Neonatal Kidney Function, Injury and Drug Dosing: A Contemporary Review
Abstract
:1. Introduction
2. Postnatal Kidney Development and Function
3. Fluid Balance and Neonatal Kidney Function
4. Definition of AKI in Neonates
5. Prevention and Management of Neonatal AKI
5.1. How to Prevent Neonatal AKI
5.2. How to Manage Neonatal AKI
5.3. How to Adapt Drug Dosing in Neonatal AKI
5.4. Follow-Up of Neonates Post-AKI
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Abitbol, C.L.; DeFreitas, M.J.; Strauss, J. Assessment of kidney function in preterm infants: Lifelong implications. Pediatr. Nephrol. 2016, 31, 2213–2222. [Google Scholar] [CrossRef] [PubMed]
- Luyckx, V.A. Preterm Birth and its Impact on Renal Health. Semin. Nephrol. 2017, 37, 311–319. [Google Scholar] [CrossRef] [PubMed]
- Luyckx, V.A.; Brenner, B.M. Clinical consequences of developmental programming of low nephron number. Anat. Rec. 2020, 303, 2613–2631. [Google Scholar] [CrossRef]
- Kellum, J.A.; Lameire, N. Diagnosis, evaluation, and management of acute kidney injury: A KDIGO summary (Part 1). Crit. Care 2013, 17, 204. [Google Scholar] [CrossRef]
- Stoops, C.; Stone, S.; Evans, E.; Dill, L.; Henderson, T.; Griffin, R.; Goldstein, S.L.; Coghill, C.; Askenazi, D.J. Baby NINJA (Nephrotoxic Injury Negated by Just-in-Time Action): Reduction of Nephrotoxic Medication-Associated Acute Kidney Injury in the Neonatal Intensive Care Unit. J. Pediatr. 2019, 215, 223–228.e226. [Google Scholar] [CrossRef]
- Jetton, J.G.; Boohaker, L.J.; Sethi, S.K.; Wazir, S.; Rohatgi, S.; Soranno, D.E.; Chishti, A.S.; Woroniecki, R.; Mammen, C.; Swanson, J.R.; et al. Incidence and outcomes of neonatal acute kidney injury (AWAKEN): A multicentre, multinational, observational cohort study. Lancet Child Adolesc. Health 2017, 1, 184–194. [Google Scholar] [CrossRef]
- Allegaert, K.; Smits, A.; van Donge, T.; van den Anker, J.; Sarafidis, K.; Levtchenko, E.; Mekahli, D. Renal Precision Medicine in Neonates and Acute Kidney Injury: How to Convert a Cloud of Creatinine Observations to Support Clinical Decisions. Front. Pediatr. 2020, 8, 366. [Google Scholar] [CrossRef]
- Askenazi, D.; Saeidi, B.; Koralkar, R.; Ambalavanan, N.; Griffin, R.L. Acute changes in fluid status affect the incidence, associative clinical outcomes, and urine biomarker performance in premature infants with acute kidney injury. Pediatr. Nephrol. 2016, 31, 843–851. [Google Scholar] [CrossRef] [PubMed]
- Nakatsugawa, A.C.; Sampogna, R.V. Postnatal Nephrogenesis in Preterm Infants: The Need to Safeguard Kidney Development After Birth. Kidney Int. Rep. 2024, 9, 201–202. [Google Scholar] [CrossRef]
- Carpenter, J.; Yarlagadda, S.; VandenHeuvel, K.A.; Ding, L.; Schuh, M.P. Human Nephrogenesis can Persist Beyond 40 Postnatal Days in Preterm Infants. Kidney Int. Rep. 2024, 9, 436–450. [Google Scholar] [CrossRef]
- Rodríguez, M.M.; Gómez, A.H.; Abitbol, C.L.; Chandar, J.J.; Duara, S.; Zilleruelo, G.E. Histomorphometric analysis of postnatal glomerulogenesis in extremely preterm infants. Pediatr. Dev. Pathol. 2004, 7, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Smeets, N.J.L.; IntHout, J.; van der Burgh, M.J.P.; Schwartz, G.J.; Schreuder, M.F.; de Wildt, S.N. Maturation of GFR in Term-Born Neonates: An Individual Participant Data Meta-Analysis. J. Am. Soc. Nephrol. 2022, 33, 1277–1292. [Google Scholar] [CrossRef]
- Iacobelli, S.; Guignard, J.P. Maturation of glomerular filtration rate in neonates and infants: An overview. Pediatr. Nephrol. 2021, 36, 1439–1446. [Google Scholar] [CrossRef] [PubMed]
- Staub, E.; Dahl, M.J.; Yost, C.; Bowen, S.; Aoki, T.; Blair, A.; Wang, Z.; Null, D.M.; Yoder, B.A.; Albertine, K.H. Preterm birth and ventilation decrease surface density of glomerular capillaries in lambs, regardless of postnatal respiratory support mode. Pediatr. Res. 2017, 82, 93–100. [Google Scholar] [CrossRef]
- Wu, Y.; Allegaert, K.; Flint, R.B.; Simons, S.H.P.; Krekels, E.H.J.; Knibbe, C.A.J.; Voller, S. Prediction of glomerular filtration rate maturation across preterm and term neonates and young infants using inulin as marker. AAPS J. 2022, 24, 38. [Google Scholar] [CrossRef] [PubMed]
- Brion, L.P.; Fleischman, A.R.; McCarton, C.; Schwartz, G.J. A simple estimate of glomerular filtration rate in low birth weight infants during the first year of life: Noninvasive assessment of body composition and growth. J. Pediatr. 1986, 109, 698–707. [Google Scholar] [CrossRef]
- Filler, G.; Bhayana, V.; Schott, C.; Díaz-González de Ferris, M.E. How should we assess renal function in neonates and infants? Acta Paediatr. 2021, 110, 773–780. [Google Scholar] [CrossRef]
- Brenner, B.M.; Garcia, D.L.; Anderson, S. Glomeruli and blood pressure. Less of one, more the other? Am. J. Hypertens. 1988, 1, 335–347. [Google Scholar] [CrossRef]
- Guignard, J.P.; Drukker, A. Why do newborn infants have a high plasma creatinine? Pediatrics 1999, 103, e49. [Google Scholar] [CrossRef]
- Go, H.; Momoi, N.; Kashiwabara, N.; Haneda, K.; Chishiki, M.; Imamura, T.; Sato, M.; Goto, A.; Kawasaki, Y.; Hosoya, M. Neonatal and maternal serum creatinine levels during the early postnatal period in preterm and term infants. PLoS ONE 2018, 13, e0196721. [Google Scholar] [CrossRef]
- van Donge, T.; Allegaert, K.; Gotta, V.; Smits, A.; Levtchenko, E.; Mekahli, D.; van den Anker, J.; Pfister, M. Characterizing dynamics of serum creatinine and creatinine clearance in extremely low birth weight neonates during the first 6 weeks of life. Pediatr. Nephrol. 2021, 36, 649–659. [Google Scholar] [CrossRef]
- Bateman, D.A.; Thomas, W.; Parravicini, E.; Polesana, E.; Locatelli, C.; Lorenz, J.M. Serum creatinine concentration in very-low-birth-weight infants from birth to 34-36 wk postmenstrual age. Pediatr. Res. 2015, 77, 696–702. [Google Scholar] [CrossRef]
- Allegaert, K.; Kuppens, M.; Mekahli, D.; Levtchenko, E.; Vanstapel, F.; Vanhole, C.; van den Anker, J.N. Creatinine reference values in ELBW infants: Impact of quantification by Jaffe or enzymatic method. J. Matern. Fetal Neonatal Med. 2012, 25, 1678–1681. [Google Scholar] [CrossRef]
- Bell, E.F.; Acarregui, M.J. Restricted versus liberal water intake for preventing morbidity and mortality in preterm infants. Cochrane Database Syst. Rev. 2014, 2014, Cd000503. [Google Scholar] [CrossRef] [PubMed]
- Gordon, L.; Grossmann, K.R.; Guillet, R.; Steflik, H.; Harer, M.W.; Askenazi, D.J.; Menon, S.; Selewski, D.T.; Starr, M.C. Approaches to evaluation of fluid balance and management of fluid overload in neonates among neonatologists: A Neonatal Kidney Collaborative survey. J. Perinatol. 2023, 43, 1314–1315. [Google Scholar] [CrossRef] [PubMed]
- Selewski, D.T.; Barhight, M.F.; Bjornstad, E.C.; Ricci, Z.; de Sousa Tavares, M.; Akcan-Arikan, A.; Goldstein, S.L.; Basu, R.; Bagshaw, S.M. Fluid assessment, fluid balance, and fluid overload in sick children: A report from the Pediatric Acute Disease Quality Initiative (ADQI) conference. Pediatr. Nephrol. 2024, 39, 955–979. [Google Scholar] [CrossRef] [PubMed]
- Aksoy, H.T.; Guzoglu, N.; Eras, Z.; Gokce, I.K.; Canpolat, F.E.; Uras, N.; Oguz, S.S. The association of early postnatal weight loss with outcome in extremely low birth weight infants. Pediatr. Neonatol. 2019, 60, 192–196. [Google Scholar] [CrossRef]
- Selewski, D.T.; Gist, K.M.; Nathan, A.T.; Goldstein, S.L.; Boohaker, L.J.; Akcan-Arikan, A.; Bonachea, E.M.; Hanna, M.; Joseph, C.; Mahan, J.D.; et al. The impact of fluid balance on outcomes in premature neonates: A report from the AWAKEN study group. Pediatr. Res. 2020, 87, 550–557. [Google Scholar] [CrossRef]
- La Haye-Caty, N.; Barbosa Vargas, S.; Maluorni, J.; Rampakakis, E.; Zappitelli, M.; Wintermark, P. Impact of restricting fluid and sodium intake in term asphyxiated newborns treated with hypothermia. J. Matern. Fetal Neonatal Med. 2020, 33, 3521–3528. [Google Scholar] [CrossRef]
- Flaherman, V.J.; Schaefer, E.W.; Kuzniewicz, M.W.; Li, S.X.; Walsh, E.M.; Paul, I.M. Early weight loss nomograms for exclusively breastfed newborns. Pediatrics 2015, 135, e16–e23. [Google Scholar] [CrossRef]
- Zozaya, C.; Aziz, K.; Singhal, N.; Ye, X.Y.; Drolet, C.; Emberley, J.; Lee, K.S.; Shah, V.S.; On behalf of the Canadian Neonatal Network (CNN) Investigators. Association of Weight Changes by Three Days after Birth and Mortality and/or Severe Neurological Injury in Preterm Infants <29 Weeks Gestational Age: A Multicenter Cohort Study. Children 2022, 9, 276. [Google Scholar] [CrossRef] [PubMed]
- Jetton, J.G.; Sorenson, M. Pharmacological management of acute kidney injury and chronic kidney disease in neonates. Semin. Fetal Neonatal Med. 2017, 22, 109–115. [Google Scholar] [CrossRef]
- Young, A.; Brown, L.K.; Ennis, S.; Beattie, R.M.; Johnson, M.J. Total body water in full-term and preterm newborns: Systematic review and meta-analysis. Arch. Dis. Child. Fetal Neonatal Ed. 2021, 106, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Starr, M.C.; Griffin, R.L.; Harer, M.W.; Soranno, D.E.; Gist, K.M.; Segar, J.L.; Menon, S.; Gordon, L.; Askenazi, D.J.; Selewski, D.T. Acute Kidney Injury Defined by Fluid-Corrected Creatinine in Premature Neonates: A Secondary Analysis of the PENUT Randomized Clinical Trial. JAMA Netw. Open 2023, 6, e2328182. [Google Scholar] [CrossRef]
- Askenazi, D.J.; Koralkar, R.; Patil, N.; Halloran, B.; Ambalavanan, N.; Griffin, R. Acute Kidney Injury Urine Biomarkers in Very Low-Birth-Weight Infants. Clin. J. Am. Soc. Nephrol. 2016, 11, 1527–1535. [Google Scholar] [CrossRef] [PubMed]
- Essajee, F.; Were, F.; Admani, B. Urine neutrophil gelatinase-associated lipocalin in asphyxiated neonates: A prospective cohort study. Pediatr. Nephrol. 2015, 30, 1189–1196. [Google Scholar] [CrossRef]
- Stoops, C.; Gavigan, H.; Krallman, K.; Anderson, N.; Griffin, R.; Slagle, C.; House, S.; Goldstein, S.L.; Askenazi, D.J. The Utility of Urinary NGAL as an Alternative for Serum Creatinine to Detect Acute Kidney Injury in Infants Exposed to Nephrotoxic Medications in the Neonatal Intensive Care Unit. Neonatology 2024, 121, 203–212. [Google Scholar] [CrossRef]
- Goldstein, S.L.; Krallman, K.A.; Roy, J.P.; Collins, M.; Chima, R.S.; Basu, R.K.; Chawla, L.; Fei, L. Real-Time Acute Kidney Injury Risk Stratification-Biomarker Directed Fluid Management Improves Outcomes in Critically Ill Children and Young Adults. Kidney Int. Rep. 2023, 8, 2690–2700. [Google Scholar] [CrossRef]
- Xu, X.; Nie, S.; Xu, H.; Liu, B.; Weng, J.; Chen, C.; Liu, H.; Yang, Q.; Li, H.; Kong, Y.; et al. Detecting Neonatal AKI by Serum Cystatin C. J. Am. Soc. Nephrol. 2023, 34, 1253–1263. [Google Scholar] [CrossRef]
- Smeets, N.J.L.; Bokenkamp, A.; Grubb, A.; de Wildt, S.N.; Schreuder, M.F. Cystatin C as a Marker for Glomerular Filtration Rate in Critically Ill Neonates and Children: Validation Against Iohexol Plasma Clearance. Kidney Int. Rep. 2023, 8, 1672–1675. [Google Scholar] [CrossRef]
- Harer, M.W.; Adegboro, C.O.; Richard, L.J.; McAdams, R.M. Non-invasive continuous renal tissue oxygenation monitoring to identify preterm neonates at risk for acute kidney injury. Pediatr. Nephrol. 2021, 36, 1617–1625. [Google Scholar] [CrossRef]
- Gingrich, A.R.; Hagenow, A.M.; Steinbach, E.J.; Klein, J.M.; Jetton, J.G.; Misurac, J.M. Acute kidney injury surveillance in the high-risk neonatal population following implementation of creatinine screening protocol. Acta Paediatr. 2024, 113, 692–699. [Google Scholar] [CrossRef]
- Starr, M.C.; Kula, A.; Lieberman, J.; Menon, S.; Perkins, A.J.; Lam, T.; Chabra, S.; Hingorani, S. The impact of increased awareness of acute kidney injury in the Neonatal Intensive Care Unit on acute kidney injury incidence and reporting: Results of a retrospective cohort study. J. Perinatol. 2020, 40, 1301–1307. [Google Scholar] [CrossRef]
- Rutledge, A.D.; Griffin, R.L.; Vincent, K.; Askenazi, D.J.; Segar, J.L.; Kupferman, J.C.; Rastogi, S.; Selewski, D.T.; Steflik, H.J.; Neonatal Kidney, C. Incidence, Risk Factors, and Outcomes Associated with Recurrent Neonatal Acute Kidney Injury in the AWAKEN Study. JAMA Netw. Open 2024, 7, e2355307. [Google Scholar] [CrossRef] [PubMed]
- Lazarovits, G.; Ofek Shlomai, N.; Kheir, R.; Bdolah Abram, T.; Eventov Friedman, S.; Volovelsky, O. Acute Kidney Injury in Very Low Birth Weight Infants: A Major Morbidity and Mortality Risk Factor. Children 2023, 10, 242. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Wang, H.; Pei, J.; Jiang, X.; Tang, J. Acute kidney injury in premature and low birth weight neonates: A systematic review and meta-analysis. Pediatr. Nephrol. 2022, 37, 275–287. [Google Scholar] [CrossRef] [PubMed]
- Goldstein, S.L.; Dahale, D.; Kirkendall, E.S.; Mottes, T.; Kaplan, H.; Muething, S.; Askenazi, D.J.; Henderson, T.; Dill, L.; Somers, M.J.G.; et al. A prospective multi-center quality improvement initiative (NINJA) indicates a reduction in nephrotoxic acute kidney injury in hospitalized children. Kidney Int. 2020, 97, 580–588. [Google Scholar] [CrossRef]
- Burgmaier, K.; Zeiher, M.; Weber, A.; Cosgun, Z.C.; Aydin, A.; Kuehne, B.; Burgmaier, M.; Hellmich, M.; Mehler, K.; Kribs, A.; et al. Low incidence of acute kidney injury in VLBW infants with restrictive use of mechanical ventilation. Pediatr. Nephrol. 2024, 39, 1279–1288. [Google Scholar] [CrossRef]
- Agren, J.; Segar, J.L.; Soderstrom, F.; Bell, E.F. Fluid management considerations in extremely preterm infants born at 22-24 weeks of gestation. Semin. Perinatol. 2022, 46, 151541. [Google Scholar] [CrossRef]
- Segar, J.L.; Jetton, J.G. Fluid and electrolyte management in the neonate and what can go wrong. Curr. Opin. Pediatr. 2024, 36, 198–203. [Google Scholar] [CrossRef]
- Guillet, R.; Selewski, D.T.; Griffin, R.; Rastogi, S.; Askenazi, D.J.; D’Angio, C.T.; Neonatal Kidney, C. Relationship of patent ductus arteriosus management with neonatal AKI. J. Perinatol. 2021, 41, 1441–1447. [Google Scholar] [CrossRef] [PubMed]
- Majed, B.; Bateman, D.A.; Uy, N.; Lin, F. Patent ductus arteriosus is associated with acute kidney injury in the preterm infant. Pediatr. Nephrol. 2019, 34, 1129–1139. [Google Scholar] [CrossRef] [PubMed]
- Aithal, N.; Kandasamy, Y. The Babyccino: The Role of Caffeine in the Prevention of Acute Kidney Injury in Neonates-A Literature Review. Healthcare 2024, 12, 529. [Google Scholar] [CrossRef]
- Harer, M.W.; Askenazi, D.J.; Boohaker, L.J.; Carmody, J.B.; Griffin, R.L.; Guillet, R.; Selewski, D.T.; Swanson, J.R.; Charlton, J.R. Association Between Early Caffeine Citrate Administration and Risk of Acute Kidney Injury in Preterm Neonates: Results From the AWAKEN Study. JAMA Pediatr. 2018, 172, e180322. [Google Scholar] [CrossRef]
- Bhatt, G.C.; Gogia, P.; Bitzan, M.; Das, R.R. Theophylline and aminophylline for prevention of acute kidney injury in neonates and children: A systematic review. Arch. Dis. Child. 2019, 104, 670–679. [Google Scholar] [CrossRef]
- Chock, V.Y.; Cho, S.H.; Frymoyer, A. Aminophylline for renal protection in neonatal hypoxic-ischemic encephalopathy in the era of therapeutic hypothermia. Pediatr. Res. 2021, 89, 974–980. [Google Scholar] [CrossRef]
- Raina, R.; Shah, R.; Nemer, P.; Fehlmen, J.; Nemer, L.; Murra, A.; Tibrewal, A.; Sethi, S.K.; Neyra, J.A.; Koyner, J. Using artificial intelligence to predict mortality in AKI patients: A systematic review/meta-analysis. Clin. Kidney J. 2024, 17, sfae150. [Google Scholar] [CrossRef]
- Bram, D.S.; Koch, G.; Allegaert, K.; van den Anker, J.; Pfister, M. Applying Neural ODEs to Derive a Mechanism-Based Model for Characterizing Maturation-Related Serum Creatinine Dynamics in Preterm Newborns. J. Clin. Pharmacol. 2024, 64, 1141–1149. [Google Scholar] [CrossRef] [PubMed]
- Branagan, A.; Costigan, C.S.; Stack, M.; Slagle, C.; Molloy, E.J. Management of Acute Kidney Injury in Extremely Low Birth Weight Infants. Front. Pediatr. 2022, 10, 867715. [Google Scholar] [CrossRef]
- Coulthard, M.G. The management of neonatal acute and chronic renal failure: A review. Early Hum. Dev. 2016, 102, 25–29. [Google Scholar] [CrossRef]
- Ehrenkranz, R.A.; Dusick, A.M.; Vohr, B.R.; Wright, L.L.; Wrage, L.A.; Poole, W.K. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics 2006, 117, 1253–1261. [Google Scholar] [CrossRef] [PubMed]
- Onesimo, R.; Fioretti, M.; Pili, S.; Monaco, S.; Romagnoli, C.; Fundaro, C. Is heel prick as safe as we think? BMJ Case Rep. 2011, 2011, bcr0820114677. [Google Scholar] [CrossRef] [PubMed]
- Prideaux, M.A.; Guillet, R. The Use of Low-Dose Dopamine in the Neonatal Intensive Care Unit. Neoreviews 2024, 25, e207–e215. [Google Scholar] [CrossRef] [PubMed]
- Mullaly, R.; El-Khuffash, A.F. Haemodynamic assessment and management of hypotension in the preterm. Arch. Dis. Child. Fetal Neonatal Ed. 2024, 109, 120–127. [Google Scholar] [CrossRef]
- Ndoudi Likoho, B.; Berthaud, R.; Dossier, C.; Delbet, J.D.; Boyer, O.; Baudouin, V.; Alison, M.; Biran, V.; Hurtaud, M.F.; Hogan, J.; et al. Renal vein thrombosis in neonates: A case series of diagnosis, treatment and childhood kidney function follow-up. Pediatr. Nephrol. 2023, 38, 3055–3063. [Google Scholar] [CrossRef]
- Chant, K.; Bitner-Glindzicz, M.; Marlow, N. Cumulative risk factors contributing to hearing loss in preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2023, 108, 464–470. [Google Scholar] [CrossRef]
- Weaver, L.J.; Travers, C.P.; Ambalavanan, N.; Askenazi, D. Neonatal fluid overload-ignorance is no longer bliss. Pediatr. Nephrol. 2023, 38, 47–60. [Google Scholar] [CrossRef]
- Dräger. Heat Balance. 2010. Available online: www.draeger.com (accessed on 2 March 2025).
- Hammarlund, K.; Sedin, G.; Stromberg, B. Transepidermal water loss in newborn infants. VIII. Relation to gestational age and post-natal age in appropriate and small for gestational age infants. Acta Paediatr. Scand. 1983, 72, 721–728. [Google Scholar] [CrossRef]
- Bonilla-Felix, M. Potassium regulation in the neonate. Pediatr. Nephrol. 2017, 32, 2037–2049. [Google Scholar] [CrossRef]
- Gates, A.; Marin, T.; Leo, G.; Stansfield, B.K. Review of Preterm Human-Milk Nutrient Composition. Nutr. Clin. Pract. 2021, 36, 1163–1172. [Google Scholar] [CrossRef]
- Slagle, C.; Askenazi, D.; Starr, M. Recent Advances in Kidney Replacement Therapy in Infants: A Review. Am. J. Kidney Dis. 2024, 83, 519–530. [Google Scholar] [CrossRef]
- Fryer, H.J.; Welsh, G.I. Renal Consequences of Therapeutic Interventions in Premature Neonates. Nephron 2019, 142, 117–124. [Google Scholar] [CrossRef]
- Girardi, A.; Raschi, E.; Galletti, S.; Poluzzi, E.; Faldella, G.; Allegaert, K.; De Ponti, F. Drug-induced renal damage in preterm neonates: State of the art and methods for early detection. Drug Saf. 2015, 38, 535–551. [Google Scholar] [CrossRef] [PubMed]
- Al-Khouja, A.; Park, K.; Anderson, D.J.C.; Young, C.; Wang, J.; Huang, S.M.; Khurana, M.; Burckart, G.J. Dosing Recommendations for Pediatric Patients with Renal Impairment. J. Clin. Pharmacol. 2020, 60, 1551–1560. [Google Scholar] [CrossRef] [PubMed]
- Daschner, M. Drug dosage in children with reduced renal function. Pediatr. Nephrol. 2005, 20, 1675–1686. [Google Scholar] [CrossRef] [PubMed]
- Pauwels, S.; Allegaert, K. Therapeutic drug monitoring in neonates. Arch. Dis. Child. 2016, 101, 377–381. [Google Scholar] [CrossRef]
- Schreuder, M.F.; Bueters, R.R.; Allegaert, K. The interplay between drugs and the kidney in premature neonates. Pediatr. Nephrol. 2014, 29, 2083–2091. [Google Scholar] [CrossRef]
- Euteneuer, J.C.; Kamatkar, S.; Fukuda, T.; Vinks, A.A.; Akinbi, H.T. Suggestions for Model-Informed Precision Dosing to Optimize Neonatal Drug Therapy. J. Clin. Pharmacol. 2019, 59, 168–176. [Google Scholar] [CrossRef]
- Tang, B.H.; Guan, Z.; Allegaert, K.; Wu, Y.E.; Manolis, E.; Leroux, S.; Yao, B.F.; Shi, H.Y.; Li, X.; Huang, X.; et al. Drug Clearance in Neonates: A Combination of Population Pharmacokinetic Modelling and Machine Learning Approaches to Improve Individual Prediction. Clin. Pharmacokinet. 2021, 60, 1435–1448. [Google Scholar] [CrossRef]
- The Australasian Neonatal Medicines Formulary. Available online: https://www.anmfonline.org/ (accessed on 1 February 2025).
- Bolisetty, S.; Osborn, D.; Gwee, A.; Lai, T.; McMullan, B.; Kesson, A.; Varadhan, H.; Jozsa, E.; Gengaroli, R.; Tran, T.; et al. Vancomycin Continuous. Consensus Formulary by the Australasian Neonatal Medicines Formulary Group. Version 3. Available online: https://www.anmfonline.org/wp-content/uploads/2024/10/Vancomycin_Continuous_ANMFv3.0_20230406.pdf (accessed on 15 October 2024).
- Heo, J.S.; Lee, J.M. The Long-Term Effect of Preterm Birth on Renal Function: A Meta-Analysis. Int. J. Environ. Res. Public Health 2021, 18, 2951. [Google Scholar] [CrossRef]
- Crump, C.; Sundquist, J.; Winkleby, M.A.; Sundquist, K. Preterm birth and risk of chronic kidney disease from childhood into mid-adulthood: National cohort study. BMJ 2019, 365, l1346. [Google Scholar] [CrossRef] [PubMed]
- Akkoc, G.; Duzova, A.; Korkmaz, A.; Oguz, B.; Yigit, S.; Yurdakok, M. Long-term follow-up of patients after acute kidney injury in the neonatal period: Abnormal ambulatory blood pressure findings. BMC Nephrol. 2022, 23, 116. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Ng, K.H.; Mammen, C. The path to chronic kidney disease following acute kidney injury: A neonatal perspective. Pediatr. Nephrol. 2017, 32, 227–241. [Google Scholar] [CrossRef]
- Harer, M.W.; Pope, C.F.; Conaway, M.R.; Charlton, J.R. Follow-up of Acute kidney injury in Neonates during Childhood Years (FANCY): A prospective cohort study. Pediatr. Nephrol. 2017, 32, 1067–1076. [Google Scholar] [CrossRef] [PubMed]
- Carmody, J.B.; Swanson, J.R.; Rhone, E.T.; Charlton, J.R. Recognition and reporting of AKI in very low birth weight infants. Clin. J. Am. Soc. Nephrol. 2014, 9, 2036–2043. [Google Scholar] [CrossRef]
- Nada, A.; Bagwell, A. Utilizing electronic medical records alert to improve documentation of neonatal acute kidney injury. Pediatr. Nephrol. 2024, 39, 2505–2514. [Google Scholar] [CrossRef] [PubMed]
- Chmielewski, J.; Chaudhry, P.M.; Harer, M.W.; Menon, S.; South, A.M.; Chappell, A.; Griffin, R.; Askenazi, D.; Jetton, J.; Starr, M.C. Documentation of acute kidney injury at discharge from the neonatal intensive care unit and role of nephrology consultation. J. Perinatol. 2022, 42, 930–936. [Google Scholar] [CrossRef]
- Luyckx, V.A.; Perico, N.; Somaschini, M.; Manfellotto, D.; Valensise, H.; Cetin, I.; Simeoni, U.; Allegaert, K.; Vikse, B.E.; Steegers, E.A.; et al. A developmental approach to the prevention of hypertension and kidney disease: A report from the Low Birth Weight and Nephron Number Working Group. Lancet 2017, 390, 424–428. [Google Scholar] [CrossRef]
- Preterm Follow-up Guideline Development Group. Guideline for Growth, Health and Developmental Follow-Up for Children Born Very Preterm; Centre of Research Excellence in Newborn Medicine: Melbourne, Australia, 2024. [Google Scholar]
- Starr, M.C.; Harer, M.W.; Steflik, H.J.; Gorga, S.; Ambalavanan, N.; Beck, T.M.; Chaudhry, P.M.; Chmielewski, J.L.; Defreitas, M.J.; Fuhrman, D.Y.; et al. Kidney Health Monitoring in Neonatal Intensive Care Unit Graduates: A Modified Delphi Consensus Statement. JAMA Netw. Open 2024, 7, e2435043. [Google Scholar] [CrossRef]
- Neonatal Kidney Collaborative. Available online: www.babykidney.org (accessed on 11 February 2025).
- Reidy, K.J.; Guillet, R.; Selewski, D.T.; Defreitas, M.; Stone, S.; Starr, M.C.; Harer, M.W.; Todurkar, N.; Vuong, K.T.; Gogcu, S.; et al. Advocating for the inclusion of kidney health outcomes in neonatal research: Best practice recommendations by the Neonatal Kidney Collaborative. J. Perinatol. 2024, 44, 1863–1873. [Google Scholar] [CrossRef]
AKI Stage | Serum Creatinine (μmol/L) | Urine Output |
---|---|---|
0 | No change in serum creatinine or rise < 26.5 μmol/L (<0.3 mg/dL) 1 | >1 mL/kg/h |
1 | SCr rise ≥ 26.5 μmol/L (>0.3 mg/dL) within 48 h or SCr rise ≥ 1.5–1.9× previous SCr value within 7 days 1 | >0.5 and ≤1 mL/kg/h |
2 | SCr rise ≥ 2 to 2.9× previous SCr 1 | >0.3 and ≤0.5 mL/kg/h |
3 | SCr rise ≥ 3× previous SCr or renal replacement therapy 1 | ≤0.3 mL/kg/h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staub, E.; Bolisetty, S.; Allegaert, K.; Raaijmakers, A. Neonatal Kidney Function, Injury and Drug Dosing: A Contemporary Review. Children 2025, 12, 339. https://doi.org/10.3390/children12030339
Staub E, Bolisetty S, Allegaert K, Raaijmakers A. Neonatal Kidney Function, Injury and Drug Dosing: A Contemporary Review. Children. 2025; 12(3):339. https://doi.org/10.3390/children12030339
Chicago/Turabian StyleStaub, Eveline, Srinivas Bolisetty, Karel Allegaert, and Anke Raaijmakers. 2025. "Neonatal Kidney Function, Injury and Drug Dosing: A Contemporary Review" Children 12, no. 3: 339. https://doi.org/10.3390/children12030339
APA StyleStaub, E., Bolisetty, S., Allegaert, K., & Raaijmakers, A. (2025). Neonatal Kidney Function, Injury and Drug Dosing: A Contemporary Review. Children, 12(3), 339. https://doi.org/10.3390/children12030339