [Google Scholar] [CrossRef]
- Eze, I.C.; Hemkens, L.G.; Bucher, H.C.; Hoffmann, B.; Schindler, C.; Kunzli, N.; Schikowski, T.; Probs-Hensch, N.M. Association between ambient air pollution and diabetes mellitus in Europe and North America: Systematic review and meta-analysis. Environ. Health Perspect. 2015, 123, 381–389. [Google Scholar] [CrossRef] [PubMed]
- Thiering, E.; Heinrich, J. Epidemiology of air pollution and diabetes. Trends Endocrinol. Metabol. 2015, 26, 384–394. [Google Scholar] [CrossRef]
- Sina, E.; Buck, C.; Veidebaum, T.; Siani, A.; Reisch, L.; Pohlabeln, H.; Pala, V.; Moreno, L.A.; Molnar, D.; Lissner, L.; et al. Media use trajectories and riskof metabolic syndrome in European children and adolescents: The IDEFICS/I.Family cohort. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 134. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.S.; Gui, Z.H.; Zou, Z.Y.; Yang, B.Y.; Ma, J.; Jing, J.; Wang, H.J.; Luo, J.Y.; Zhang, X.; Luo, C.Y.; et al. Long-term exposure to ambient air pollution and metabolic syndrome in children and adolescents: A national cross-sectional study in China. Environ. Int. 2021, 148, 106383. [Google Scholar] [CrossRef]
- Nagrani, R.; Marron, M.; Bongaerts, E.; Nawrot, T.S.; Ameloot, M.; de Hoogh, K.; Vienneau, D.; Lequy, E.; Jacquemin, B.; Guenther, K.; et al. Association of urinary and ambient black carbon, and other ambient air pollutants with risk of prediabetes and metabolic syndrome in children and adolescents. Environ. Pollut. 2023, 317, 120773. [Google Scholar] [CrossRef]
- Othman, M.; Kanjo, M.; Tasji, T.; Rushan, M.; Tasji, A.K.; Tasji, A.K.; Tasji, W.K.; Tasji, M.K.; Othman, B.M.; Tasji, T. Understanding the Impact of Vitamin B Supplements on a Saudi Population. Cureus 2023, 15, e50626. [Google Scholar] [CrossRef]
- Francisco, V.; Ruiz-Fernández, C.; Pino, J.; Mera, A.; González-Gay, M.A.; Gómez, R.; Lago, F.; Mobasheri, A.; Gualillo, O. Adipokines: Linking metabolic syndrome, the immune system, and arthritic diseases. Biochem. Pharmacol. 2019, 165, 196–206. [Google Scholar] [CrossRef]
- Osei, K.; Gaillard, T. Disparities in cardiovascular disease and type 2 diabetes risk factors in Blacks and Whites: Dissecting racial paradox of metabolic syndrome. Front. Endocrinol. 2017, 8, 204. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, C.; Lu, L.; Shikany, J.M.; D’Alton, M.E.; Kahe, K. Folate, Vitamin B6, and Vitamin B12 Status in Association With Metabolic Syndrome Incidence. JAMA Netw. Open 2023, 6, e2250621. [Google Scholar] [CrossRef]
- Ulloque-Badaracco, J.R.; Hernandez-Bustamante, E.A.; Alarcon-Braga, E.A.; Al-kassab-Córdova, A.; Cabrera-Guzmán, J.C.; Herrera-Añazco, P.; Benites-Zapata, V.A. Vitamin B12, folate, and homocysteine in metabolic syndrome: A systematic review and meta-analysis. Front. Endocrinol. 2023, 14, 1221259. [Google Scholar] [CrossRef]
- Jayashri, R.; Venkatesan, U.; Rohan, M.; Gokulakrishnan, K.; Shanthi Rani, C.S.; Deepa, M.; Anjana, R.M.; Mohan, V.; Pradeepa, R. Prevalence of vitamin B12 deficiency in South Indians with different grades of glucose tolerance. Acta Diabetol. 2018, 55, 1283–1293. [Google Scholar] [CrossRef] [PubMed]
- Wong, S.K.; Chin, K.Y.; Ima-Nirwana, S. Vitamin C: A Review on its Role in the Management of Metabolic Syndrome. Int. J. Med. Sci. 2020, 17, 1625–1638. [Google Scholar] [CrossRef] [PubMed]
- Vitezova, A.; Zillikens, M.C.; van Herpt, T.T.; Sijbrands, E.J.; Hofman, A.; Uitterlinden, A.G.; Franco, O.H.; Kiefte-de Jong, J.C. Vitamin D status and metabolic syndrome in the elderly: The Rotterdam Study. Eur. J. Endocrinol. 2015, 172, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Fang, H.; Cheng, X.; Guo, Q.; Ju, L.; Piao, W.; Xu, X.; Yu, D.; Zhao, L.; He, L. Nutrient Patterns and Its Association and Metabolic Syndrome among Chinese Children and Adolescents Aged 7–17. Nutrients 2023, 15, 117. [Google Scholar] [CrossRef]
- Vajdi, M.; Farhangi, M.A.; Nikniaz, L. Diet-derived nutrient patterns and components of metabolic syndrome: A cross-sectional community-based study. BMC Endocr. Disord. 2020, 20, 69. [Google Scholar] [CrossRef]
- Bokhari, S.A.; Alshaya, M.M.; Badghaish, M.M.O.; Albinissa, M.A.; Al-Harbi, K.D.; Almoghrabi, M.Y.; Sannan, M.F.; Dawas, S.A.; Niyazi, R.A.; Sallum, T.F.; et al. Metabolic Syndrome: Pathophysiology and Treatment. Egypt. J. Hosp. Med. 2018, 70, 1388–1392. [Google Scholar] [CrossRef]
- Rohmann, N.; Epe, J.; Geisler, C.; Schlicht, K.; Türk, K.; Hartmann, K.; Kruse, L.; Koppenhagen, J.; Kohestani, A.Y.; Adam, T.; et al. Comprehensive evaluation of diabetes subtypes in a European cohort reveals stronger differences of lifestyle, education and psychosocial parameters compared to metabolic or inflammatory factors. Cardiovasc. Diabetol. 2025, 24, 99. [Google Scholar] [CrossRef]
- Berisha, H.; Hattab, R.; Comi, L.; Giglione, C.; Migliaccio, S.; Magni, P. Nutrition and Lifestyle Interventions in Managing Dyslipidemia and Cardiometabolic Risk. Nutrients 2025, 17, 776. [Google Scholar] [CrossRef]
- Wang, L.; Yu, Y.; Jiang, Z.; Lin, F.; Zhong, Y.; Wang, C.; Huang, S.; Xu, Z. Inverse association between prognostic nutritional index and kidney stone prevalence: A population-based study. PLoS ONE 2025, 20, e0318254. [Google Scholar] [CrossRef]
- Tumurkhuu, M.; Bhat, S.A.; Hossain, M.Z.; Shafiq, M.; Hasnain, M.S.; Nayak, A.K.; Ahmed, S.A. Cellular and molecular mechanisms in metabolic disorders: Role of inflammation and oxidative stress. Front. Pharmacol. 2025, 16, 1580553. [Google Scholar] [CrossRef]
- Sisay, B.G.; Jima, B.R.; Habtamu, M.; Gebru, N.W.; Hassen, H.Y. Predictive ability of anthropometric indices inidentifying metabolic syndrome among US adolescents 10 to 19 years old: Analysis from the National Health and Nutrition Examination Survey 2011 to 2018 dataset. Nutrition 2023, 113, 112081. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.; Yoo, J.E.; Kim, K.; Choi, S.; Park, S.M. Associations between birth weight, obesity, fat mass and lean mass in Korean adolescents: The Fifth Korea National Health and Nutrition Examination Survey. BMJ Open 2018, 8, e018039. [Google Scholar] [CrossRef] [PubMed]
- Ismail, N.A.; Ragab, S.H.; Baky, A.; Ibrahim, M.H. Potential Role of New Anthropometric Parameters in Childhood Obesity with or Without Metabolic Syndrome. Maced. J. Med. Sci. 2019, 15, 3930–3936. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.C.; Lee, Y.H.; Chuang, P.N.; Kuo, C.S.; Lu, C.W.; Yang, K.C. The utility of visceral fat level measured by bioelectrical impedance analysis in predicting metabolic syndrome. Obes. Res. Clin. Pract. 2020, 14, 519–523. [Google Scholar] [CrossRef]
- Fernandez Vasquez, R.; Romero, A.M.; Barbancho, M.A.; Alvero-Cruz, J.R. Predicción Del Síndrome Metabólico Por Bioimpedancia Abdominal Y. Nutr. Hosp. 2015, 3, 1122–1130. [Google Scholar] [CrossRef]
- Al-Hamad, D.; Raman, V. Metabolic syndrome in children and adolescents. Transl. Pediatr. 2017, 6, 397–407. [Google Scholar] [CrossRef]
- Fahed, G.; Aoun, L.; Bou Zerdan, M.; Allam, S.; Bou Zerdan, M.; Bouferraa, Y.; Assi, H.I. Metabolic Syndrome: Updates on Pathophysiology and Management in 2021. Int. J. Mol. Sci. 2022, 23, 786. [Google Scholar] [CrossRef]
- Barseem, N.F.; Helwa, M.A. Homeostatic model assessment of insulin resistance as a predictor of metabolic syndrome: Consequences of obesity in children and adolescents. Egypt. Pediatr. Assoc. Gaz. 2015, 63, 19–23. [Google Scholar] [CrossRef]
- Ananthy, V.; Priyadharsini, R.P.; Subramanian, U. Pathogenesis, Diagnosis, and Management of Metabolic Syndrome: A Comprehensive Review. J. Basic Clin. Appl. Health Sci. 2021, 4, 39–45. [Google Scholar] [CrossRef]
- Chung, Y.L.; Rhie, Y.J. Metabolic Syndrome in Children and Adolescents. Ewha Med. J. 2022, 45, e13. [Google Scholar] [CrossRef]
- Rochlani, Y.; Pothineni, N.V.; Kovelamudi, S.; Mehta, L.J. Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Ther. Adv. Cardiovasc. Dis. 2017, 11, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Comlek, F. Metabolic syndrome in children. Med. Rep. Case Stud. 2022, 7, 1–2. [Google Scholar]
- Nagrani, R.; Foraita, R.; Gianfagna, F.; Iacoviello, L.; Marild, S.; Michels, N.; Molnár, D.; Moreno, L.; Russo, P.; Veidebaum, T.; et al. Common genetic variation in obesity, lipid transfer genes and risk of metabolic syndrome: Results from IDEFICS/I. Family study and meta-analysis. Sci. Rep. 2020, 10, 7189–7202. [Google Scholar] [CrossRef] [PubMed]
- Bremer, A.A.; Mietus-Snyder, M.; Lustig, R.H. Toward a unifying hypothesis of metabolic syndrome. Pediatrics 2012, 129, 557–570. [Google Scholar] [CrossRef]
- Morrissey, C.; Amiot, M.J.; Goncalves, A.; Raverdy, C.; Masson, D.; Tardivel, C.; Gayrard, S.; Carrère, M.; Landrier, J.F.; Vinet, A.; et al. Vitamin D Supplementation on Carotid Remodeling and Stiffness in Obese Adolescents. Nutrients 2022, 14, 2296. [Google Scholar] [CrossRef]
- Odoh, G.; Uwakwe, J.N.; Edah, J.O.; Ojobi, J.E.; Chuhwak, E.K. Pathophysiology of metabolic syndrome-The role of central obesity. Int. Res. J. Med. Biomed. Sci. 2019, 4, 8–12. [Google Scholar] [CrossRef]
- Balagopal, P.; de Ferranti, S.D.; Cook, S.; Daniels, S.R.; Gidding, S.S.; Hayman, L.L.; McCrindle, B.W.; Mietus-Snyder, M.L.; Steinberger, J. Nontraditional risk factors and biomarkers for cardiovascular disease: Mechanistic, research, and clinical considerations for youth. Circulation 2011, 123, 2749–2769. [Google Scholar] [CrossRef]
- Avelar, T.M.T.; Storch, S.A.; Castro, A.L.; Azevedo, V.M.M.G.; Ferraz, L.; Lopes, F.P. Oxidative stress in the pathophysiology of metabolic syndrome: Which mechanisms are involved? J. Bras. Patol. Med. Lab. 2015, 4, 231–239. [Google Scholar] [CrossRef]
- Senti, M.; Tomas, M.; Fito, M.; Weinbrenner, T.; Covas, M.I.; Sala, J.; Masiá, R.; Marrugat, J. Antioxidant paraoxonase 1 activity in the metabolic syndrome. J. Clin. Endocrinol. Metab. 2003, 88, 5422–5426. [Google Scholar] [CrossRef]
- Feoli, A.M.; Macagnan, F.E.; Piovesan, C.H.; Bodanese, L.C.; Siqueira, I.R. Xanthine oxidase activity is associated with risk factors for cardiovascular disease and inflammatory and oxidative status markers in metabolic syndrome: Effects of a single exercise session. Oxid. Med. Cell. Longev. 2014, 2014, 587083. [Google Scholar] [CrossRef]
- Nakanishi, N.; Suzuki, K.; Tatara, K. Serum gamma-glutamyltransferase and risk of metabolic syndrome and type 2 diabetes in middle-aged Japanese men. Diabetes Care 2004, 27, 1427–1432. [Google Scholar] [CrossRef] [PubMed]
- Yudkin, J.S. Insulin resistance and the metabolic syndrome–or the pitfalls of epidemiology. Diabetologia 2007, 50, 1576–1586. [Google Scholar] [CrossRef] [PubMed]
- Alterio, A.; Alisi, A.; Liccardo, D.; Nobili, V. Nonalcoholic fatty liver and metabolic syndrome in children: A vicious circle. Horm. Res. Paediatr. 2014, 82, 283–289. [Google Scholar] [CrossRef]
- Kotnik, P.; Fischer, P.P.; Wabitsch, M. Endocrine and metabolic effects of adipose tissue in children and adolescents. Slov. J. Public Health 2015, 54, 131–138. [Google Scholar] [CrossRef]
- Körner, A.; Kratzsch, J.; Gausche, R.; Schaab, M.; Erbs, S.; Kiess, W. New predictors of the metabolic syndrome in children—Role of adipocytokines. Pediatr. Res. 2007, 61, 640–645. [Google Scholar] [CrossRef]
- de Las Heras, J.; Lee, S.; Bacha, F.; Tfayli, H.; Arslanian, S. Cross-sectional association between blood pressure, in vivo insulin sensitivity and adiponectin in overweight adolescents. Horm. Res. Paediatr. 2011, 76, 379–385. [Google Scholar] [CrossRef]
- Bharti, A.; Kushwah, A. Metabolic syndrome: Pathophysiology and Consequences. Int. J. Curr. Microbiol. App. Sci. 2020, 9, 3723–3728. [Google Scholar] [CrossRef]
- Jia, R.M.; Yan, X.N.; Sun, J. Evaluate the effects of metabolic syndrome in adolescents and children. Front. Nurs. 2020, 3, 287–292. [Google Scholar] [CrossRef]
- Barraco, G.M.; Luciano, R.; Semeraro, M.; Prieto-Hontoria, P.L.; Manco, M. Recently discovered adipokines and cardio-metabolic comorbidities in childhood obesity. Int. J. Mol. Sci. 2014, 15, 19760–19776. [Google Scholar] [CrossRef]
- Jha, B.K.; Sherpa, M.L.; Imran, M.; Mohammed, Y.; Jha, L.A.; Paudel, K.R.; Jha, S.K. Progress in Understanding Metabolic Syndrome and Knowledge of Its Complex Pathophysiology. Diabetology 2023, 4, 134–159. [Google Scholar] [CrossRef]
- Chu, S.H.; Lee, M.K.; Ahn, K.Y.; Im, J.A.; Park, M.S.; Lee, D.C.; Jeon, J.Y.; Lee, J.W. Chemerin and adiponectin contribute reciprocally to metabolic syndrome. PLoS ONE 2012, 7, e34710. [Google Scholar] [CrossRef]
- Steppan, C.M.; Bailey, S.T.; Bhat, S.; Brown, E.J.; Banerjee, R.R.; Wright, C.M.; Patel, H.R.; Ahima, R.S.; Lazar, M.A. The hormone resistin links obesity to diabetes. Nature 2001, 409, 307–312. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Yu, L.; Lin, X.; Cheng, P.; He, L.; Li, X.; Lu, X.; Tan, Y.; Yang, H.; Cai, L.; et al. Roles of fibroblast growth factors 19 and 21 in metabolic regulation and chronic diseases. Mol. Endocrinol. 2015, 29, 1400–1413. [Google Scholar] [CrossRef]
- Martins, G.S.; Oliveira Santos, I.; da Silva, G.; Santos, P.; Santana, P.R.; Menezes, C.A. Metabolic Syndrome and Hypovitaminosis D in Children and Adolescents: A Systematic Review. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Desai, M.; Jellyman, J.K.; Ross, M.G. Epigenomics, gestational programming and risk of metabolic syndrome. Int. J. Obes. 2015, 39, 633–641. [Google Scholar] [CrossRef]
- Kunes, J.; Vaneckova, I.; Mikulaskova, B.; Behuliak, M.; Maletinska, L.; Zicha, J. Epigenetics and a new look on metabolic syndrome. Physiol. Res. 2015, 64, 611–620. [Google Scholar] [CrossRef]
- Chen, W.M.; Sheu, W.H.; Tseng, P.C.; Lee, T.S.; Lee, W.J.; Chang, P.J.; Chiang, A.N. Modulation of microRNA expression in subjects with metabolic syndrome and decrease of cholesterol efflux from macrophages via microRNA-33-mediated attenuation of ATP-binding cassette transporter A1 expression by statins. PLoS ONE 2016, 11, e0154672. [Google Scholar] [CrossRef]
- Fischer-Posovszky, P.; Roos, J.; Kotnik, P.; Battelino, T.; Inzaghi, E.; Nobili, V.; Cianfarani, S.; Wabitsch, M. Functional significance and predictive value of microRNAs in pediatric obesity: Tiny molecules with huge impact? Horm. Res. Paediatr. 2016, 86, 3–10. [Google Scholar] [CrossRef]
- Rocic, P. Can microRNAs be biomarkers or targets for therapy of ischemic coronary artery disease in metabolic syndrome? Curr. Drug Targets 2017, 18, 15. [Google Scholar] [CrossRef]
- Omran, A.; Elimam, D.; Yin, F. MicroRNAs. New insights into chronic childhood diseases. Biomed. Res. Int. 2013, 2013, 291826. [Google Scholar] [CrossRef]
- Krause, B.J.; Carrasco-Wong, I.; Dominguez, A.; Arnaiz, P.; Farias, M.; Barja, S.; Mardones, F.; Casanello, P. Micro-RNAs Let7e and 126 in plasma as markers of metabolic dysfunction in 10 to 12 years old children. PLoS ONE 2015, 10, e0128140. [Google Scholar] [CrossRef] [PubMed]
- Ross, M.G.; Desai, M. Developmental programming of offspring obesity, adipogenesis, and appetite. Clin. Obstet. Gynecol. 2013, 56, 529–536. [Google Scholar] [CrossRef] [PubMed]
- Santos-Marcos, J.A.; Perez-Jimenez, F.; Camargo, A. The role of diet and intestinal microbiota in the development of metabolic syndrome. J. Nutr. Biochem. 2019, 70, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Vijay-Kumar, M.; Aitken, J.D.; Carvalho, F.A.; Cullender, T.C.; Mwangi, S.; Srinivasan, S.; Sitaraman, S.V.; Knight, R.; Ley, R.E.; Gewirtz, A.T. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 2010, 328, 228–231. [Google Scholar] [CrossRef]
- Portincasa, P.; Khalil, M.; Graziani, A.; Frühbeck, G.; Baffy, G.; Garruti, G.; Di Ciaula, A.; Bonfrate, L. Gut microbes in metabolic disturbances. Promising role for therapeutic manipulations? Eur. J. Intern. Med. 2024, 119, 13–30. [Google Scholar] [CrossRef]
- Carrizales-Sánchez, A.K.; Tamez-Rivera, O.; Rodríguez-Gutiérrez, N.A.; Elizondo-Montemayor, L.; Gradilla-Hernández, M.S.; García-Rivas, G. Characterization of gut microbiota associated with metabolic syndrome and type-2 diabetes mellitus in Mexican pediatric subjects. BMC Pediatr. 2023, 23, 210. [Google Scholar] [CrossRef]
- Yang, J.; Li, Y.; Wen, Z.; Liu, W.; Meng, L.; Huang, H. Oscillospira—A candidate for the next-generation probiotics. Gut microbes. 2021, 13, 1987783. [Google Scholar] [CrossRef]
- Carrizales-Sánchez, A.K.; García-Cayuela, T.; Hernández-Brenes, C.; Senés-Guerrero, C. Gut microbiota associations with metabolic syndrome and relevance of its study in pediatric subjects. Gut Microbes 2021, 13, 1960135. [Google Scholar] [CrossRef]
- Croci, S.; D’Apolito, L.I.; Gasperi, V.; Catani, M.V.; Savini, I. Dietary Strategies for Management of Metabolic Syndrome: Role of Gut Microbiota Metabolites. Nutrients 2021, 13, 1389. [Google Scholar] [CrossRef]
- Alcázar, M.; Escribano, J.; Ferré, N.; Closa-Monasterolo, R.; Selma-Royo, M.; Feliu, A. Gut microbiota is associated with metabolic health in children with obesity. Clin. Nutr. 2022, 41, 1680–1688. [Google Scholar] [CrossRef]
- Gallardo-Becerra, L.; Cornejo-Granados, F.; García-López, R.; Valdez-Lara, A.; Bikel, S.; Canizales-Quinteros, S.; López-Contreras, B.E.; Mendoza-Vargas, A.; Nielsen, H.; Ochoa-Leyva, A. Metatranscriptomic analysis to define the Secrebiome, and 16S rRNA profiling of the gut microbiome in obesity and metabolic syndrome of Mexican children. Microb. Cell Factories 2020, 19, 61. [Google Scholar] [CrossRef]
- Wei, J.; Dai, W.; Pan, X.; Zhong, Y.; Xu, N.; Ye, P.; Wang, J.; Li, J.; Yang, F.; Luo, J.; et al. Identifying the Novel Gut Microbial Metabolite Contributing to Metabolic Syndrome in Children Based on Integrative Analyses of Microbiome-Metabolome Signatures. Microbiol. Spectr. 2023, 16, e0377122. [Google Scholar] [CrossRef]
- Kleber, M.; DeSousa, G.; Papcke, S.; Wabitsch, M.; Reinehr, T. Impaired glucose tolerance in obese white children and adolescents: Three to five year followup in untreated patients. Exp. Clin. Endocrinol. Diabetes 2011, 119, 172–176. [Google Scholar] [CrossRef] [PubMed]
- American Diabetes Association Professional Practice Committee. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022, 45 (Suppl. S1), S17–S38. [Google Scholar] [CrossRef]
- Barlow, S.E. Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: Summary report. Pediatrics 2007, 120, S164–S192. [Google Scholar] [CrossRef]
- Temple, J.L.; Cordero, P.; Li, J.; Nguyen, V.; Oben, J.A. A guide to non-alcoholic fatty liver disease in childhood and adolescence. Int. J. Mol. Sci. 2016, 17, 947. [Google Scholar] [CrossRef]
Parameter | WHO, 1998 [2] | EGIR, 1999, Europe [19] | NCEPATPIII, 2001, America [20,21] | de Feranti, 2004, America [23] | IDF, 2007 [24] | IDEFICS, 2009, Europe [25] | Zong, 2022, International Definition [26] | |||
---|---|---|---|---|---|---|---|---|---|---|
Criteria of definition | IR + at least 2 of the following criteria | 3 of the following criteria | ≥3 of the following criteria | <6 years: there is no specific definition | 6–10 years: not diagnosticatedccally | 10–16 years: central adiposity + at least 2 of the following criteria | ≥16 years: central obesity + at least 2 of the following criteria | 2–9 years: HOMA-IR ≥ 90th percentile | 6–17 years: abdominal obesity + at least 2 of the following criteria | |
WC | >95th percentile | ≥90th percentile | ≥90th percentile | ≥75th percentile | ≥90th percentile (values adjusted for sex and ethnicity) | Europe: >94 cm boys; >80 cm girls South/South-East Asian, Japanese, South/Central America: >90 cm boys; >80 cm girls | ≥90th percentile | ≥90th percentile for age and sex | ||
BMI | >95th percentile | |||||||||
BP | ≥90th percentile for age, sex, height | >90th percentile | SBP ≥ 130 mmHg; DBP ≥ 85 mmHg | SBP ≥ 130 mmHg; DBP ≥ 85 mmHg | ≥90th percentile | ≥90th percentile for age, sex and height | ||||
TG (mg/dL) | >105–136 (<10 years) | ≥150 | ≥110 | ≥100 | ≥150 | ≥150 | ≥90th percentile | ≥100 (6–9 years old); ≥130 (10–17 years old) | ||
HDL cholesterol (mg/dL) | <35 (>10 years) | ≤40 | ≤40 | ≤50 (15–19 years of age) | <40 | <40 boys; <50 girls | ≤10th percentile | <40 | ||
Microalbu-minuria | present | excluded | ||||||||
Glucose homeostasis | IFG/IGT | FPG ≥ 100 mg/dL or known T2DM | FPG ≥ 110 mg/dL | FPG ≥ 100 mg/dL or known T2DM | FPG ≥ 100 mg/dL or previously T2DM | FPG ≥ 90th percentile | FPG ≥ 100 mg/dL |
Geographical Area | Country | Age of the Study Lot | Definition Criteria According Some Authors or Medical Associations | Prevalence of MetS | Reference |
---|---|---|---|---|---|
Hungary | 8–18 years | ATP III | 8.9% in obese children | [37] | |
EUROPE | Romania | 7–18 years | IDF 2009 | 55.8% in obese children | [38] |
Lithuania | 10–17 years | IDF | Overweight: girls-8.7%, boys-20% | [39] | |
Obese: girls-40.8%, boys-52.5% | |||||
Poland | 10–12 years | IDF | girls-10.9%, boys-14.6% | [40] | |
Slovakia | 14–18 years | IDF | girls-0.4%, boys-2.7% | [41] | |
NORTH AMERICA | USA | ≥12 years | ATPIII | non-Hispanic Whites-10.9% | [23] |
non-Hispanic Blacks-2.5% | |||||
Mexican Americans-12.9% | |||||
USA | 12–20 years | Adolescent ATP Criteria | 7.6%; no difference by gender | [42] | |
IDF | 9.6%; no difference by gender | ||||
USA | 12–17 years | IDF | girls-2.1%, boys-6.7% | [43] | |
USA | 12–19 years | IDF | non-Hispanic Whites: girls-4.4%, boys-8.4% | [44] | |
non-Hispanic Blacks: girls-4.2%, boys-2.5% | |||||
Mexican Americans: girls-6.4%, boys-9.4% | |||||
Canada | 12–19 years | ATP III | 3.50% | [45] | |
SOUTH AMERICA | Brasil | 18–19 years | IDF | girls-6%, boys-3.7% | [46] |
de Ferranti et al. | girls-8.8%, boys-13.8 | [23] | |||
Cook et al. | girls-2.8%, boys-6.3 | [22] | |||
Mexico | 8–15 years | ATP III | girls-21.2%, boys-23.1% | ||
IDF | 13.90% | [47] | |||
Peru | 13–16 years | ATP III | girls-2.5%, boys-5.6% | [48] | |
de Ferranti et al. | girls-14.4%, boys-19.9% | [23] | |||
IDF | girls-3.5%, boys-2.6% | ||||
WHO | girls-1.5%, boys-5.6% | ||||
ASIA | Japan | 6–19 years | NCEP-ATP III | 17.7% in obese 6–11 years | [49] |
28.7% in obese 12–19 years | |||||
Turkey | 7–18 years | WHO | 7–11 years: 20% | ||
12–18 years: 37.6% | [50] | ||||
no difference by gender | |||||
Taiwan | 6–12 years | girls-5.56%, boys-6.39% | [51] | ||
Iran | 11–18 years | modified ATP III | girls-4.5%, boys-9.9% | [52] | |
Korea | 10–18 years | NCEP-ATP III | girls-5.5%, boys-5.8% | [53] | |
IDF | girls-2.2%, boys-1.9% | ||||
China | 7–18 years | IDF | girls-1.7%, boys-2.8% | [54] | |
Eastern India | 6–16 years | IDF | 6–10 years: 11% | [55] | |
11–16 years: 30.6% | |||||
South Korea | 10–18 years | NCEP-ATP III | girls-3.4%, boys-4.8% | [56] | |
India | 10–19 years | NCEP-ATP III | girls-4.7%, boys-5.7% | [57] | |
AFRICA | Morocco | 8–13.6 years | NCEP-ATP III | 22% | [58] |
South Africa | 13–18 years | NCEP-ATP III | girls-5.6%, boys-6.7% | [59] | |
Tunisia | 10–12 years | IDF | 1% in overweight; 14.3% in obese | [60] | |
Nigeria | 10–19 years | NHLBI | girls-4.7%, boys-14.1% | [61] | |
African countries | ≤18 years | WHO | 13.30% | [62] |
Index | Utility in the Assessment of MetS | Reference |
---|---|---|
Waist circumference (WC) | • a valuable indicator for evaluating abdominal obesity. | [84] |
• potential predictor of health risks associated with obesity and cardiovascular risk | ||
Body mass index (BMI) | • promising predictor for the development of MetS | [7] |
Rohrer’s pondered index (PI) | • functions as a measure of obesity | [63,85] |
• a larger PI (calculated as weight/height³) at birth is associated with a rapid increase in BMI during childhood | ||
A body shape index (ABSI) | • an independent predictor of MetS, but with limited efficacy in identifying adolescents with MetS | [84] |
• correlates with the onset of MetS during adolescence | ||
Body round index (BRI) | • a novel non-invasive anthropometric index developed to predict body fat and the percentage of visceral adipose tissue | [84,86] |
• superior predictor for MetS when compared to BMI-z score and ABSI | ||
• recognized as a MetS predictor | ||
Visceral adiposity index (VAI) | • associated with arterial stiffness, particularly in adults | [84,86] |
Waist-to-height ratio (WHtR) | • exhibit enhanced predictive capabilities for MetS | [86] |
Body composition | • analyses fat distribution • is essential for identifying at-risk youth | [10] |
Bioelectrical impedance analysis (BIA) | • is a valuable and non-invasive tool, safe and effective for assessing body composition and visceral fat • is a reliable assessment tool for identifying individual at risk for MetS • aids in tailoring interventions for the vulnerable population • contributes to improving the management of obesity-related metabolic disorders | [87,88] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anton-Păduraru, D.-T.; Mindru, D.E.; Stănescu, R.S.; Trofin, F.; Cobuz, C.; Cobuz, M.; Sur, L.M.; Petroaie, A.; Slănină, A.M.; Manole, M.; et al. Unraveling Metabolic Syndrome in Youth: The Obesity Epidemic’s Hidden Complication. Children 2025, 12, 482. https://doi.org/10.3390/children12040482
Anton-Păduraru D-T, Mindru DE, Stănescu RS, Trofin F, Cobuz C, Cobuz M, Sur LM, Petroaie A, Slănină AM, Manole M, et al. Unraveling Metabolic Syndrome in Youth: The Obesity Epidemic’s Hidden Complication. Children. 2025; 12(4):482. https://doi.org/10.3390/children12040482
Chicago/Turabian StyleAnton-Păduraru, Dana-Teodora, Dana Elena Mindru, Raluca Stefania Stănescu, Felicia Trofin, Claudiu Cobuz, Maricela Cobuz, Lucia Maria Sur, Antoneta Petroaie, Ana Maria Slănină, Mihaela Manole, and et al. 2025. "Unraveling Metabolic Syndrome in Youth: The Obesity Epidemic’s Hidden Complication" Children 12, no. 4: 482. https://doi.org/10.3390/children12040482
APA StyleAnton-Păduraru, D.-T., Mindru, D. E., Stănescu, R. S., Trofin, F., Cobuz, C., Cobuz, M., Sur, L. M., Petroaie, A., Slănină, A. M., Manole, M., Bocec, A. S., & Cosmescu, A. (2025). Unraveling Metabolic Syndrome in Youth: The Obesity Epidemic’s Hidden Complication. Children, 12(4), 482. https://doi.org/10.3390/children12040482