Association between Screen Time and Sociodemographic Factors, Physical Activity, and BMI among Children in Six European Countries (Feel4Diabetes): A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Background and Data Collection
2.2. Measures
2.2.1. Body Mass Index
2.2.2. Education Level
2.2.3. Physical Activity
2.2.4. Screen Time
2.2.5. Income
2.3. Statistical Methods
3. Results
3.1. The Pattern Shown Using Descriptive Statistics
3.2. Cross-Table Analysis of Screen Time
3.3. Multivariate Model
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Domingues-Montanari, S. Clinical and psychological effects of excessive screen time on children. J. Paediatr. Child. Health 2017, 53, 333–338. [Google Scholar] [CrossRef]
- Duch, H.; Fisher, E.M.; Ensari, I.; Harrington, A. Screen time use in children under 3 years old: A systematic review of correlates. Int. J. Behav. Nutr. Phys. Act. 2013, 10, 102. [Google Scholar] [CrossRef]
- Sigman, A. Time for a view on screen time. Arch. Dis. Child. 2012, 97, 935–942. [Google Scholar] [CrossRef]
- Lissak, G. Adverse physiological and psychological effects of screen time on children and adolescents: Literature review and case study. Environ. Res. 2018, 164, 149–157. [Google Scholar] [CrossRef]
- Twenge, J.M.; Campbell, W.K. Associations between screen time and lower psychological well-being among children and adolescents: Evidence from a population-based study. Prev. Med. Rep. 2018, 12, 271–283. [Google Scholar] [CrossRef]
- Saunders, T.J.; Vallance, J.K. Screen time and health indicators among children and youth: Current evidence, limitations and future directions. Appl. Health Econ. Health Policy 2017, 15, 323–331. [Google Scholar] [CrossRef]
- Konca, A.S. Digital technology usage of young children: Screen time and families. Early Childhood Educ. J. 2022, 50, 1097–1108. [Google Scholar] [CrossRef]
- Byrne, R.; Terranova, C.O.; Trost, S.G. Measurement of screen time among young children aged 0–6 years: A systematic review. Obes. Rev. 2021, 22, e13260. [Google Scholar] [CrossRef]
- McArthur, B.A.; Tough, S.; Madigan, S. Screen time and developmental and behavioral outcomes for preschool children. Pediatr. Res. 2022, 91, 1616–1621. [Google Scholar] [CrossRef]
- Nightingale, C.M.; Rudnicka, A.R.; Donin, A.S.; Sattar, N.; Cook, D.G.; Whincup, P.H.; Owen, C.G. Screen time is associated with adiposity and insulin resistance in children. Arch. Dis. Child. 2017, 102, 612–616. [Google Scholar] [CrossRef]
- Mineshita, Y.; Kim, H.-K.; Chijiki, H.; Nanba, T.; Shinto, T.; Furuhashi, S.; Oneda, S.; Kuwahara, M.; Suwama, A.; Shibata, S. Screen time duration and timing: Effects on obesity, physical activity, dry eyes, and learning ability in elementary school children. BMC Public Health 2021, 21, 422. [Google Scholar] [CrossRef]
- Tripathi, M.; Mishra, S.K. Screen time and adiposity among children and adolescents: A systematic review. J. Public Health 2020, 28, 227–244. [Google Scholar] [CrossRef]
- Nagata, J.M.; Abdel, M.H.S.; Pettee, G.K. Screen time for children and adolescents during the coronavirus disease 2019 Pandemic. Obesity 2020, 28, 1582–1583. [Google Scholar] [CrossRef]
- Kovacs, V.A.; Starc, G.; Brandes, M.; Kaj, M.; Blagus, R.; Leskošek, B.; Suesse, T.; Dinya, E.; Guinhouya, B.C.; Zito, V.; et al. Physical activity, screen time and the COVID-19 school closures in European—An observational study in 10 countries. Eur. J. Sport. Sci. 2022, 22, 1094–1103. [Google Scholar] [CrossRef]
- Latomme, J.; Van Stappen, V.; Cardon, G.; Morgan, P.J.; Lateva, M.; Chakarova, N.; Kivelä, J.; Lindström, J.; Androutsos, O.; González-Gil, E.M.; et al. The association between children’s and parents’ co-TV viewing and their total screen time in six european countries: Cross-sectional data from the Feel4diabetes-Study. Int. J. Environ. Res. Public Health 2018, 15, 2599. [Google Scholar] [CrossRef]
- Atkin, A.J.; Sharp, S.J.; Corder, K.; van Sluijs, E.M.F. Prevalence and correlates of screen time in youth: An international perspective. Am. J. Prev. Med. 2014, 47, 803–807. [Google Scholar] [CrossRef]
- Schmidt, M.E.; Haines, J.; O’brien, A.; McDonald, J.; Price, S.; Sherry, B.; Taveras, E.M. Systematic review of effective strategies for reducing screen time among young children. Obesity 2012, 20, 1338–1354. [Google Scholar] [CrossRef]
- Fang, K.; Mu, M.; Liu, K.; He, Y. Screen time and childhood overweight/obesity: A systematic review and meta-analysis. Child. Care Health Dev. 2019, 45, 744–753. [Google Scholar] [CrossRef]
- García-Hermoso, A.; Hormazábal-Aguayo, I.; Fernández-Vergara, O.; Olivares, P.R.; Oriol-Granado, X. Physical activity, screen time and subjective well-being among children. Int. J. Clin. Health Psychol. 2020, 20, 126–134. [Google Scholar] [CrossRef]
- Venetsanou, F.; Kambas, A.; Gourgoulis, V.; Yannakoulia, M. Physical activity in pre-school children: Trends over time and associations with body mass index and screen time. Ann. Hum. Biol. 2019, 46, 393–399. [Google Scholar] [CrossRef]
- Papamichael, M.M.; Karaglani, E.; Boutsikou, T.; Dedousis, V.; Cardon, G.; Iotova, V.; Chakarova, N.; Usheva, N.; Wikström, K.; Imre, R.; et al. How do the home food environment, parenting practices, health beliefs, and screen time affect the weight status of European children? The Feel4Diabetes Study. Nutrition 2022, 103–104, 111834. [Google Scholar] [CrossRef]
- De Lepeleere, S.; De Bourdeaudhuij, I.; Van Stappen, V.; Huys, N.; Latomme, J.; Androutsos, O.; Manios, Y.; Cardon, G.; Verloigne, M. Parenting practices as a mediator in the association between family socio-economic status and screen-time in primary schoolchildren: A Feel4Diabetes Study. Int. J. Environ. Res. Public Health 2018, 15, 2553. [Google Scholar] [CrossRef] [PubMed]
- Oswald, T.K.; Rumbold, A.R.; Kedzior, S.G.E.; Moore, V.M. Psychological impacts of “screen time” and “green time” for children and adolescents: A systematic scoping review. PLoS ONE 2020, 15, e0237725. [Google Scholar] [CrossRef] [PubMed]
- Whiting, S.; Buoncristiano, M.; Gelius, P.; Abu-Omar, K.; Pattison, M.; Hyska, J.; Duleva, V.; Milanović, S.M.; Zamrazilová, H.; Hejgaard, T.; et al. Physical activity, screen time, and sleep duration of children aged 6–9 Years in 25 countries: An analysis within the WHO European Childhood Obesity Surveillance Initiative (COSI) 2015–2017. Obes. Facts 2021, 14, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Dahlgren, A.; Sjöblom, L.; Eke, H.; Bonn, S.E.; Trolle, L.Y. Screen time and physical activity in children and adolescents aged 10–15 years. PLoS ONE 2021, 16, e0254255. [Google Scholar] [CrossRef] [PubMed]
- Barabás, Á.; Nagy, M.; Molnárné, G.A.K.; Nagy, A.C.; Pazmany, V.; Zahatňanská, M.; Konečná, M.; Sedlák, V.; Mydlárová, B.M.; Poráčová, J.; et al. Nutrition habits and physical activity of disabled adolescents in Hungary. Cent. Eur. J. Public Health 2023, 31 (Suppl. S1), S55–S61. [Google Scholar] [CrossRef] [PubMed]
- Schaan, C.W.; Cureau, F.V.; Sbaraini, M.; Sparrenberger, K.; Kohl, H.W., III; Schaan, B.D. Prevalence of excessive screen time and TV viewing among Brazilian adolescents: A systematic review and meta-analysis. J. Pediatr. 2019, 95, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Trott, M.; Driscoll, R.; Iraldo, E.; Pardhan, S. Changes and correlates of screen time in adults and children during the COVID-19 pandemic: A systematic review and meta-analysis. eClinicalMedicine 2022, 48, 101452. [Google Scholar] [CrossRef] [PubMed]
- Feel4Diabetes Study. Intervention Countries. Available online: https://feel4diabetes-study.eu (accessed on 12 November 2023).
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in diabetes since 1980: A pooled analysis of 751 population-based studies with 4.4 million participants. Lancet 2016, 387, 1513–1530. [Google Scholar] [CrossRef]
- Androutsos, O.; Anastasiou, C.; Lambrinou, C.; ChristinaMavrogianni; Cardon, G.; Van Stappen, V.; Kivelä, J.; KatjaWikström; Moreno, L.A.; Iotova, V.; et al. Intra- and inter-observer reliability of anthropometric measurements and blood pressure in primary schoolchildren and adults: The Feel4Diabetes-study. BMC Endocr. Disord. 2020, 20 (Suppl. S1), 27. [Google Scholar] [CrossRef]
- Manios, Y.; Androutsos, O.; Lambrinou, C.-P.; Cardon, G.; Lindstrom, J.; Annemans, L.; MateoGallego, R.; de Sabata, M.S.; Iotova, V.; Kivela, J.; et al. A school- and community-based intervention to promote healthy lifestyle and prevent type 2 diabetes in vulnerable families across Europe: Design and implementation of the Feel4Diabetes-study. Public Health Nutr. 2018, 21, 3281–3290. [Google Scholar] [CrossRef]
- Finnish Diabetes Association. Type 2 Diabetes Risk Assessment Form. Available online: https://www.diabetes.fi/files/502/eRiskitestilomake.pdf (accessed on 13 November 2023).
- Cole, T.J.; Lobstein, T. Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr. Obes. 2012, 7, 284–294. [Google Scholar] [CrossRef]
- Eurostat Statistics Explained. International Standard Classification of Education. (ISCED). Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=International_Standard_Classification_of_Education_(ISCED) (accessed on 13 November 2023).
- Tremblay, M.S.; LeBlanc, A.G.; Janssen, I.; Kho, M.E.; Hicks, A.; Murumets, K.; Colley, R.C.; Duggan, M. Canadian Sedentary Behaviour Guidelines for Children and Youth. Physiol. Nutr. Metab. 2011, 36, 59–71. [Google Scholar] [CrossRef]
- 24-Hour Movement Guidelines. Canadian 24-Hour Movement Guidelines for Adults Aged 18–64 Years: An Integration of Physical Activity, Sedentary Behaviour, and Sleep. Available online: https://csepguidelines.ca/guidelines/adults-18-64/ (accessed on 2 December 2023).
- Alba, M.T.; Mouratidou, V.; Bammann, K.; Molnar, D.; Sieri, S.; Siani, A.; Veidebaum, T.; Marild, S.; Lissner, L.; Charalambos, H.; et al. Physical activity and sedentary behaviour in European children: The IDEFICS study. Public Health Nutr. 2013, 17, 2295–2306. [Google Scholar]
- American Academy of Pediatrics. Children, Adolescents, and Television. Committee on Public Education. Pediatrics 2001, 107, 423. [Google Scholar] [CrossRef]
- Ke, Y.; Chen, S.; Hong, J.; Liang, Y.; Liu, Y. Associations between socioeconomic status and screen time among children and adolescents in China: A cross-sectional study. PLoS ONE 2023, 18, e0280248. [Google Scholar] [CrossRef]
- Miguel-Berges, M.L.; Zachari, K.; Santaliestra-Pasias, A.M.; Mouratidou, T.; Androutsos, O.; Iotova, V.; Galcheva, S.; De Craemer, M.; Cardon, G.; Koletzko, B.; et al. Clustering of energy balance-related behaviours and parental education in European preschool children: The ToyBox study. Br. J. Nutr. 2017, 118, 1089–1096. [Google Scholar] [CrossRef]
- Cárdenas-Fuentes, G.; Homs, C.; Ramírez-Contreras, C.; Juton, C.; Casas-Esteve, R.; Grau, M.; Aguilar-Palacio, I.; Fitó, M.; Gomez, S.F.; Schröder, H. Prospective Association of Maternal Educational Level with Child’s Physical Activity, Screen Time, and Diet Quality. Nutrients 2021, 14, 160. [Google Scholar] [CrossRef]
- Wärnberg, J.; Pérez-Farinós, N.; Benavente-Marín, J.C.; Gómez, S.F.; Labayen, I.; Zapico, A.G.; Gusi, N.; Aznar, S.; Alcaraz, P.E.; González-Valeiro, M.; et al. Screen Time and Parents’ Education Level Are Associated with Poor Adherence to the Mediterranean Diet in Spanish Children and Adolescents: The PASOS Study. J. Clin. Med. 2021, 10, 795. [Google Scholar] [CrossRef]
- Pons, M.; Bennasar, V.M.; Yañez, A.M. Maternal Education Level and Excessive Recreational Screen Time in Children: A Mediation Analysis. Int. J. Environ. Res. Public Health 2020, 17, 8930. [Google Scholar] [CrossRef]
- Guryan, J.; Hurst, E.; Kearney, M. Parental Education and Parental Time with Children. J. Econ. Perspect. 2008, 22, 23–46. [Google Scholar] [CrossRef]
- Pate, R.R.; Mitchell, J.A.; Byun, W.; Dowda, M. Sedentary behaviour in youth. Br. J. Sports Med. 2011, 45, 906–913. [Google Scholar] [CrossRef]
- Sanz, M.D.; Ubago, J.J.L.; Ruiz, T.G.; Zurita, O.F.; Melguizo, I.E.; Puertas, M.P. The Relationships between Physical Activity, Screen Time and Sleep Time According to the Adolescents’ Sex and the Day of the Week. Healthcare 2022, 10, 1955. [Google Scholar] [CrossRef]
- dos Santos, A.B.; Prado, W.L.; Tebar, W.R.; Ingles, J.; Ferrari, G.; Morelhão, P.K.; Borges, L.O.; Dias, R.M.R.; Beretta, V.S.; Christofaro, D.G. Screen time is negatively associated with sleep quality and duration only in insufficiently active adolescents: A Brazilian cross-sectional school-based study. Prev. Med. Rep. 2023, 37, 102579. [Google Scholar] [CrossRef]
- Feldman, D.E.; Barnett, T.; Shrier, I.; Rossignol, M.; Abenhaim, L. Is physical activity differentially associated with different types of sedentary pursuits? Arch. Pediatr. Adolesc. Med. 2003, 157, 797–802. [Google Scholar] [CrossRef]
- Moradi, G.; Piroozi, B.; Mostafavi, F.; Roshani, D.; Ghaderi, E.; Morovati, S.P. Socioeconomic Inequality in Screen Time, Phone, and Tablet Use among Iranian Adolescents: Results of A National Study. Med. J. Islam. Repub. Iran. 2023, 37, 96. [Google Scholar] [CrossRef]
- Ghobadi, S.; Hassanzadeh-Rostami, Z.; Salehi-Marzijarani, M.; Bellissimo, N.; Brett, N.R.; de Zepetnek, J.O.T.; Faghih, S. Association of eating while television viewing and overweight/obesity among children and adolescents: A systematic review and meta-analysis of observational studies. Obes. Rev. 2018, 19, 313–320. [Google Scholar] [CrossRef]
- Xu, H.; Wen, L.M.; Rissel, C. Associations of parental influences with physical activity and screen time among young children: A systematic review. J. Obes. 2015, 2015, 546925. [Google Scholar] [CrossRef]
- Kontochristopoulou, A.M.; Karatzi, K.; Karaglani, E.; Cardon, G.; Kivelä, J.; Iotova, V.; Tankova, T.; Rurik, I.; Radone, A.S.; Liatis, S.; et al. Parental practices and children’s lifestyle correlates of childhood overweight/obesity in Europe: The Feel4Diabetes study. J. Hum. Nutr. Diet. 2024, 37, 31–46. [Google Scholar] [CrossRef]
Variable | Level | Screen Time (n,%) | p-Value | |
---|---|---|---|---|
Ideal (<2 h/day) | No Ideal (≥2 h/day) | |||
Country | Belgium | 572 (43%) | 771 (57%) | <0.001 |
Finland | 556 (43%) | 734 (57%) | ||
Greece | 951 (52%) | 872 (48%) | ||
Hungary | 692 (52%) | 642 (48%) | ||
Bulgaria | 885 (41%) | 1298 (59%) | ||
Spain | 627 (59%) | 437 (41%) | ||
Family at risk of developing type 2 diabetes mellitus * | Non high risk | 3358 (48%) | 3673 (52%) | 0.192 |
High risk | 925 (46%) | 1081 (54%) | ||
Age of mother | <45 year | 3721 (47%) | 4198 (53%) | 0.052 |
45–54 year | 418 (52%) | 390 (48%) | ||
55–64 year | 2 (29%) | 5 (71%) | ||
>64 year | 1 (33%) | 2 (67%) | ||
BMI mother ** | Not overweight (BMI < 25) | 2896 (49%) | 3029 (51%) | <0.001 |
Overweight or obese (BMI ≥ 25) | 1203 (44%) | 1507 (56%) | ||
Education mother | Primary education level (≤9 year) | 286 (46%) | 342 (54%) | <0.001 |
Secondary education level (10–14 year) | 1309 (44%) | 1690 (56%) | ||
Tertiary education level (≥15 year) | 2470 (50%) | 2484 (50%) | ||
Age of father | <45 year | 2795 (47%) | 3129 (53%) | 0.439 |
45–54 year | 746 (49%) | 763 (51%) | ||
55–64 year | 54 (49%) | 57 (51%) | ||
>64 year | 6 (55%) | 5 (45%) | ||
BMI father ** | Not overweight (BMI < 25 kg/m2) | 1225 (49%) | 1259 (51%) | 0.061 |
Overweight or obese (BMI ≥ 25 kg/m2) | 2328 (47%) | 2624 (53%) | ||
Education father | Primary education level (≤9 year) | 313 (47%) | 354 (53%) | <0.001 |
Secondary education level (10–14 year) | 1457 (44%) | 1870 (56%) | ||
Tertiary education level (≥15 year) | 1793 (51%) | 1727 (49%) | ||
Income status | Low | 1911 (46%) | 2246 (54%) | 0.035 |
Middle | 1194 (47%) | 1343 (53%) | ||
High-income | 982 (49%) | 1002 (51%) | ||
Adult physical activity | Ideal (≥150 min/week) | 1931 (47%) | 2140 (53%) | 0.996 |
No ideal (<150 min/week) | 2333 (47%) | 2586 (53%) | ||
Child gender | Female | 2178 (47%) | 2454 (53%) | 0.484 |
Male | 2087 (48%) | 2283 (52%) | ||
Child physical activity | Ideal (≥7 h/week) | 2660 (47%) | 2955 (53%) | 0.881 |
No ideal (<7 h/week) | 1601 (48%) | 1767 (52%) | ||
Screen time | 4283 (47%) | 4754 (53%) |
Variable | n * | Mean | S.D. ** | 0.25 | Quantiles Median | 0.75 |
---|---|---|---|---|---|---|
Age years | 12,047 | 8.21 | 1.00 | 7.46 | 8.16 | 8.93 |
BMI Z-scores | 12,030 | 0.56 | 1.09 | −0.19 | 0.47 | 1.29 |
Factor (Stratum, If Any) | Level | Adjusted Odds Ratio [95% CI] | p-Value |
---|---|---|---|
Country | Hungary | Ref | |
Belgium | 1.86 [1.52–2.29] | <0.001 | |
Finland | 1.76 [1.43–2.16] | <0.001 | |
Greece | 1.02 [0.85–1.22] | 0.836 | |
Bulgaria | 1.91 [1.59–2.29] | <0.001 | |
Spain | 1.02 [0.81–1.28] | 0.850 | |
Family at risk of developing type 2 diabetes mellitus * | Non high risk | Ref | |
High risk | 1.11 [0.98–1.25] | 0.099 | |
Age of mother | <45 year | Ref | |
45–54 year | 0.81 [0.66–0.98] | 0.033 | |
55–64 year | 0.43 [0.03–7.07] | 0.558 | |
≥65 year | - | - | |
BMI mother ** | Not overweight (BMI < 25 kg/m2) | Ref | |
Overweight or obese (BMI ≥ 25 kg/m2) | 1.15 [1.03–1.29] | 0.013 | |
Education mother | Primary education level (≤9 year) | Ref | |
Secondary education level (10–14 year) | 0.83 [0.65–1.06] | 0.137 | |
Tertiary education level (≥15 year) | 0.64 [0.49–0.82] | 0.001 | |
Age of father | <45 year | Ref | |
45–54 year | 0.99 [0.87–1.14] | 0.945 | |
55–64 year | 1.13 [0.74–1.73] | 0.580 | |
≥65 year | 0.53 [0.08–3.28] | 0.496 | |
BMI father ** | Not overweight (BMI < 25 kg/m2) | Ref | |
Overweight or obese (BMI ≥ 25 kg/m2) | 1.05 [0.94–1.17] | 0.388 | |
Education father | Primary education level (≤9 year) | Ref | |
Secondary education level (10–14 year) | 1.16 [0.94–1.43] | 0.172 | |
Tertiary education level (≥15 year) | 0.99 [0.79–1.26] | 0.996 | |
Income status | Low | Ref | |
Middle | 0.85 [0.75–0.97] | 0.014 | |
High-income | 0.80 [0.69–0.93] | 0.003 | |
Adult physical activity | Ideal (≥150 min/week) | Ref | |
No ideal (<150 min/week) | 0.96 [0.86–1.07] | 0.469 | |
Child gender | Female | Ref | |
Male | 1.03 [0.93–1.14] | 0.559 | |
Child physical activity | Ideal (≥7 h/week) | Ref | |
No ideal (<7 h/week) | 0.85 [0.76–0.95] | 0.004 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radó, S.I.; Molnár, M.; Széll, R.; Szőllősi, G.J.; Törő, V.; Shehab, B.; Manios, Y.; Anastasiou, C.; Iotova, V.; Tsochev, K.; et al. Association between Screen Time and Sociodemographic Factors, Physical Activity, and BMI among Children in Six European Countries (Feel4Diabetes): A Cross-Sectional Study. Children 2024, 11, 458. https://doi.org/10.3390/children11040458
Radó SI, Molnár M, Széll R, Szőllősi GJ, Törő V, Shehab B, Manios Y, Anastasiou C, Iotova V, Tsochev K, et al. Association between Screen Time and Sociodemographic Factors, Physical Activity, and BMI among Children in Six European Countries (Feel4Diabetes): A Cross-Sectional Study. Children. 2024; 11(4):458. https://doi.org/10.3390/children11040458
Chicago/Turabian StyleRadó, Sándor Istvánné, Mónika Molnár, Róbert Széll, Gergő József Szőllősi, Viktória Törő, Bashar Shehab, Yannis Manios, Costas Anastasiou, Violeta Iotova, Kaloyan Tsochev, and et al. 2024. "Association between Screen Time and Sociodemographic Factors, Physical Activity, and BMI among Children in Six European Countries (Feel4Diabetes): A Cross-Sectional Study" Children 11, no. 4: 458. https://doi.org/10.3390/children11040458