A Comparative Study of Short-Term Social Media Use with Face-to-Face Interaction in Adolescence
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Instruments and Measures
2.2.1. Attention Measure—D2 Test
2.2.2. Working Memory Measure—Corsi Blocks
2.2.3. Abstract Reasoning Measure—Reasoning Test Battery
2.2.4. Inhibitory Control Measure—Go/No-Go Task
2.2.5. Mental Effort Measure—Visual Analogue Scale
2.2.6. Social Media Usage and Screen Time Measure—Social Media Habits Survey
2.3. Procedure
2.4. Data Analysis
3. Results
4. Discussion
4.1. Screen Time as a Critical Factor
4.2. Social Media as a Cultural Ceiling Effect
5. Conclusions
6. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murdock, K.K. Texting While Stressed: Implications for Students’ Burnout, Sleep, and Well-Being. Psychol. Pop. Media Cult. 2013, 2, 207–221. [Google Scholar] [CrossRef]
- Lende, D.H.; Casper, B.I.; Hoyt, K.B.; Collura, G.L. Elements of Neuroanthropology. Front. Psychol. 2021, 12, 509611. [Google Scholar] [CrossRef]
- Crone, E.A.; Konijn, E.A. Media Use and Brain Development during Adolescence. Nat. Commun. 2018, 9, 588. [Google Scholar] [CrossRef] [PubMed]
- Marzola, P.; Melzer, T.; Pavesi, E.; Gil-Mohapel, J.; Brocardo, P.S. Exploring the Role of Neuroplasticity in Development, Aging, and Neurodegeneration. Brain Sci. 2023, 13, 1610. [Google Scholar] [CrossRef]
- Lundin-Emanuelsson, M. Screen Time and Mental Health Problems: A Population-Based Study [SALVe] about Screen Time Contribution to Mental Health Problems among Adolescents in Västmanland. Master’s Thesis, Mälardalen University, Västerås, Sweden, 2021. [Google Scholar]
- Onyeaka, H.K.; Muoghalu, C.; Baiden, P.; Okine, L.; Szlyk, H.S.; Peoples, J.E.; Kasson, E.; Cavazos-Rehg, P.; Firth, J.; Torous, J. Excessive Screen Time Behaviors and Cognitive Difficulties among Adolescents in the United States: Results from the 2017 and 2019 National Youth Risk Behavior Survey. Psychiatry Res. 2022, 316, 114740. [Google Scholar] [CrossRef]
- Rohrer, J.M. Thinking Clearly About Correlations and Causation: Graphical Causal Models for Observational Data. Adv. Methods Pract. Psychol. Sci. 2018, 1, 27–42. [Google Scholar] [CrossRef]
- Benson, V.; Hand, C.; Hartshorne, R. How Compulsive Use of Social Media Affects Performance: Insights from the UK by Purpose of Use. Behav. Inf. Technol. 2019, 38, 549–563. [Google Scholar] [CrossRef]
- Lazaro, G.R.; Duart, J.M. Moving Learning: A Systematic Review of Mobile Learning Applications for Online Higher Education. J. New Approaches Educ. Res. 2023, 12, 198–224. [Google Scholar] [CrossRef]
- Wang, J.; Jou, M. The Influence of Mobile-Learning Flipped Classrooms on the Emotional Learning and Cognitive Flexibility of Students of Different Levels of Learning Achievement. Interact. Learn. Environ. 2023, 31, 1309–1321. [Google Scholar] [CrossRef]
- Wilmer, H.H.; Sherman, L.E.; Chein, J.M. Smartphones and Cognition: A Review of Research Exploring the Links between Mobile Technology Habits and Cognitive Functioning. Front. Psychol. 2017, 8, 605. [Google Scholar] [CrossRef]
- Azzaakiyyah, H.K. The Impact of Social Media Use on Social Interaction in Contemporary Society. Technol. Soc. Perspect. TACIT 2023, 1, 1–9. [Google Scholar] [CrossRef]
- Ito, M.; Kawahara, J.-I. Effect of the Presence of a Mobile Phone during a Spatial Visual Search. Jpn. Psychol. Res. 2017, 59, 188–198. [Google Scholar] [CrossRef]
- Ward, A.F.; Duke, K.; Gneezy, A.; Bos, M.W. Brain Drain: The Mere Presence of One’s Own Smartphone Reduces Available Cognitive Capacity. J. Assoc. Consum. Res. 2017, 2, 140–154. [Google Scholar] [CrossRef]
- Skowronek, J.; Seifert, A.; Lindberg, S. The Mere Presence of a Smartphone Reduces Basal Attentional Performance. Sci. Rep. 2023, 13, 9363. [Google Scholar] [CrossRef]
- Du, X.; Xiang, G.; Xiao, M.; Liu, X.; Sun, J.; Ding, C.; Chen, H. The Relationship between Loneliness and Problematic Smartphone Use among Adolescents during the COVID-19 Pandemic: The Mediating Role of Negative Emotions and Maladaptive Coping. J. Adolesc. 2023, 95, 1449–1462. [Google Scholar] [CrossRef]
- Rosen, L.; Carrier, L.M.; Miller, A.; Rokkum, J.; Ruiz, A. Sleeping with Technology: Cognitive, Affective, and Technology Usage Predictors of Sleep Problems among College Students. Sleep Health 2016, 2, 49–56. [Google Scholar] [CrossRef]
- Uncapher, M.R.; Lin, L.; Rosen, L.D.; Kirkorian, H.L.; Baron, N.S.; Bailey, K.; Cantor, J.; Strayer, D.L.; Parsons, T.D.; Wagner, A.D. Media Multitasking and Cognitive, Psychological, Neural, and Learning Differences. Pediatrics 2017, 140, S62–S66. [Google Scholar] [CrossRef]
- Zhang, J.; Zeng, Y. Effect of College Students’ Smartphone Addiction on Academic Achievement: The Mediating Role of Academic Anxiety and Moderating Role of Sense of Academic Control. Psychol. Res. Behav. Manag. 2024, 17, 933–944. [Google Scholar] [CrossRef]
- Talan, T.; Doğan, Y.; Kalinkara, Y. Effects of Smartphone Addiction, Social Media Addiction and Fear of Missing Out on University Students’ Phubbing: A Structural Equation Model. Deviant Behav. 2024, 45, 1–14. [Google Scholar] [CrossRef]
- Upreti, A.; Musalay, P. Fear of Missing Out, Mobile Phone Dependency and Entrapment in Undergraduate Students. In Applied Psychology Readings; Leung, M.-T., Tan, L.-M., Eds.; Springer: Singapore, 2018; pp. 39–56. [Google Scholar]
- Bhattacharya, S.; Bashar, M.A.; Srivastava, A.; Singh, A. NOMOPHOBIA: NO MObile PHone PhoBIA. J. Fam. Med. Prim. Care 2019, 8, 1297. [Google Scholar] [CrossRef]
- Bragazzi, N.L.; Del Puente, G. A Proposal for Including Nomophobia in the New DSM-V. Psychol. Res. Behav. Manag. 2014, 7, 155–160. [Google Scholar] [CrossRef]
- Misra, S.; Cheng, L.; Genevie, J.; Yuan, M. The Iphone Effect: The Quality of in-Person Social Interactions in the Presence of Mobile Devices. Environ. Behav. 2016, 48, 275–298. [Google Scholar] [CrossRef]
- Wacks, Y.; Weinstein, A.M. Excessive Smartphone Use Is Associated with Health Problems in Adolescents and Young Adults. Front. Psychiatry 2021, 12, 669042. [Google Scholar] [CrossRef]
- Barthorpe, A.; Winstone, L.; Mars, B.; Moran, P. Is Social Media Screen Time Really Associated with Poor Adolescent Mental Health? A Time Use Diary Study. J. Affect. Disord. 2020, 274, 864–870. [Google Scholar] [CrossRef] [PubMed]
- Paul, J.A.; Baker, H.M.; Cochran, J.D. Effect of Online Social Networking on Student Academic Performance. Comput. Hum. Behav. 2012, 28, 2117–2127. [Google Scholar] [CrossRef]
- Odgers, C.L.; Schueller, S.M.; Ito, M. Screen Time, Social Media Use, and Adolescent Development. Annu. Rev. Dev. Psychol. 2020, 2, 485–502. [Google Scholar] [CrossRef]
- Inchley, J.; Currie, D.B.; Budisavljevic, S.; Torsheim, T.; Jastad, A.; Cosma, A.; Kelly, C.; Arnasson, A.M. Spotlight on Adolescent Health and Wellbeing: Findings from the 2017/2018 Health Behaviour in School-Aged Children (HBSC) Survey in Europe and Canada. International Report. Volume 1: Key Findings; WHO Regional Office for Europe: Copenhagen, Denmark, 2020. [Google Scholar]
- Boniel-Nissim, M.; Tynjälä, J.; Gobiņa, I.; Furstova, J.; van den Eijnden, R.J.J.M.; Marino, C.; Klanšček, H.J.; Klavina-Makrecka, S.; Villeruša, A.; Lahti, H.; et al. Adolescent Use of Social Media and Associations with Sleep Patterns across 18 European and North American Countries. Sleep Health 2023, 9, 314–321. [Google Scholar] [CrossRef]
- Nilsson, A.; Rosendahl, I.; Jayaram-Lindström, N. Gaming and Social Media Use among Adolescents in the Midst of the COVID-19 Pandemic. Nord. Stud. Alcohol Drugs 2022, 39, 347–361. [Google Scholar] [CrossRef]
- Sherman, L.E.; Hernandez, L.M.; Greenfield, P.M.; Dapretto, M. What the Brain ‘Likes’: Neural Correlates of Providing Feedback on Social Media. Soc. Cogn. Affect. Neurosci. 2018, 13, 699–707. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, J.H.; Yun, K.; Kim, J.-H. Alterations in Striatal Circuits Underlying Addiction-Like Behaviors. Mol. Cells 2017, 40, 379–385. [Google Scholar] [CrossRef]
- Freed, W.J. Biology of Motivation, Dopamine, and Brain Circuits That Mediate Pleasure. In Motivation and Desire: A New Way to Think About Why We Do Everything and Its Basis in Neuroscience; Freed, W.J., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 105–119. ISBN 978-3-031-10477-0. [Google Scholar]
- Voinea, C.; Marin, L.; Vică, C. Digital Slot Machines: Social Media Platforms as Attentional Scaffolds. Topoi 2024, 43, 685–695. [Google Scholar] [CrossRef]
- Zhang, J.; Yun, J.H.; Lee, E.-J. Brain Buzz for Facebook? Neural Indicators of SNS Content Engagement. J. Bus. Res. 2021, 130, 444–452. [Google Scholar] [CrossRef]
- Morris, R.; Moretta, T.; Potenza, M.N. The Psychobiology of Problematic Use of Social Media. Curr. Behav. Neurosci. Rep. 2023, 10, 65–74. [Google Scholar] [CrossRef]
- Vanden Abeele, M.M.P.; Halfmann, A.; Lee, E.W.J. Drug, Demon, or Donut? Theorizing the Relationship between Social Media Use, Digital Well-Being and Digital Disconnection. Curr. Opin. Psychol. 2022, 45, 101295. [Google Scholar] [CrossRef] [PubMed]
- Throuvala, M.A.; Griffiths, M.D.; Rennoldson, M.; Kuss, D.J. Mind over Matter: Testing the Efficacy of an Online Randomized Controlled Trial to Reduce Distraction from Smartphone Use. Int. J. Environ. Res. Public. Health 2020, 17, 4842. [Google Scholar] [CrossRef]
- Rus, H.M.; Tiemensma, J. Social Media under the Skin: Facebook Use after Acute Stress Impairs Cortisol Recovery. Front. Psychol. 2017, 8, 1609. [Google Scholar] [CrossRef]
- Plieger, T.; Reuter, M. Stress & Executive Functioning: A Review Considering Moderating Factors. Neurobiol. Learn. Mem. 2020, 173, 107254. [Google Scholar] [CrossRef]
- Pink, A.E.; Lim, P.X.H.; Sim, A.Y.; Cheon, B.K. The Effects of Acute Social Media Exposure on Body Dissatisfaction and Eating Behavior of Male and Female Students. J. Soc. Clin. Psychol. 2022, 41, 365–397. [Google Scholar] [CrossRef]
- Konstantakopoulos, G.; Ioannidi, N.; Patrikelis, P.; Gonidakis, F. The Impact of Theory of Mind and Neurocognition on Delusionality in Anorexia Nervosa. J. Clin. Exp. Neuropsychol. 2020, 42, 611–621. [Google Scholar] [CrossRef]
- Digennaro, S. The Syndrome of Multiple Bodies: The Transformative Impact of the Onlife Existence on Preadolescents. Front. Educ. 2024, 9, 1362448. [Google Scholar] [CrossRef]
- Przybylski, A.K.; Weinstein, N. Can You Connect with Me Now? How the Presence of Mobile Communication Technology Influences Face-to-Face Conversation Quality. J. Soc. Pers. Relatsh. 2013, 3, 237–246. [Google Scholar] [CrossRef]
- Beukeboom, C.J.; Pollmann, M. Partner Phubbing: Why Using Your Phone during Interactions with Your Partner Can Be Detrimental for Your Relationship. Comput. Hum. Behav. 2021, 124, 106932. [Google Scholar] [CrossRef]
- Shanmugasundaram, M.; Tamilarasu, A. The Impact of Digital Technology, Social Media, and Artificial Intelligence on Cognitive Functions: A Review. Front. Cogn. 2023, 2, 1203077. [Google Scholar] [CrossRef]
- Maass, A.; Klöpper, K.M.; Michel, F.; Lohaus, A. Does Media Use Have a Short-Term Impact on Cognitive Performance? J. Media Psychol. 2011, 23, 65–76. [Google Scholar] [CrossRef]
- Lara, R.S.; Bokoch, R. Cognitive Functioning and Social Media: Has Technology Changed Us? Acta Psychol. 2021, 221, 103429. [Google Scholar] [CrossRef] [PubMed]
- Uncapher, M.R.; Thieu, M.K.; Wagner, A.D. Media Multitasking and Memory: Differences in Working Memory and Long-Term Memory. Psychon. Bull. Rev. 2016, 23, 483–490. [Google Scholar] [CrossRef]
- Liu, X.; Lin, X.; Zheng, M.; Hu, Y.; Wang, Y.; Wang, L.; Du, X.; Dong, G. Internet Search Alters Intra- and Inter-Regional Synchronization in the Temporal Gyrus. Front. Psychol. 2018, 9, 260. [Google Scholar] [CrossRef]
- Wang, Q. Memory Online: Introduction to the Special Issue. Memory 2022, 30, 369–374. [Google Scholar] [CrossRef]
- Bar-Gil, O. Holocaust Remembrance in the Digital Age: The Transformative Influence of Technology, Digital Archives, and Connective Memory. Mem. Stud. 2025, 1–23. [Google Scholar] [CrossRef]
- Spence, A.; Beasley, K.; Gravenkemper, H.; Hoefler, A.; Ngo, A.; Ortiz, D.; Campisi, J. Social Media Use While Listening to New Material Negatively Affects Short-Term Memory in College Students. Physiol. Behav. 2020, 227, 113172. [Google Scholar] [CrossRef]
- Jiang, Q.; Ma, L. Swiping More, Thinking Less: Using TikTok Hinders Analytic Thinking. Cyberpsychol. J. Psychosoc. Res. Cyberspace 2024, 18, 1. [Google Scholar] [CrossRef]
- Kovacs, K.; Conway, A.R.A. Process Overlap Theory: A Unified Account of the General Factor of Intelligence. Psychol. Inq. 2016, 27, 151–177. [Google Scholar] [CrossRef]
- Taylor, B.K.; Embury, C.M.; Heinrichs-Graham, E.; Frenzel, M.R.; Eastman, J.A.; Wiesman, A.I.; Wang, Y.-P.; Calhoun, V.D.; Stephen, J.M.; Wilson, T.W. Neural Oscillatory Dynamics Serving Abstract Reasoning Reveal Robust Sex Differences in Typically-Developing Children and Adolescents. Dev. Cogn. Neurosci. 2020, 42, 100770. [Google Scholar] [CrossRef] [PubMed]
- List, J.A. Enhancing Critical Thinking Skill Formation: Getting Fast Thinkers to Slow Down. J. Econ. Educ. 2022, 53, 100–108. [Google Scholar] [CrossRef]
- Weiyi, W. The Psychological Mechanism of Critical Thinking Formation Among Chinese College Students. Soc. Sci. Res. Netw. 2024, 1–12. [Google Scholar] [CrossRef]
- Wang, D.; Hong, Y. Impact of Perceived Influence on Confirmation Bias in Social Media Messages: The Moderating Effect of Civic Online Reasoning. Asian J. Commun. 2023, 33, 529–546. [Google Scholar] [CrossRef]
- Parasnis, E. The Implications of Social Media for Adolescent Critical Thinking from an Information and Advertising Literacy Context: A Brief Review. Ser. Libr. 2022, 83, 9–15. [Google Scholar] [CrossRef]
- Gao, Q.; Jia, G.; Zhao, J.; Zhang, D. Inhibitory Control in Excessive Social Networking Users: Evidence from an Event-Related Potential-Based Go-Nogo Task. Front. Psychol. 2019, 10, 1810. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, Q.; Tian, Y. The Impact of Problematic Social Media Use on Inhibitory Control and the Role of Fear of Missing Out: Evidence from Event-Related Potentials. Psychol. Res. Behav. Manag. 2024, 17, 117–128. [Google Scholar] [CrossRef]
- Xu, Y.; Tian, Y. Effects of Fear of Missing out on Inhibitory Control in Social Media Context: Evidence from Event-Related Potentials. Front. Psychiatry 2023, 14, 1301198. [Google Scholar] [CrossRef]
- Demetriou, A.; Mougi, A.; Spanoudis, G.; Makris, N. Changing Developmental Priorities between Executive Functions, Working Memory, and Reasoning in the Formation of g from 6 to 12 Years. Intelligence 2022, 90, 101602. [Google Scholar] [CrossRef]
- Chaku, N.; Yan, R.; Kelly, D.P.; Zhang, Z.; Lopez-Duran, N.; Weigard, A.S.; Beltz, A.M. 100 Days of Adolescence: Elucidating Externalizing Behaviors Through the Daily Assessment of Inhibitory Control. Res. Child Adolesc. Psychopathol. 2024, 52, 93–110. [Google Scholar] [CrossRef]
- Stevens, E.S.; Funkhouser, C.J.; Auerbach, R.P.; Talati, A.; Gameroff, M.G.; Posner, J.E.; Weissman, M.M.; Shankman, S.A. Inhibition Predicts the Course of Depression and Anxiety Symptoms Among Adolescents: The Moderating Role of Familial Risk. J. Nerv. Ment. Dis. 2023, 211, 100. [Google Scholar] [CrossRef]
- Shahrajabian, F.; Hasani, J.; Griffiths, M.D.; Aruguete, M.; Javad Emadi Chashmi, S. Effects of Emotional Working Memory Training on Problematic Internet Use, Inhibition, Attention, and Working Memory among Young Problematic Internet Users: A Randomized Control Study. Addict. Behav. 2023, 141, 107659. [Google Scholar] [CrossRef] [PubMed]
- Zahmat Doost, E.; Zhang, W. Mental Workload Variations during Different Cognitive Office Tasks with Social Media Interruptions. Ergonomics 2023, 66, 592–608. [Google Scholar] [CrossRef]
- Martinez-Ruiz, F.; Gonzalez, P.G.; Borrego, A.L.; Rosales, H.G.; De la Rosa Vargas, J.I. Extraneous Cognitive Overload in The Blended Learning Paradigm. Case Study: Use Of Social Networks in Computer Science Courses. In Proceedings of the Conference: International Conference of Education, Research and Innovation 2016, Seville, Spain, 14–16 November 2016; pp. 7827–7832. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G*Power 3: A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef] [PubMed]
- Raven, J.C.; Court, J.H.; Raven, J. Raven Matrices Progresivas, 3rd ed.; TEA Ediciones, S.A.: Madrid, Spain, 2001. [Google Scholar]
- Breit, M.; Brunner, M.; Preckel, F. General Intelligence and Specific Cognitive Abilities in Adolescence: Tests of Age Differentiation, Ability Differentiation, and Their Interaction in Two Large Samples. Dev. Psychol. 2020, 56, 364–384. [Google Scholar] [CrossRef]
- Brickenkamp, R. D2 Teste de Atenção; Hogrefe: Newburyport, MA, USA, 2007. [Google Scholar]
- Steinborn, M.B.; Langner, R.; Flehmig, H.C.; Huestegge, L. Methodology of Performance Scoring in the D2 Sustained-Attention Test: Cumulative-Reliability Functions and Practical Guidelines. Psychol. Assess. 2018, 30, 339–357. [Google Scholar] [CrossRef]
- Corsi, P.M. Human Memory and the Medial Temporal Region of the Brain. Ph.D. Thesis, McGill University, Montreal, QC, Canada, 1972. [Google Scholar]
- Lemos, G.C.; Almeida, L.S.; Guisande, M.A. Bateria de Provas de Raciocínio: Suas Versões, Validação e Normalização. In Actas da XI Conferência Internacional “Avaliação Psicológica: Formas e contextos”; Universidade do Minho: Braga, Portugal, 2006; pp. 73–80. [Google Scholar]
- Primi, R.; Almeida, L.S. Estudo de validação da bateria de provas de raciocínio (BPR-5). Psicol. Teor. E Pesqui. 2000, 16, 165–173. [Google Scholar] [CrossRef]
- Gou, S.; Yuan, R.; Zhang, W.; Tang, Y.; Zhang, W. Problematic Social Media Use in Youths Cause Response Inhibition Impairment. Curr. Psychol. 2024, 43, 13555–13564. [Google Scholar] [CrossRef]
- Rezlescu, C.; Danaila, I.; Miron, A.; Amariei, C. Chapter 13—More Time for Science: Using Testable to Create and Share Behavioral Experiments Faster, Recruit Better Participants, and Engage Students in Hands-on Research. In Progress in Brain Research; Parkin, B.L., Ed.; Real-World Applications in Cognitive Neuroscience; Elsevier: Amsterdam, The Netherlands, 2020; Volume 253, pp. 243–262. [Google Scholar]
- Van Royen, A.; Van Malderen, E.; Desmet, M.; Goossens, L.; Verbeken, S.; Kemps, E. Go or No-Go? An Assessment of Inhibitory Control Training Using the GO/NO-GO Task in Adolescents. Appetite 2022, 179, 106303. [Google Scholar] [CrossRef] [PubMed]
- Yeung, A.W.K.; Wong, N.S.M. The Historical Roots of Visual Analog Scale in Psychology as Revealed by Reference Publication Year Spectroscopy. Front. Hum. Neurosci. 2019, 13, 86. [Google Scholar] [CrossRef]
- Pageaux, B.; Lepers, R. Chapter 16—The Effects of Mental Fatigue on Sport-Related Performance. In Progress in Brain Research; Marcora, S., Sarkar, M., Eds.; Sport and the Brain: The Science of Preparing, Enduring and Winning, Part C; Elsevier: Amsterdam, The Netherlands, 2018; Volume 240, pp. 291–315. [Google Scholar]
- Fuentes-García, J.P.; Villafaina, S.; Collado-Mateo, D.; de la Vega, R.; Olivares, P.R.; Clemente-Suárez, V.J. Differences Between High vs. Low Performance Chess Players in Heart Rate Variability During Chess Problems. Front. Psychol. 2019, 10, 409. [Google Scholar] [CrossRef]
- Ouwehand, K.; Kroef, A.V.D.; Wong, J.; Paas, F. Measuring Cognitive Load: Are There More Valid Alternatives to Likert Rating Scales? Front. Educ. 2021, 6, 702616. [Google Scholar] [CrossRef]
- Vinayak, P.L.; Maresha, N.; Parashurama, K.G. Exploring the Impact of Excessive Screen Time, Social Media, and Gaming on Mental Health and Well-Being. IJFMR Int. J. Multidiscip. Res. 2024, 6, 5. [Google Scholar] [CrossRef]
- Adindu, K.N.; Otaniyen, P.N.; Onochie, O.E.; Oyedemi, D.; Akubuiro, C.O.; Nwonye, U.C.; Abdulazeez, I.A. The Influence of Social Media on Adolescent Mental Health and Substance Abuse Patterns. World J. Adv. Res. Rev. 2024, 24, 253–261. [Google Scholar] [CrossRef]
- Higgins, J.; Thomas, J.; Chandler, J.; Cumpston, M.; Li, T.; Page, M.; Welch, V. Cochrane Handbook for Systematic Reviews of Interventions Version 6.4 (Updated August 2023); Cochrane: London, UK, 2023. [Google Scholar]
- Andrade, C. Internal, External, and Ecological Validity in Research Design, Conduct, and Evaluation. Indian J. Psychol. Med. 2018, 40, 498–499. [Google Scholar] [CrossRef]
- Tabachnick, B.; Fidell, L. Experimental Design Using ANOVA, 3rd ed.; Duxbury: London, UK, 2020. [Google Scholar]
- Tabachnick, B.; Fidell, L. Using Multivariate Statistics, 6th ed.; Pearson: New York City, NY, USA, 2013. [Google Scholar]
- Joshi, A.; Hinkley, T. Too Much Time on Screens? Screen Time Effects and Guidelines for Children and Young People. Aust. Inst. Fam. Stud. 2021. Available online: https://www.shanit.com/docs/Screen_time_effects_and_guidelines_AIFS.pdf (accessed on 2 January 2025).
- Twenge, J.M.; Martin, G.N.; Spitzberg, B.H. Trends in U.S. Adolescents’ Media Use, 1976–2016: The Rise of Digital Media, the Decline of TV, and the (near) Demise of Print. Psychol. Pop. Media Cult. 2019, 8, 329–345. [Google Scholar] [CrossRef]
- Poirier, K.; Gauvin, L.; Haddad, S.; Bélanger, R.E.; Leatherdale, S.T.; Turcotte-Tremblay, A.-M. Evolution of Sleep Duration and Screen Time Between 2018 and 2022 Among Canadian Adolescents: Evidence of Drifts Accompanying the COVID-19 Pandemic. J. Adolesc. Health 2024, 74, 980–988. [Google Scholar] [CrossRef]
- Wang, W.; Du, X.; Guo, Y.; Li, W.; Zhang, S.; Zhang, W.; McIntyre, R.S.; Tamura, J.K.; Guo, L.; Lu, C. Associations Among Screen Time, Sleep Duration and Depressive Symptoms Among Chinese Adolescents. J. Affect. Disord. 2021, 284, 69–74. [Google Scholar] [CrossRef]
- Tomczyk, Ł.; Selmanagic Lizde, E. Is Real Screen Time a Determinant of Problematic Smartphone and Social Network Use among Young People? Telemat. Inform. 2023, 82, 101994. [Google Scholar] [CrossRef]
- Marciano, L.; Camerini, A.-L.; Morese, R. The Developing Brain in the Digital Era: A Scoping Review of Structural and Functional Correlates of Screen Time in Adolescence. Front. Psychol. 2021, 12, 671817. [Google Scholar] [CrossRef]
- Leonhardt, M.; Overå, S. Are There Differences in Video Gaming and Use of Social Media among Boys and Girls?—A Mixed Methods Approach. Int. J. Environ. Res. Public Health 2021, 18, 6085. [Google Scholar] [CrossRef]
- Coelho, F.; Abreu, A.M. Neurosociological Perspectives on Video Games: A Narrative Review [Manuscript Submitted for Publication]. Fac. Ciênc. Saúde E Enferm. Universidade Católica Port. 2025. [Google Scholar]
- Lareki, A.; Fraga-Varela, F.; Martínez-de-Morentin, J.-I. Adolescents and Negligent Social Media Use. Technol. Soc. 2024, 78, 102623. [Google Scholar] [CrossRef]
- Yang, Y. The Impact of the Internet on Adolescents’ Mental Health. Int. J. Educ. Humanit. 2024, 16, 234–237. [Google Scholar] [CrossRef]
- Orben, A.; Meier, A.; Dalgleish, T.; Blakemore, S.-J. Mechanisms Linking Social Media Use to Adolescent Mental Health Vulnerability. Nat. Rev. Psychol. 2024, 3, 407–423. [Google Scholar] [CrossRef]
- Anjum, R.; Naeem, Z.; Chaudhary, A.A.; Asif, Q.; Rehman, A. The Impact of Social Media Use on Adolescent Well-Being and Academic Performance. J. Educ. Soc. Stud. 2024, 5, 426–434. [Google Scholar] [CrossRef]
- Kovalova, O. The Positive Impacts of Incorporating Social Media into Adolescent Social Practices. In Proceedings of the 8th ISPC «International Scientific Discussion: Problems, Tasks and Prospects», Brighton, UK, 19–20 May 2024; pp. 309–314. [Google Scholar] [CrossRef]
- Lazonder, A.W.; Walraven, A.; Gijlers, H.; Janssen, N. Longitudinal Assessment of Digital Literacy in Children: Findings from a Large Dutch Single-School Study. Comput. Educ. 2020, 143, 103681. [Google Scholar] [CrossRef]
- Gür, D.; Türel, Y.K. Parenting in the Digital Age: Attitudes, Controls and Limitations Regarding Children’s Use of ICT. Comput. Educ. 2022, 183, 104504. [Google Scholar] [CrossRef]
- Terras, M.M.; Ramsay, J. Family Digital Literacy Practices and Children’s Mobile Phone Use. Front. Psychol. 2016, 7, 1957. [Google Scholar] [CrossRef]
- Otterborn, A.; Schönborn, K.; Hultén, M. Surveying Preschool Teachers’ Use of Digital Tablets: General and Technology Education Related Findings. Int. J. Technol. Des. Educ. 2019, 29, 717–737. [Google Scholar] [CrossRef]
- Montag, C.; Elhai, J.D. Do We Need a Digital School Uniform? Arguments for and against a Smartphone Ban in Schools. Soc. Impacts 2023, 1, 100002. [Google Scholar] [CrossRef]
- Coelho, F.; Abreu, A.M. Geração Digital: Como as Tecnologias Afetam o Potencial Humano? In Ciberpsicologia e Humanidades Digitais; de Almeida Santos, A., Donard, V., de Souza Torres, M., Eds.; Pimenta Cultural: São Paulo, Brazil, 2025; pp. 75–106. [Google Scholar]
- Lewycka, S.; Clark, T.; Peiris-John, R.; Fenaughty, J.; Bullen, P.; Denny, S.; Fleming, T. Downwards Trends in Adolescent Risk-Taking Behaviours in New Zealand: Exploring Driving Forces for Change. J. Paediatr. Child Health 2018, 54, 602–608. [Google Scholar] [CrossRef]
- Zhang, W. An Analysis of Social Media Addiction in Adolescents. Lect. Notes Educ. Psychol. Public Media 2024, 52, 86–90. [Google Scholar] [CrossRef]
- Checkel, J.T. Socialization and Violence: Introduction and Framework. J. Peace Res. 2017, 54, 592–605. [Google Scholar] [CrossRef]
- Song, J.S.; Ngnouwal Eloundou, G.; Bitoto Ewolo, F.; Ondoua Beyene, B. Does Social Media Contribute to Economic Growth? J. Knowl. Econ. 2024, 15, 8349–8389. [Google Scholar] [CrossRef]
- Kellner, D. Technological Transformation, Multiple Literacies, and the Re-Visioning of Education. E-Learn. Digit. Media 2004, 1, 9–37. [Google Scholar] [CrossRef]
- Kellner, D. Media Culture: Cultural Studies, Identity, and Politics in the Contemporary Moment; Routledge: London, UK, 2020; ISBN 0-429-24423-1. [Google Scholar]
- Sheldon, P.; Herzfeldt, E.; Rauschnabel, P.A. Culture and Social Media: The Relationship between Cultural Values and Hashtagging Styles. Behav. Inf. Technol. 2020, 39, 758–770. [Google Scholar] [CrossRef]
- Xu, J.H. Constructing the Consumer in the Digital Culture: American Brands and China’s Generation Z. In Dismantling Cultural Borders Through Social Media and Digital Communications: How Networked Communities Compromise Identity; Ngwainmbi, E.K., Ed.; Springer: Cham, Switzerland, 2022; pp. 307–329. ISBN 978-3-030-92212-2. [Google Scholar]
- Hu, T.; Dai, H.; Luo, X.; Guo, C.; Liu, D. The Role of the Espoused Tight Culture in Value Assessment of Social Media Use. Eur. J. Inf. Syst. 2024, 33, 674–698. [Google Scholar] [CrossRef]
- Lu, D. Performing Zero Waste: Lifestyle Movement, Consumer Culture, and Promotion Strategies of Social Media Influencers. Environ. Sociol. 2024, 10, 12–29. [Google Scholar] [CrossRef]
- Borysenko, O.; Marukhovska-Kartunova, O.; Volkova, V.; Baran, A.; Maraieva, U. The Influence of Social Networks on the Formation of Modern Culture and Its Relationship with Philosophy. Futur. Philos. 2024, 3, 80–94. [Google Scholar] [CrossRef]
- Dutot, V.; Lichy, J. The Role of Social Media in Accelerating the Process of Acculturation to the Global Consumer Culture: An Empirical Analysis. In Research Anthology on Social Media Advertising and Building Consumer Relationships; IGI Global Scientific Publishing: Hershey, PA, USA, 2022; pp. 1875–1898. ISBN 978-1-66846-287-4. [Google Scholar]
- Venugeetha, Y.; Rathod, R.; Kumar, R. Social Networking Sites in Daily Life: Benefits and Threats. Artif. Intell. Commun. Technol. 2022, 51–64. [Google Scholar] [CrossRef]
- McAlister, K.L.; Beatty, C.C.; Smith-Caswell, J.E.; Yourell, J.L.; Huberty, J.L. Social Media Use in Adolescents: Bans, Benefits, and Emotion Regulation Behaviors. JMIR Ment. Health 2024, 11, e64626. [Google Scholar] [CrossRef]
- Pangesti, M.; Khaeriah, A.S.; Purwanto, E.; Dwi, A.; Nur, A.; Syafitri, A.; Shiva, M.; Permata, A.; Intan, N.; Azhari, H. The Influence of Social Media on the Cultural Identity of the Millennial Generation: Indonesian Case Study. Pubmedia Soc. Sci. Humanit. 2024, 2, 7. [Google Scholar] [CrossRef]
- Hamilton, J.L.; Dreier, M.J.; Boyd, S.I. Social Media as a Bridge and a Window: The Changing Relationship of Adolescents with Social Media and Digital Platforms. Curr. Opin. Psychol. 2023, 52, 101633. [Google Scholar] [CrossRef]
- Liu, Q.; Wang, L. T-Test and ANOVA for Data with Ceiling and/or Floor Effects. Behav. Res. Methods 2021, 53, 264–277. [Google Scholar] [CrossRef]
- Wise, R.A.; Jordan, C.J. Dopamine, Behavior, and Addiction. J. Biomed. Sci. 2021, 28, 83. [Google Scholar] [CrossRef]
- van Elzelingen, W.; Warnaar, P.; Matos, J.; Bastet, W.; Jonkman, R.; Smulders, D.; Goedhoop, J.; Denys, D.; Arbab, T.; Willuhn, I. Striatal Dopamine Signals Are Region Specific and Temporally Stable across Action-Sequence Habit Formation. Curr. Biol. 2022, 32, 1163–1174. [Google Scholar] [CrossRef]
- Brailovskaia, J.; Delveaux, J.; John, J.; Wicker, V.; Noveski, A.; Kim, S.; Schillack, H.; Margraf, J. Finding the “Sweet Spot” of Smartphone Use: Reduction or Abstinence to Increase Well-Being and Healthy Lifestyle?! An Experimental Intervention Study. J. Exp. Psychol. Appl. 2023, 29, 149–161. [Google Scholar] [CrossRef]
- de Hesselle, L.C.; Montag, C. Effects of a 14-Day Social Media Abstinence on Mental Health and Well-Being: Results from an Experimental Study. BMC Psychol. 2024, 12, 141. [Google Scholar] [CrossRef]
- De, D.; El Jamal, M.; Aydemir, E.; Khera, A. Social Media Algorithms and Teen Addiction: Neurophysiological Impact and Ethical Considerations. Cureus 2025, 17, e77145. [Google Scholar] [CrossRef]
- Paladino, C.A.; Milla, A.C.; Andrade-Ruiz, G. The Role of Neuromarketing in Decoding Brain Stimuli and Consumir Beavior. Int. J. Manag. Trends Key Concepts Res. 2024, 3, 6–20. [Google Scholar] [CrossRef]
- Huang, Y.; Chen, H. The Impact of Teenage Media Use on Academic Performance, Peer Influence, Interpersonal Relationships, And Personality Development. J. Educ. Humanit. Soc. Sci. 2024, 40, 130–135. [Google Scholar] [CrossRef]
- Prasanti, D.A.K. The Influence of Social Media on the Reduced Politeness of Language in Adolescents. Int. J. Engl. Educ. Linguist. IJoEEL 2023, 5, 135–145. [Google Scholar] [CrossRef]
- Elwadhi, S. The Impact of Social Media on the Decision Making of Youth: A Survey-Based Analysis. Innov. Res. Thoughts 2024, 10, 57–69. [Google Scholar] [CrossRef]
- Akil, A.M.; Ujhelyi, A.; Logemann, H.N.A. Exposure to Depression Memes on Social Media Increases Depressive Mood and It Is Moderated by Self-Regulation: Evidence from Self-Report and Resting EEG Assessments. Front. Psychol. 2022, 13, 880065. [Google Scholar] [CrossRef]
- Áfra, E.; Janszky, J.; Perlaki, G.; Orsi, G.; Nagy, S.A.; Arató, Á.; Szente, A.; Alhour, H.A.M.; Kis-Jakab, G.; Darnai, G. Altered Functional Brain Networks in Problematic Smartphone and Social Media Use: Resting-State fMRI Study. Brain Imaging Behav. 2024, 18, 292–301. [Google Scholar] [CrossRef]
- Maheux, A.J.; Burnell, K.; Maza, M.T.; Fox, K.A.; Telzer, E.H.; Prinstein, M.J. Annual Research Review: Adolescent Social Media Use Is Not a Monolith: Toward the Study of Specific Social Media Components and Individual Differences. J. Child Psychol. Psychiatry 2025, 66, 440–459. [Google Scholar] [CrossRef]
- Siongers, J.; Spruyt, B. Navigating the Social Media Seas: Understanding the Complex Relationship between Social Media Use and Adolescent Well-Being. Child Indic. Res. 2024, 17, 177–196. [Google Scholar] [CrossRef]
Interaction Modality | Screen Time | M | SD | N | |
---|---|---|---|---|---|
CG—Face-to-Face | Until 540 min | RTB_AR | 7.13 | 3.523 | 15 |
D2_TE-S | 159.87 | 33.579 | 15 | ||
D2_VI | 15.27 | 6.497 | 15 | ||
D2_E% | 17.28 | 2.804 | 15 | ||
CORSI_B Go/No-Go_%CR | 46.67 1.07 | 16.663 0.019 | 15 15 | ||
Go/No-Go_IES ME | 144.71 35.07 | 43.601 21.740 | 15 15 | ||
More than 540 min | RTB_AR | 6.56 | 2.148 | 18 | |
D2_TE-S | 156.33 | 34.152 | 18 | ||
D2_VI | 17.78 | 5.579 | 18 | ||
D2_E% | 18.38 | 1.467 | 18 | ||
CORSI_B Go/No-Go_%CR | 43.39 1.06 | 12.448 0.017 | 18 18 | ||
Go/No-Go_IES ME | 156.96 28.28 | 43.262 15.025 | 18 18 | ||
IG—Social Media | Until 540 min | RTB_AR | 6.53 | 2.091 | 19 |
D2_TE-S | 151.05 | 45.980 | 19 | ||
D2_VI | 18.11 | 5.685 | 19 | ||
D2_E% | 18.19 | 1.703 | 19 | ||
CORSI_B Go/No-Go_%CR | 44.95 1.07 | 16.622 0.031 | 19 19 | ||
Go/No-Go_IES ME | 111.02 30.42 | 56.596 12.611 | 19 19 | ||
More than 540 min | RTB_AR | 7.14 | 2.905 | 14 | |
D2_TE-S | 152.00 | 40.633 | 14 | ||
D2_VI | 16.00 | 9.240 | 14 | ||
D2_E% | 21.625 | 8.009 | 13 | ||
CORSI_B Go/No-Go_%CR | 53.36 1.05 | 16.003 0.024 | 14 14 | ||
Go/No-Go_IES ME | 149.55 35.14 | 50.114 13.581 | 14 14 |
Variable | Sources | Hypoth. Sum of Squares | df, df | Hypoth Mean Square | F | Sig. | Partial η2 |
---|---|---|---|---|---|---|---|
RTB_AR | Interaction Modality Screen Time Interaction Modality*Screen Time | 0.002 0.006 5.792 | 1, 62 1, 62 1, 62 | 0.002 0.006 5.792 | 0.000 0.001 0.815 | 0.988 0.977 0.370 | 0.000 0.000 0.013 |
D2_TE-S | Interaction Modality Screen Time Interaction Modality*Screen Time | 701.850 27.153 81.519 | 1, 62 1, 62 1, 62 | 701.850 27.153 81.519 | 0.457 0.018 0.053 | 0.501 0.895 0.818 | 0.007 0.000 0.001 |
D2_VI | Interaction Modality Screen Time Interaction Modality*Screen Time | 4.569 0.669 86.530 | 1, 62 1, 62 1, 62 | 4.569 0.669 86.530 | 0.101 0.015 1.908 | 0.752 0.904 0.172 | 0.002 0.000 0.030 |
D2_E% | Interaction Modality Screen Time Interaction Modality*Screen Time | 4.092 7.720 2.594 | 1, 61 1, 61 1, 61 | 4.092 7.720 2.594 | 0.258 0.486 0.163 | 0.614 0.488 0.688 | 0.004 0.008 0.003 |
CORSI_B | Interaction Modality Screen Time Interaction Modality*Screen Time | 276.290 106.940 554.643 | 1, 62 1, 62 1, 62 | 276.290 106.940 554.643 | 1.156 0.447 2.320 | 0.287 0.506 0.133 | 0.018 0.007 0.036 |
Go/No-Go_%CR | Interaction Modality Screen Time Interaction Modality*Screen Time | 3.240 × 10−6 0.002 0.000 | 1, 62 1, 62 1, 62 | 3.240 × 10−6 0.002 0.000 | 0.006 3.513 0.182 | 0.940 0.066 0.671 | 0.000 0.054 0.003 |
Go/No-Go_IES | Interaction Modality Screen Time Interaction Modality*Screen Time | 6860.091 10,470.192 2803.239 | 1, 62 1, 62 1, 62 | 6860.091 10,470.192 2803.239 | 2.860 4.364 1.169 | 0.096 0.041 0.284 | 0.044 0.066 0.018 |
ME | Interaction Modality Screen Time Interaction Modality*Screen Time | 20.002 17.349 537.984 | 1, 62 1, 62 1, 62 | 20.002 17.349 537.984 | 0.079 0.068 2.123 | 0.780 0.794 0.150 | 0.001 0.001 0.033 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendonça, I.; Coelho, F.; Rando, B.; Abreu, A.M. A Comparative Study of Short-Term Social Media Use with Face-to-Face Interaction in Adolescence. Children 2025, 12, 460. https://doi.org/10.3390/children12040460
Mendonça I, Coelho F, Rando B, Abreu AM. A Comparative Study of Short-Term Social Media Use with Face-to-Face Interaction in Adolescence. Children. 2025; 12(4):460. https://doi.org/10.3390/children12040460
Chicago/Turabian StyleMendonça, Inês, Franz Coelho, Belén Rando, and Ana Maria Abreu. 2025. "A Comparative Study of Short-Term Social Media Use with Face-to-Face Interaction in Adolescence" Children 12, no. 4: 460. https://doi.org/10.3390/children12040460
APA StyleMendonça, I., Coelho, F., Rando, B., & Abreu, A. M. (2025). A Comparative Study of Short-Term Social Media Use with Face-to-Face Interaction in Adolescence. Children, 12(4), 460. https://doi.org/10.3390/children12040460