Mini-Trampoline Training Enhances Executive Functions and Motor Skills in Preschoolers
Abstract
Highlights
- •
- Mini-trampoline training over 12 weeks improved motor abilities such as functional mobility, postural steadiness, and lower body strength in preschool children.
- •
- The intervention also enhanced executive functions, particularly inhibitory control, supporting early cognitive development.
- •
- This study provides new evidence from Tunisian preschoolers, highlighting the role of playful physical activity in fostering healthy growth.
- •
- Findings suggest that mini-trampoline programs can be a safe, engaging, and effective approach for promoting both motor and cognitive skills in early childhood.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Ethical Approval
2.4. Training Program: General Warm-Up and Mini-Trampoline Program
2.5. Testing Procedures
- •
- Day one
- ✓
- Anthropometric measurements (height, body mass)
- ✓
- Go/No-Go (Executive function test)
- ✓
- One-leg balance
- ✓
- Handgrip dynamometer (Upper body strength)
- •
- Day two
- ✓
- Mr Ant (Executive function test, working memory)
- ✓
- Standing long jump (Lower body strength and mobility)
- ✓
- Su-pine-Timed Up and Go (Mobility and posture)
- ✓
- 9-Hole Pegboard Test (Fine motor skills)
2.5.1. Anthropometry
2.5.2. Executive Function
2.5.3. Lower Body Strength (LBS) and Mobility: Standing Long Jump
2.5.4. Mobility and Posture: Supine-Timed up and Go
2.5.5. One-Leg Standing Balance Test
2.5.6. Upper Body Strength (UBS): Hand Grip Dynamometer
2.5.7. Manipulation: 9-Hole Peg-Board Test
2.6. Questionnaire
Center Information Questionnaire
2.7. Exercise Intervention
2.8. Statistical Analysis
3. Results
4. Discussion
4.1. Effects of the 12-Week Mini-Trampoline Intervention on EFs
4.2. Effects of the 12-Week Mini-Trampoline Intervention on Gross and Fine Motor Skills
4.3. Study Limitations
4.4. Practical Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| EF | Executive Function |
| FM | Functional Mobility |
| LBS | Lower Body Strength |
| PA | Physical Activity |
| PAP | Physical Activity Program |
| PS | Postural Steadiness |
| UBS | Upper Body Strength |
| WM | Working Memory |
| WHO | World Health Organization |
References
- Bull, F.C.; Al-Ansari, S.S.; Biddle, S.; Borodulin, K.; Buman, M.P.; Cardon, G.; Carty, C.; Chaput, J.P.; Chastin, S.; Chou, R.; et al. World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br. J. Sports Med. 2020, 54, 1451–1462. [Google Scholar] [CrossRef] [PubMed]
- Vale, S.; Trost, S.G.; Rêgo, C.; Abreu, S.; Mota, J. Physical Activity, Obesity Status, and Blood Pressure in Preschool Children. J. Pediatr. 2015, 167, 98–102. [Google Scholar] [CrossRef]
- Ltifi, M.A.; Turki, O.; Ben-Bouzaiene, G.; Chong, K.H.; Okely, A.D.; Chelly, M.S. Exploring urban-rural differences in 24-h movement behaviours among tunisian preschoolers: Insights from the SUNRISE study. Sports Med. Health Sci. 2025, 7, 48–55. [Google Scholar] [CrossRef]
- Ltifi, M.A.; Chong, K.H.; Ben-Bouzaiene, G.; Okely, A.D.; Chelly, M.S. Observed relationships between nap practices, executive function, and developmental outcomes in Tunisian childcare centers. Sports Med. Health Sci. 2024, 7, 272–279. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Boukthir, S.; Essaddam, L.; Mazigh Mrad, S.; Ben Hassine, L.; Gannouni, S.; Nessib, F.; Bouaziz, A.; Brini, I.; Sammoud, A.; Bouyahia, O.; et al. Prevalence and risk factors of overweight and obesity in elementary schoolchildren in the metropolitan region of Tunis, Tunisia. Tunis. Med. 2011, 89, 50–54. [Google Scholar] [PubMed]
- Guidelines, W. WHO Guidelines Approved by the Guidelines Review Committee. In Guidelines on Physical Activity, Sedentary Behaviour and Sleep for Children Under 5 Years of Age; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- Ltifi, M.A.; Turki, O.; Ben-Bouzaiene, G.; Pagaduan, J.C.; Okely, A.; Chelly, M.S. Exploring 24-Hour Movement Behaviors in Early Years: Findings From the SUNRISE Pilot Study in Tunisia. Pediatr. Exerc. Sci. 2024, 37, 94–101. [Google Scholar] [CrossRef]
- Donnelly, J.E.; Lambourne, K. Classroom-based physical activity, cognition, and academic achievement. Prev. Med. 2011, 52 (Suppl. S1), S36–S42. [Google Scholar] [CrossRef]
- Solis-Urra, P.; Sanchez-Martinez, J.; Olivares-Arancibia, J.; Castro Piñero, J.; Sadarangani, K.P.; Ferrari, G.; Rodríguez-Rodríguez, F.; Gaya, A.; Fochesatto, C.F.; Cristi-Montero, C. Physical fitness and its association with cognitive performance in Chilean schoolchildren: The Cogni-Action Project. Scand. J. Med. Sci. Sports 2021, 31, 1352–1362. [Google Scholar] [CrossRef]
- Wen, X.; Zhang, Y.; Gao, Z.; Zhao, W.; Jie, J.; Bao, L. Effect of Mini-Trampoline Physical Activity on Executive Functions in Preschool Children. Biomed. Res. Int. 2018, 2018, 2712803. [Google Scholar] [CrossRef] [PubMed]
- Willoughby, M.T.; Pek, J.; Blair, C.B. Measuring executive function in early childhood: A focus on maximal reliability and the derivation of short forms. Psychol. Assess. 2013, 25, 664–670. [Google Scholar] [CrossRef] [PubMed]
- Fedewa, A.L.; Ahn, S. The effects of physical activity and physical fitness on children’s achievement and cognitive outcomes: A meta-analysis. Res. Q. Exerc. Sport 2011, 82, 521–535. [Google Scholar] [CrossRef] [PubMed]
- Tomporowski, P.D.; Davis, C.L.; Miller, P.H.; Naglieri, J.A. Exercise and Children’s Intelligence, Cognition, and Academic Achievement. Educ. Psychol. Rev. 2008, 20, 111–131. [Google Scholar] [CrossRef] [PubMed]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [PubMed]
- Lan, X.; Legare, C.H.; Ponitz, C.C.; Li, S.; Morrison, F.J. Investigating the links between the subcomponents of executive function and academic achievement: A cross-cultural analysis of Chinese and American preschoolers. J. Exp. Child Psychol. 2011, 108, 677–692. [Google Scholar] [CrossRef] [PubMed]
- Moriguchi, Y. The early development of executive function and its relation to social interaction: A brief review. Front. Psychol. 2014, 5, 388. [Google Scholar] [CrossRef] [PubMed]
- Abdelkarim, O.; Aly, M.; ElGyar, N.; Shalaby, A.M.; Kamijo, K.; Woll, A.; Bös, K. Association between aerobic fitness and attentional functions in Egyptian preadolescent children. Front. Psychol. 2023, 14, 1172423. [Google Scholar] [CrossRef]
- Bao, R.; Leahy, A.A.; Lubans, D.R.; Diallo, T.M.O.; Beauchamp, M.R.; Smith, J.J.; Hillman, C.H.; Wade, L. Mediators of the association between physical activity and executive functions in primary school children. J. Sports Sci. 2024, 42, 2029–2038. [Google Scholar] [CrossRef]
- Latomme, J.; Calders, P.; Van Waelvelde, H.; Mariën, T.; De Craemer, M. The Role of Brain-Derived Neurotrophic Factor (BDNF) in the Relation between Physical Activity and Executive Functioning in Children. Children 2022, 9, 596. [Google Scholar] [CrossRef]
- Best, J.R. Effects of Physical Activity on Children’s Executive Function: Contributions of Experimental Research on Aerobic Exercise. Dev. Rev. 2010, 30, 331–551. [Google Scholar] [CrossRef]
- Mavilidi, M.; Okely, A.D.; Chandler, P.; Cliff, D.P.; Paas, F. Effects of Integrated Physical Exercises and Gestures on Preschool Children’s Foreign Language Vocabulary Learning. Educ. Psychol. Rev. 2015, 27, 413–426. [Google Scholar] [CrossRef]
- Aragão, F.A.; Karamanidis, K.; Vaz, M.A.; Arampatzis, A. Mini-trampoline exercise related to mechanisms of dynamic stability improves the ability to regain balance in elderly. J. Electromyogr. Kinesiol. 2011, 21, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Giagazoglou, P.; Kokaridas, D.; Sidiropoulou, M.; Patsiaouras, A.; Karra, C.; Neofotistou, K. Effects of a trampoline exercise intervention on motor performance and balance ability of children with intellectual disabilities. Res. Dev. Disabil. 2013, 34, 2701–2707. [Google Scholar] [CrossRef]
- Okemuo, A.J.; Gallagher, D.; Dairo, Y.M. Effects of rebound exercises on balance and mobility of people with neurological disorders: A systematic review. PLoS ONE 2023, 18, e0292312. [Google Scholar] [CrossRef]
- Diamond, A. Executive Functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed]
- Diamond, A.; Ling, D.S. Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Dev. Cogn. Neurosci. 2016, 18, 34–48. [Google Scholar] [CrossRef] [PubMed]
- Muehlbauer, T.; Besemer, C.; Wehrle, A.; Gollhofer, A.; Granacher, U. Relationship between strength, balance and mobility in children aged 7-10 years. Gait Posture 2013, 37, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Taube, W.; Gruber, M.; Gollhofer, A. Spinal and supraspinal adaptations associated with balance training and their functional relevance. Acta Physiol. 2008, 193, 101–116. [Google Scholar] [CrossRef] [PubMed]
- Jones, R.A.; Riethmuller, A.; Hesketh, K.; Trezise, J.; Batterham, M.; Okely, A.D. Promoting fundamental movement skill development and physical activity in early childhood settings: A cluster randomized controlled trial. Pediatr. Exerc. Sci. 2011, 23, 600–615. [Google Scholar] [CrossRef]
- Zeng, N.; Ayyub, M.; Sun, H.; Wen, X.; Xiang, P.; Gao, Z. Effects of Physical Activity on Motor Skills and Cognitive Development in Early Childhood: A Systematic Review. Biomed. Res. Int. 2017, 2017, 2760716. [Google Scholar] [CrossRef]
- Norgan, N.G. A Review of: “Anthropometric Standardization Reference Manual.” Edited by T. G. Lohman, A. F. Roche, and R. Martorell. (Champaign, IL: Human Kinetics Books, 1988.) [Pp. vi+177.] £28.00. ISBN 0873221214. Ergonomics 1988, 31, 1493–1494. [Google Scholar] [CrossRef]
- Van den Broeck, J.; Willie, D.; Younger, N. The World Health Organization child growth standards: Expected implications for clinical and epidemiological research. Eur. J. Pediatr. 2009, 168, 247–251. [Google Scholar] [CrossRef]
- Howard, S.J.; Melhuish, E. An Early Years Toolbox for Assessing Early Executive Function, Language, Self-Regulation, and Social Development: Validity, Reliability, and Preliminary Norms. J. Psychoeduc. Assess. 2017, 35, 255–275. [Google Scholar] [CrossRef]
- Okely, T.; Reilly, J.J.; Tremblay, M.S.; Kariippanon, K.E.; Draper, C.E.; El Hamdouchi, A.; Florindo, A.A.; Green, J.P.; Guan, H.; Katzmarzyk, P.T.; et al. Cross-sectional examination of 24-hour movement behaviours among 3- and 4-year-old children in urban and rural settings in low-income, middle-income and high-income countries: The SUNRISE study protocol. BMJ Open 2021, 11, e049267. [Google Scholar] [CrossRef]
- Riley, L.; Guthold, R.; Cowan, M.; Savin, S.; Bhatti, L.; Armstrong, T.; Bonita, R. The World Health Organization STEPwise Approach to Noncommunicable Disease Risk-Factor Surveillance: Methods, Challenges, and Opportunities. Am. J. Public Health 2016, 106, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Rivara, F.P. Pediatric injury control in 1999: Where do we go from here? Pediatrics 1999, 103, 883–888. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. The Effect Size. In Statistical Power Analysis for the Behavioral Sciences; Routledge: Abingdon, UK, 1988; pp. 77–83. [Google Scholar]
- Cox, E.P.; O’Dwyer, N.; Cook, R.; Vetter, M.; Cheng, H.L.; Rooney, K.; O’Connor, H. Relationship between physical activity and cognitive function in apparently healthy young to middle-aged adults: A systematic review. J. Sci. Med. Sport 2016, 19, 616–628. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, J.E.; Hillman, C.H.; Castelli, D.; Etnier, J.L.; Lee, S.; Tomporowski, P.; Lambourne, K.; Szabo-Reed, A.N. Physical Activity, Fitness, Cognitive Function, and Academic Achievement in Children: A Systematic Review. Med. Sci. Sports Exerc. 2016, 48, 1197–1222. [Google Scholar] [CrossRef] [PubMed]
- Arabatzi, F. Adaptations in movement performance after plyometric training on mini-trampoline in children. J. Sports Med. Phys. Fit. 2018, 58, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Giagazoglou, P.; Sidiropoulou, M.; Mitsiou, M.; Arabatzi, F.; Kellis, E. Can balance trampoline training promote motor coordination and balance performance in children with developmental coordination disorder? Res. Dev. Disabil. 2015, 36, 13–19. [Google Scholar] [CrossRef]
- Ali, A.; Pigou, D.; Clarke, L.; McLachlan, C. Literature Review on Motor Skill and Physical Activity in Preschool Children in New Zealand. Advances in Physical Education. Adv. Phys. Educ. 2017, 7, 10–26. [Google Scholar] [CrossRef]
- Chang, Y.K.; Tsai, Y.J.; Chen, T.T.; Hung, T.M. The impacts of coordinative exercise on executive function in kindergarten children: An ERP study. Exp. Brain Res. 2013, 225, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Committee on Injury and Poison Prevention and Committee on Sports Medicine and Fitness. Trampolines at Home, School, and Recreational Centers. Pediatrics 1999, 103, 1053–1056. [Google Scholar] [CrossRef]
- Willoughby, M.T.; Blair, C.B.; Wirth, R.J.; Greenberg, M. The measurement of executive function at age 3 years: Psychometric properties and criterion validity of a new battery of tasks. Psychol. Assess. 2010, 22, 306–317. [Google Scholar] [CrossRef]
- Berry, D.; Blair, C.; Ursache, A.; Willoughby, M.T.; Granger, D.A. Early childcare, executive functioning, and the moderating role of early stress physiology. Dev. Psychol. 2014, 50, 1250–1261. [Google Scholar] [CrossRef]
- Willoughby, M.T.; Kupersmidt, J.B.; Voegler-Lee, M.E. Is preschool executive function causally related to academic achievement? Child Neuropsychol. 2012, 18, 79–91. [Google Scholar] [CrossRef]
- Xing, X.; Wang, M.; Wang, Z. Parental corporal punishment in relation to children’s executive function and externalizing behavior problems in China. Soc. Neurosci. 2018, 13, 184–189. [Google Scholar] [CrossRef]
- Zhang, M.Q.; Liu, Z.; Ma, H.T.; Zhang, D. The effects of physical activity on executive function in children with attention-deficit/hyperactivity disorder: A systematic review and meta-analysis protocol. Medicine 2019, 98, e15097. [Google Scholar] [CrossRef] [PubMed]
- Hillman, C.H.; Pontifex, M.B.; Castelli, D.M.; Khan, N.A.; Raine, L.B.; Scudder, M.R.; Drollette, E.S.; Moore, R.D.; Wu, C.T.; Kamijo, K. Effects of the FITKids randomized controlled trial on executive control and brain function. Pediatrics 2014, 134, e1063–e1071. [Google Scholar] [CrossRef]
- Di Stefano, L.J.; Padua, D.A.; Blackburn, J.T.; Garrett, W.E.; Guskiewicz, K.M.; Marshall, S.W. Integrated injury prevention program improves balance and vertical jump height in children. J. Strength Cond. Res. 2010, 24, 332–342. [Google Scholar] [CrossRef] [PubMed]
- Mandelbaum, B.R.; Silvers, H.J.; Watanabe, D.S.; Knarr, J.F.; Thomas, S.D.; Griffin, L.Y.; Kirkendall, D.T.; Garrett, W., Jr. Effectiveness of a neuromuscular and proprioceptive training program in preventing anterior cruciate ligament injuries in female athletes: 2-year follow-up. Am. J. Sports Med. 2005, 33, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Falk, B.; Dotan, R. Child-adult differences in the recovery from high-intensity exercise. Exerc. Sport Sci. Rev. 2006, 34, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Wulf, G.; Lewthwaite, R. Optimizing performance through intrinsic motivation and attention for learning: The OPTIMAL theory of motor learning. Psychon. Bull. Rev. 2016, 23, 1382–1414. [Google Scholar] [CrossRef] [PubMed]
- Lephart, S.M.; Pincivero, D.M.; Giraldo, J.L.; Fu, F.H. The role of proprioception in the management and rehabilitation of athletic injuries. Am. J. Sports Med. 1997, 25, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Thelen, E.; Smith, L.B. A dynamic systems approach to the development of cognition and action. J. Cogn. Neurosci. 1995, 7, 512–514. [Google Scholar] [CrossRef] [PubMed]
- Klocek, A.; Premus, J.; Řiháček, T. Applying dynamic systems theory and complexity theory methods in psychotherapy research: A systematic literature review. Psychother. Res. 2024, 34, 828–844. [Google Scholar] [CrossRef] [PubMed]

| Variables | Experimental Group (n = 27) | Control Group (n = 27) | p Value | Overall (n = 54) |
|---|---|---|---|---|
| Age (years) | 3.76 ± 0.47 | 3.99 ± 0.45 | 0.119 | 3.87 ± 0.47 |
| Body mass (kg) | 17.13 ± 2.21 | 15.44 ± 1.61 | 0.001 | 16.28 ± 2.10 |
| Height (cm) | 105.23 ± 6.13 | 106.72 ± 6.03 | 0.446 | 105.98 ± 6.07 |
| Number of girls (n, %) | 13 (48.15) | 15 (55.56) | 28 (51.86) | |
| Body mass index (kg/m2) | 15.59 ± 2.47 | 13.72 ± 2.38 | 0.008 | 14.66 ± 2.58 |
| Session Component | Objective | Mini-Trampoline Exercises | Details |
|---|---|---|---|
| Total session | Prepare and optimize overall physical readiness | Duration: 20–30 min Frequency: 3 sessions per week for 12 weeks | |
| Warm-up: 10 min | Prepare the body for exercise, activate muscles, and reduce injury risks | 1. Basic jumps on the mini-trampoline: • Position: Feet parallel, shoulder-width apart (30 s × 5 repetitions, 15 s rest) 2. Dynamic stretches on the mini-trampoline: • Arms: Circular movements • Legs: Knee raises and heel kicks (10 repetitions each) | Activates major muscle groups and improves joint mobility, ensuring safe participation in the main session |
| Main session: 10–15 min | Develop motor coordination and neuromuscular efficiency using the mini-trampoline | Exercise 1: Basic jumps • 2 min × 2 sets on the mini-trampoline • Rest: 1 min Exercise 2: Knee raises with jumping • 1 min × 3 sets on the mini-trampoline •Rest: 30 s Exercise 3: Lateral jumps • 1 min × 2 sets on the mini-trampoline • Rest: 1 min Exercise 4: Arm-leg coordination jumps • 1–2 min on the mini-trampoline • Rest: 30 s | All activities focus on the mini-trampoline to enhance coordination, stability, endurance, and proprioception |
| Cool-down: 5 min | Gradually lower heart rate and relax muscles after mini-trampoline activities | 1. Light jumps on the mini-trampoline: 2 min 2. Static stretches off the mini-trampoline: • Quadriceps: Hold 10–15 s per side • Hamstrings, back, and arms | Facilitates muscle recovery, reduces post-exercise soreness, and improves long-term flexibility |
| Variables | Experimental Group (n = 27) | Control Group (n = 27) | ANOVA | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Pre | Post | Δ (%) | p | d (Cohen) | Pre | Post | Δ (%) | p | d (Cohen) | p | d (Cohen) | |
| FM (s) | 5.35 ± 1.07 | 5.19 ± 1.07 | −3.07 ± 0.96 | <0.001 | 0.10 | 5.26 ± 1.26 | 5.26 ± 1.01 | 0.18 ± 1.12 | 0.799 | 0.696 | 0 | |
| PS (s) | 12.93 ± 8.72 | 19.69 ± 13.32 | 53.22 ± 9.39 | <0.001 | −0.61 | 12.63 ± 6.72 | 12.63 ± 6.85 | −0.01 ± 4.69 | 1.000 | 0.062 | 0.369 | |
| LBS (cm) | 50.89 ± 21.63 | 58.41 ± 24.09 | 15.31 ± 2.86 | <0.001 | −0.48 | 48.70 ± 18.41 | 49.00 ± 18.38 | 0.40 ± 3.96 | 0.036 | −0.01 | 0.368 | 0 |
| UBS (kg) | 7.13 ± 2.75 | 7.15 ± 2.69 | 0.70 ± 5.05 | 0.787 | 7.43 ± 2.70 | 7.46 ± 2.73 | 0.40 ± 3.69 | 0.425 | 0.986 | 0 | ||
| Dexterity (s) | 38.93 ± 8.05 | 39.00 ± 8.09 | 0.17 ± 0.80 | 0.161 | 41.22 ± 10.53 | 41.24 ± 10.51 | 0.06 ± 0.87 | 0.769 | 0.988 | 0 | ||
| Inhibition (a.u.) | 0.68 ± 0.21 | 0.75 ± 0.22 | 11.73 ± 3.00 | <0.001 | −0.01 | 0.68 ± 0.22 | 0.68 ± 0.22 | 0.57 ± 2.06 | 0.230 | 0.366 | 0 | |
| WM (a.u.) | 1.86 ± 0.62 | 1.87 ± 0.61 | 0.74 ± 6.66 | 0.711 | 1.80 ± 0.82 | 1.79 ± 0.78 | 0.40 ± 7.80 | 0.658 | 0.943 | 0 | ||
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ltifi, M.A.; Cherni, Y.; Panaet, E.A.; Alexe, C.I.; Ben Saad, H.; Vulpe, A.M.; Alexe, D.I.; Chelly, M.-S. Mini-Trampoline Training Enhances Executive Functions and Motor Skills in Preschoolers. Children 2025, 12, 1405. https://doi.org/10.3390/children12101405
Ltifi MA, Cherni Y, Panaet EA, Alexe CI, Ben Saad H, Vulpe AM, Alexe DI, Chelly M-S. Mini-Trampoline Training Enhances Executive Functions and Motor Skills in Preschoolers. Children. 2025; 12(10):1405. https://doi.org/10.3390/children12101405
Chicago/Turabian StyleLtifi, Mohamed Amine, Yosser Cherni, Elena Adelina Panaet, Cristina Ioana Alexe, Helmi Ben Saad, Ana Maria Vulpe, Dan Iulian Alexe, and Mohamed-Souhaiel Chelly. 2025. "Mini-Trampoline Training Enhances Executive Functions and Motor Skills in Preschoolers" Children 12, no. 10: 1405. https://doi.org/10.3390/children12101405
APA StyleLtifi, M. A., Cherni, Y., Panaet, E. A., Alexe, C. I., Ben Saad, H., Vulpe, A. M., Alexe, D. I., & Chelly, M.-S. (2025). Mini-Trampoline Training Enhances Executive Functions and Motor Skills in Preschoolers. Children, 12(10), 1405. https://doi.org/10.3390/children12101405

