Cerebral Ultrasound at Term-Equivalent Age: Correlations with Neuro-Motor Outcomes at 12–24 Months Corrected Age
Abstract
:1. Introduction
- Pre-oligodendrocyte death resulting in decreased myelination and axonal dysmaturation leading to decreased cortical and thalamic development.
- Axonal injury leading to the same consequences.
- Thalamic injury leading to axonal dysmaturation, decreased myelination and decreased cortical and thalamic development.
- Injury of the subplate neurons leading again to decreased myelination and cortical development.
- Injury of the migrating GABA-ergic (GABA = gamma-amino-butyric acid) neurons that lead to decreased development of the upper cortical layers.
- Primary injury that leads to secondary dysmaturation.
2. Materials and Methods
- -
- Premature neonates less than 35 weeks gestation.
- -
- Neonates with perinatal asphyxia.
- -
- Neonates with hyperbilirubinemia needing exchange transfusion.
- -
- Term or preterm neonates requiring mechanical ventilation.
- -
- Neonates with other central nervous system pathology (intracranial hemorrhages or infarctions—arterial or venous, CNS infections, seizures).
- -
- Neonates with the neurologic screening examination (Amiel Tison neurologic optimality examination) with abnormal results.
- -
- Neonates with sepsis.
- -
- Neonates involved in studies with a follow-up component.
2.1. Ultrasound Examination
- -
- -
- -
- -
- -
- -
- The gyral maturation pattern—evaluated in 3 sections—coronal at the level of the foramen of Moro—looking at the Sylvian fissure and the depth of the sulci: sagittal—looking at the frontal gyri and sulci and the presence of the central/marginal sulcus and parasagittal, temporal, at the level of the insula [39]. The cortical gyral maturation was assessed according to previously published scores [15,20], and to know patterns of sulcal and gyral maturation [21,22], divided into three categories:
- ○
- Mature, normal pattern, corresponding to 38–40 weeks;
- ○
- Moderately immature—corresponding to 34–36 weeks;
- ○
- Immature—corresponding to less than 34 weeks.
2.2. Neurologic Evaluation
2.3. Statistical Analysis
- -
- Indicators for mean values: mean, median, module and the maximum and minimum values.
- -
- Indicators for dispersion: the standard deviation and the deviation coefficient.
- -
- The Skewness test (−2 < p < 2) that validates the normal distribution of the series of values; it is used when the variable is a continuous one [44].
- -
- The t-Student test—a parametric test that compares the mean values for two groups with a normal distribution.
- -
- The F (ANOVA) test—which is used in the case of comparison of 3 or more groups with a normal distribution, adding the Turkey post hoc correction to offer the largest difference between two means.
- -
- The χ2 test—a non-parametric, qualitative test that compares the distribution of frequencies.
- -
- The Kruskal–Wallis correlation that compares ordinal variables—3 or more groups.
- -
- The Pearson(r) correlation coefficient—correlation between 2 variables within the same sample—the direct/indirect correlation is indicated by the sign of the coefficient (+/−) [45].
3. Results
3.1. Characteristics of the Population
3.2. Gross Motor Outcome and Relation to Cerebral Ultrasound Measurements at TEA
3.3. Fine Motor Outcome and Relation with Cerebral Ultrasound Measurements at TEA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Volpe, J.J. Dysmaturation of Premature Brain: Importance, Cellular Mechanisms, and Potential Interventions. Pediatr. Neurol. 2019, 95, 42–66. [Google Scholar] [CrossRef] [PubMed]
- Back, S.A.; Volpe, J.J. Encephalopathy of Prematurity: Pathophysiology. In Volpe’s Neurology of the Newborn, 7th ed.; Elsevier: Philadelphia, PA, USA, 2024; pp. 523–546. [Google Scholar]
- Greisen, G. Cerebral blood flow in preterm infants during the first week of life. Acta Paediatr. Scand. 1986, 75, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Reiss, J.D.; Peterson, L.S.; Nesamony, S.N.; Chang, A.L.; Pasca, A.M.; Marić, I.; Shaw, G.M.; Gaudilliere, B.; Wong, R.J.; Sylvester, K.G.; et al. Perinatal infection, inflammation, preterm birth, and brain injury: A review with proposals for future investigations. Exp. Neurol. 2022, 351, 113988. [Google Scholar] [CrossRef]
- Pyrds, O. Control of cerebral circulation in the high risk neonate. Ann. Neurol. 1991, 30, 321–329. [Google Scholar] [CrossRef]
- Volpe, J.J. Volpe s Neurology of the Newborn, 6th ed.; Elsevier: Philadelphia, PA, USA, 2018; pp. 389–404. [Google Scholar]
- Inder, T.; Volpe, J.J. Encephalopathy of the Preterm—Clinical aspects. In Volpe’s Neurology of the Newborn, 7th ed.; Volpe, J.J., Ed.; Elsevier: Philadelphia, PA, USA, 2024; pp. 547–591. [Google Scholar]
- Wu, X.; Wei, L.; Wang, N.; Hu, Z.; Wang, L.; Ma, J.; Feng, S.; Cai, Y.; Song, X.; Shi, Y. Frequency of spontaneous BOLD signal differences between moderate and late preterm newborns and term newborns. Neurotox. Res. 2016, 30, 539–551. [Google Scholar] [CrossRef]
- Cheong, J.L.; Thompson, D.K.; Spittle, A.J.; Potter, C.R.; Walsh, J.M.; Burnett, A.C.; Lee, K.J.; Chen, J.; Beare, R.; Matthews, L.G.; et al. Brain volumes at term-equivalent age are associated with 2-year neurodevelopment in moderate and late preterm children. J. Pediatr. 2016, 174, 91–97.e1. [Google Scholar] [CrossRef]
- Volpe, J.J. Commentary—The late preterm infant: Vulnerable cerebral cortex and large burden of disability. J. Neonatal Perinat. Med. 2022, 15, 1–5. [Google Scholar] [CrossRef]
- Woodward, L.J.; Anderson, P.J.; Austin, N.C.; Howard, K.; Inder, T.E. Neonatal MRI to Predict Neurodevelopmental Outcomes in Preterm Infants. N. Engl. J. Med. 2006, 355, 685–694. [Google Scholar] [CrossRef]
- Cornette, L.G.; Tanner, S.F.; Ramenghi, L.A.; Miall, L.S.; Childs, A.M.; Arthur, R.J.; Martinez, D.; Levene, M.I. Magnetic resonance imaging of the infant brain: Anatomical characteristics and clinical significance of punctate lesions. Arch. Dis. Child.-Fetal Neonatal Ed. 2002, 86, F171–F177. [Google Scholar] [CrossRef]
- Mirmiran, M.; Barnes, P.D.; Keller, K.; Constantinou, J.C.; Fleisher, B.E.; Hintz, S.R.; Ariagno, R.L. Neonatal brain magnetic resonance imaging before discharge is better than serial cranial ultrasound in predicting cerebral palsy in very low birth weight preterm infants. Pediatrics 2004, 114, 992–998. [Google Scholar] [CrossRef]
- Horsch, S.; Skiold, B.; Hallberg, B.; Nordell, B.; Nordell, A.; Mosskin, M.; Lagercrantz, H.; Aden, U.; Blennow, M. Cranial ultrasound and MRI at term age in extremely preterm infants. Arch. Dis. Child.-Fetal Neonatal Ed. 2010, 95, F310–F314. [Google Scholar] [CrossRef]
- Skiold, B.; Hallberg, B.; Vollmer, B.; Aden, U.; Blenow, M.; Horsch, S. A novel scoring system for term-equivalent-age cranial ultrasound in extremely preterm infants. Ultrasound Med. Biol. 2019, 45, 786–794. [Google Scholar] [CrossRef]
- Inder, T.E.; Anderson, N.J.; Spencer, C.; Wells, S.J.; Volpe, J. White matter injury in the premature infant: A comparison between serial cranial ultrasound and MRI at term. Am. J. Neuroradiol. 2003, 24, 805–809. [Google Scholar]
- Leijser, L.M.; Srinivasan, L.; Ruterford, M.A.; Counsel, S.J.; Allsop, J.; Cowan, F.M. Structural linear measurements in the newborn brain: Accuracy of cranial ultrasound compared to MRI. Pediatr. Radiol. 2007, 37, 640–648. [Google Scholar] [CrossRef]
- Agut, T.; Alarcon, A.; Cabanas, F.; Bartocci, M.; Martinez-Biarge, M.; Horsch, S. Preterm white matter injury: Ultrasound diagnosis and classification. Pediatr. Res. 2020, 87, 37–49. [Google Scholar] [CrossRef]
- Novak, I.; Morgan, C.; Adde, L.; Blackman, J.; Boyd, R.N.; Brunstrom-Hernandez, J.; Cioni, G.; Damiano, D.; Darrah, J.; Eliasson, A.-C.; et al. Early, Accurate Diagnosis and Early Intervention in Cerebral Palsy Advances in Diagnosis and Treatment. JAMA Pediatr. 2017, 171, 897–907. [Google Scholar] [CrossRef]
- Inder, T.E.; Wells, S.J.; Modrige, N.B.; Spencer, C.; Volpe, J.J. Defining the nature of the cerebral abnormalities in the premature infant: A qualitative magnetic resonance imaging study. J. Pediatr. 2003, 143, 171–179. [Google Scholar] [CrossRef]
- Chi, J.G.; Dooling, E.C.; Gilles, F.H. Gyral Development of the Human Brain. Ann. Neurol. 1977, 1, 86–93. [Google Scholar] [CrossRef]
- Martin, E.; Kikinis, R.; Zuerrer, M.; Boesch, C.; Briner, J.; Kewits, G.; Kaelin, P. Developmental stages of human brain: An MRI Study. J. Comput. Assist. Tomogr. 1988, 12, 917–922. [Google Scholar] [CrossRef]
- Rosenbaum, P.; Paneth, N.; Leviton, A.; Goldstein, M.; Bax, M.; Damiano, D.; Dan, B.; Jacobsson, B. A report: The definition and classification of cerebral palsy. Dev. Med. Child Neurol. 2007, 109, 8–14. [Google Scholar]
- Galea, C.; McIntyre, S.; Smithers-Sheddy, H.; Reid, S.M.; Gibson, C.; Delacy, M.; Watson, L.; Goldsmith, S.; Badawi, N.; Blair, E. Cerebral palsy trends in Australia (1995–2009): A population-based observational study. Dev. Med. Child Neurol. 2019, 61, 186–193. [Google Scholar] [CrossRef]
- Himpens, E.; Van den Broeck, C.; Oostra, A.; Calders, P.; Vanhaesebrouck, P. Prevalence, type, distribution, and severity of cerebral palsy in relation to gestational age: A meta-analytic review. Dev. Med. Child Neurol. 2008, 50, 334–340. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.; Lee, K.J.; Anderson, P.J. Prevalence of motor-skill impairment in preterm children who do not develop cerebral palsy: A systematic review. Dev. Med. Child Neurol. 2010, 52, 232–237. [Google Scholar] [CrossRef] [PubMed]
- Barnhart, R.C.; Davenport, M.J.; Epps, S.B.; Nordquist, V.M. Developmental coordination disorder. Phys. Ther. 2003, 83, 722–731. [Google Scholar] [CrossRef]
- Orton, J.; Doyle, L.W.; Tripathi, T.; Boyd, R.; Anderson, P.J.; Spittle, A. Early developmental intervention programmes provided post hospital discharge to prevent motor and cognitive impairment in preterm infants. Cochrane Database Syst. Rev. 2024, 2, CD005495. [Google Scholar] [CrossRef]
- Toma, A.I.; Dima, V.; Alexe, A.; Bojan, C.; Nemeș, A.F.; Gonț, B.F.; Arghirescu, A.; Necula, A.I.; Fieraru, A.; Stoiciu, R.; et al. Early Intervention Guided by a General Movements Examination at Term-Corrected Age. Short-Term Outcomes. Life 2024, 14, 480. [Google Scholar] [CrossRef]
- Tison-Amiel, C. Neurologie Perinatale; Ed Masson: Paris, France, 2012; pp. 78–139. [Google Scholar]
- Einspieler, C.; Prechtl, H.F.R. Prechtl’s assessment of General Movements: A Diagnostic Tool for the Functional Assessment of the Young Nervous System. Ment. Retard. Dev. Disabil. Res. Rev. 2005, 11, 61–67. [Google Scholar] [CrossRef]
- Gosselin, J.; Amiel-Tison, C. Evaluation Neurologique de la Naissante a 6 Ans; Ed Masson: Paris, France, 2007; pp. 61–118. [Google Scholar]
- Bayley, N. Bayley Scales of Infant and Toddler Development, 3rd ed.; Administration Manual; Harcourt Assessment Inc.: Phyladelphia, PA, USA, 2006. [Google Scholar]
- Shankar, H.; Pagel, P.S. Potential Adverse Effects of Ultrasound- related Biological Effects. A Critical Review. Anesthesiology 2011, 115, 1109–1124. [Google Scholar] [CrossRef]
- Fowlkes, J.B. Bioeffects Committee of the American Institute of Ultrasound in Medicine: American Institute of Ultrasound in Medicine consensus report on potential bioeffects of diagnostic ultrasound: Executive summary. J. Ultrasound Med. 2008, 27, 503–515. [Google Scholar]
- Hagmann, C.F.; Robertson, N.J.; Acolet, D.; Nyombi, N.; Nakakeeto, M.; Cowan, F.M. Cerebral measurements made using cranial ultrasound in term Ugandan newborns. Early Hum. Dev. 2011, 87, 342–347. [Google Scholar] [CrossRef] [PubMed]
- Toma, A.I.; Dima, V.; Alexe, A.; Rusu, L.; Nemes, A.F.; Gont, B.F.; Arghirescu, A.; Necula, A.; Fieraru, A.; Stoiciu, R. Correlations between Head Ultrasounds Performed at Term-Equivalent Age in Premature Neonates and General Movements Neurologic Examination Patterns. Life 2024, 14, 46. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, F.; Todeschini, A.; Guidotti, I.; Martinez-Biarge, M.; Roversi, M.F.; Berardi, A.; Ranzi, A.; Cowan, F.M.; Rutherford, M.A. General movements in full-term infants with perinatal asphyxia are related to Basal Ganglia and thalamic lesions. J. Pediatr. 2011, 158, 904–911. [Google Scholar] [CrossRef] [PubMed]
- Govaert, P.; de Vries, L.S. An Atlas of Neonatal Brain Sonography, 2nd ed.; Mac Keith Press: London, UK, 2010; pp. 3–24. [Google Scholar]
- Zaharie, G. (Toma, A.I. coord). Asociația de Neonatologie din Romania: Urmărirea nou-Născutului cu Risc Pentru Sechele Neurologice și de Dezvoltare, Follow up Guidelines 2011. Colectia Ghiduri Clinic Pentru Neonatologie. Ghidul 13/Revizia. Ghiduri Clinice-Ministerul Sănătății. Available online: https://old.ms.ro/documente/13%20urmarirea%20nou%20nascutului%20cu%20risc%20pentru%20sechele%20neurologice%20si%20de%20dezvoltare_9180_7492.pdf (accessed on 15 November 2024).
- Adams, M.; Borradori-Tolosa, C.; Bickle-Graz, M.; Grunt, S.; Weber, P.; Capone Mori, A.; Bauder, F.; Hagmann, C.; Natalucci, G.; Pfister, R.; et al. Follow-up assessment of high-risk newborns in Switzerland. Paediatrica 2014, 25, 6–10. [Google Scholar]
- Doyle, W.; Anderson, P.J.; Battin, M.; Bowen, J.R.; Brown, N.; Callanan, C.; Campbell, C.; Chandler, S.; Cheong, J.; Darlow, B.; et al. Long term follow up of high risk children: Who, why and how? BMC Pediatr. 2014, 14, 279–294. [Google Scholar] [CrossRef]
- Toma, A.I. Paediatric neurology: Standardization of neonatal assessment in Romania. Enfance 2023, 4, 333–338. [Google Scholar] [CrossRef]
- Bendrea, C. Biostatistică. Elemente de Teorie și Modelare Probabilistică; Universitatea “Dunarea de Jos” Galați: Galați, Romania, 2019; ISBN 978-606-25-0471-7. [Google Scholar]
- Sarnat, H.B. Functions of the corticospinal and corticobulbar tracts in the human newborn. J. Pediatr. Neurol. 2003, 1, 3–8. [Google Scholar] [CrossRef]
- Higgins, J.P.T.; Altman, D.G.; Sterne, J.A.C. Chapter 8: Assessing risk of bias in included studies. In Cochrane Handbook for Systematic Reviews of Interventions, version 5.2.0; Higgins, J.P.T., Churchill, R., Chandler, J., Cumpston, M.S., Eds.; Cochrane: London, UK, 2017. [Google Scholar]
- Inder, T.; de Vries, L.S.; Ferreiro, D.M.; Grant, P.E.; Ment, L.R.; Miller, S.P.; Volpe, J.J. Neuroimaging of the Preterm Brain: Review and Recommendations. J. Pediatr. 2021, 237, 276–287. [Google Scholar] [CrossRef]
- Hand, I.L.; Shellaas, R.A.; Milla, S.S. Committee on Fetus and Newborn, Section of Neurology, Section of Radiology. Routine neuroimaging of the Preterm Brain. Pediatrics 2020, 146, e2020029082. [Google Scholar] [CrossRef]
Normal | Moderately Abnormal | Severely Abnormal | |
---|---|---|---|
Gross motor | |||
Independent sitting | Yes | Yes | No |
Independent walking | Yes | No | No |
Fine motor | |||
Finger grasp | Finger grasp | Palmar grasp | No grasp at all—asymmetry |
Letting a cube in the cup | Yes | No | No |
Tower of 3 cubes | Not evaluated | Not evaluated | Not evaluated |
Normal | Moderately Abnormal | Severely Abnormal | |
---|---|---|---|
Gross motor | |||
Independent sitting | Yes | Yes | No |
Independent walking | Yes | Walks with help | No |
Fine motor | |||
Finger grasp | Finger grasp | Finger grasp | No grasp at al/palmar grasp |
Letting a cube in the cup | Yes | No | No |
Tower of 3 cubes | Yes | No | No |
Weeks GA | Male | Female | Total |
---|---|---|---|
30 | 0 | 3 | 3 |
31 | 1 | 0 | 1 |
32 | 6 | 8 | 14 |
33 | 2 | 4 | 6 |
34 | 5 | 5 | 10 |
Total | 14 | 20 | 34 |
Parameters | Gross Motor 12 Months | p-Value for FANOVA Test | ||
---|---|---|---|---|
Normal (n = 19) | Moderately Abnormal (n = 5) | Severely Abnormal (n = 10) | ||
Levine Index | 10.84 ± 2.20 | 12.48 ± 0.65 | 11.61 ± 2.81 | 0.326 |
LV short axis | 4.55 ± 1.39 | 5.70 ± 1.83 | 5.70 ± 1.83 | 0.220 |
LV long axis | 12.92 ± 3.31 | 15.46 ± 2.44 | 14.47 ± 3.85 | 0.251 |
Midbody LV | 3.15 ± 1.06 | 5.50 ± 2.17 | 5.73 ± 3.50 | 0.009 |
Basal ganglia width | 16.54 ± 1.44 | 17.56 ± 1.18 | 14.92 ± 2.09 | 0.011 |
Sinocortical width | 2.77 ± 1.18 | 3.90 ± 1.36 | 3.01 ± 0.96 | 0.162 |
Cortical depth | 1.61 ± 0.44 | 1.80 ± 1.17 | 1.31 ± 0.63 | 0.320 |
Parameters | Gross Motor 24 Months | p-Value for FANOVA Test | ||
Normal (n = 30) | Severely Abnormal (n = 4) | |||
Levine Index | 10.42 ± 2.37 | 12.20 ± 1.30 | 0.253 | |
VL short axis | 4.90 ± 1.68 | 5.77 ± 1.20 | 0.435 | |
VL long axis | 12.87 ± 3.27 | 14.97 ± 4.26 | 0.388 | |
Midbody VL | 3.29 ± 1.35 | 10.33 ± 1.53 | 0.001 | |
Basal ganglia width | 16.16 ± 1.65 | 12.90 ± 1.82 | 0.016 | |
Sinocortical width | 3.09 ± 1.09 | 3.67 ± 1.53 | 0.483 | |
Cortical depth | 2.09 ± 0.87 | 0.63 ± 0.40 | 0.021 |
Gross Motor | Gyration | p-Value for FANOVA Test | ||
---|---|---|---|---|
Gross Motor 12 months | Normal (n = 15) | Moderately Immature (n = 15) | Immature (n = 4) | |
Normal | 9 (60.0%) | 10 (66.7%) | - | 0.070 |
Moderately abnormal | 3 (20.0%) | 2 (13.3%) | ||
Severely abnormal | 3 (20.0%) | 3 (26.7%) | 4 (100%) | |
MG 24 months | a (n = 15) | b (n = 15) | c (n = 4) | |
Normal | 15 (100%) | 15 (100%) | - | 0.001 |
Severely abnormal | - | - | 4 (100%) |
Parameters | Fine Motor 12 Months | p-Value for FANOVA Test | ||
---|---|---|---|---|
Normal (n = 20) | Moderately Abnormal (n = 7) | Abnormal (n = 7) | ||
Levine Index | 10.95 ± 2.44 | 10.80 ± 2.01 | 12.84 ± 1.47 | 0.133 |
LV short axis | 4.83 ± 1.75 | 4.47 ± 1.75 | 6.00 ± 1.46 | 0.182 |
LV long axis | 13.37 ± 3.66 | 12.97 ± 2.67 | 15.60 ± 3.14 | 0.273 |
Midbody LV | 3.45 ± 1.20 | 3.56 ± 2.35 | 7.27 ± 3.19 | 0.001 |
Basal ganglia width | 16.62 ± 1.44 | 16.36 ± 2.03 | 14.90 ± 2.24 | 0.095 |
Sinocortical width | 2.61 ± 0.95 | 3.64 ± 1.41 | 3.51 ± 1.20 | 0.054 |
Cortical depth | 1.75 ± 0.63 | 1.43 ± 0.51 | 1.00 ± 0.59 | 0.054 |
Parameters | Fine Motor 24 months | p-Value for FANOVA Test | ||
Normal (n = 30) | Abnormal (n = 4) | |||
Levine Index | 10.42 ± 2.37 | 12.20 ± 1.30 | 0.253 | |
VL short axis | 4.90 ± 1.68 | 5.77 ± 1.20 | 0.435 | |
VL long axis | 12.87 ± 3.27 | 14.97 ± 4.26 | 0.388 | |
Midbody VL | 3.29 ± 1.35 | 10.33 ± 1.53 | 0.001 | |
Basal ganglia width | 16.16 ± 1.65 | 12.90 ± 1.82 | 0.016 | |
Sinocortical width | 3.09 ± 1.09 | 3.67 ± 1.53 | 0.483 | |
Cortical depth | 2.09 ± 0.87 | 0.63 ± 0.40 | 0.021 |
Fine Motor | Gyration | p-Value for FANOVA Test | ||
---|---|---|---|---|
Fine Motor 12 Months | Normal (n = 15) | Moderately Immature (n = 15) | Immature (n = 4) | |
Normal | 8 (53.3%) | 12 (80.0%) | - | 0.018 |
Moderately abnormal | 7 (26.7%) | 0 | ||
Abnormal | 0 | 3 (13.3) | 4 (75.0%) | |
Fine motor 24 months | Normal (n = 15) | Moderately immature (n = 15) | Immature (n = 4) | |
Normal Abnormal | 15 (100%) - | 15 (100%) - | - 4 (100%) | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toma, A.I.; Dima, V.; Rusu, L.; Nemeș, A.F.; Gonț, B.F.; Arghirescu, A.; Necula, A.; Fieraru, A.; Stoiciu, R.; Andrășoaie, L.; et al. Cerebral Ultrasound at Term-Equivalent Age: Correlations with Neuro-Motor Outcomes at 12–24 Months Corrected Age. Children 2025, 12, 30. https://doi.org/10.3390/children12010030
Toma AI, Dima V, Rusu L, Nemeș AF, Gonț BF, Arghirescu A, Necula A, Fieraru A, Stoiciu R, Andrășoaie L, et al. Cerebral Ultrasound at Term-Equivalent Age: Correlations with Neuro-Motor Outcomes at 12–24 Months Corrected Age. Children. 2025; 12(1):30. https://doi.org/10.3390/children12010030
Chicago/Turabian StyleToma, Adrian Ioan, Vlad Dima, Lidia Rusu, Alexandra Floriana Nemeș, Bogdan Florin Gonț, Alexandra Arghirescu, Andreea Necula, Alina Fieraru, Roxana Stoiciu, Larisa Andrășoaie, and et al. 2025. "Cerebral Ultrasound at Term-Equivalent Age: Correlations with Neuro-Motor Outcomes at 12–24 Months Corrected Age" Children 12, no. 1: 30. https://doi.org/10.3390/children12010030
APA StyleToma, A. I., Dima, V., Rusu, L., Nemeș, A. F., Gonț, B. F., Arghirescu, A., Necula, A., Fieraru, A., Stoiciu, R., Andrășoaie, L., Mitran, L., Mehedințu, C., & Isam, A. J. (2025). Cerebral Ultrasound at Term-Equivalent Age: Correlations with Neuro-Motor Outcomes at 12–24 Months Corrected Age. Children, 12(1), 30. https://doi.org/10.3390/children12010030