Harnessing the Power of Artificial Intelligence in Cleft Lip and Palate: An In-Depth Analysis from Diagnosis to Treatment, a Comprehensive Review
Abstract
:1. Introduction
2. Deep Learning Algorithms for Automated CLP Diagnosis
2.1. AI for Predicting the Susceptibility to CLP
2.2. AI in Alveolar Bone Defect Grafting: Advancements and Applications
2.3. AI-Enhanced Orthodontics for Adolescent CLP Patients
2.4. Limitations and Future Directions
3. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mossey, P.A.; Catilla, E.E. Global Registry and Database on Craniofacial Anomalies: Report of a WHO Registry Meeting on Craniofacial Anomalies; World Health Organization: Geneva, Switzerland, 2003. [Google Scholar]
- Berkowitz, S. Cleft Lip and Palate: Diagnosis and Management; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Yu, Y.; Zuo, X.; He, M.; Gao, J.; Fu, Y.; Qin, C.; Meng, L.; Wang, W.; Song, Y.; Cheng, Y.; et al. Genome-wide analyses of non-syndromic cleft lip with palate identify 14 novel loci and genetic heterogeneity. Nat. Commun. 2017, 8, 14364. [Google Scholar] [CrossRef] [PubMed]
- Leslie, E.J.; Liu, H.; Carlson, J.C.; Shaffer, J.R.; Feingold, E.; Wehby, G.; Laurie, C.A.; Jain, D.; Laurie, C.C.; Doheny, K.F.; et al. A Genome-wide Association Study of Nonsyndromic Cleft Palate Identifies an Etiologic Missense Variant in GRHL3. Am. J. Hum. Genet. 2016, 98, 744–754. [Google Scholar] [CrossRef] [PubMed]
- Mossey, P.A.; Little, J.; Munger, R.G.; Dixon, M.J.; Shaw, W.C. Cleft lip and palate. Lancet 2009, 374, 1773–1785. [Google Scholar] [CrossRef] [PubMed]
- Murray, J.C. Gene/environment causes of cleft lip and/or palate. Clin. Genet. 2002, 61, 248–256. [Google Scholar] [CrossRef] [PubMed]
- Kumar, P.; Hussain, M.T.; Cardoso, E.; Hawary, M.B.; Hassanain, J. Facial clefts in Saudi Arabia: An epidemiologic analysis in 179 patients. Plast. Reconstr. Surg. 1991, 88, 955–958. [Google Scholar] [CrossRef] [PubMed]
- Borkar, A.S.; Mathur, A.K.; Mahaluxmivala, S. Epidemiology of facial clefts in the central province of Saudi Arabia. Br. J. Plast. Surg. 1993, 46, 673–675. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Health. Ministry of Health Statistical Book; Statistical Report of the Ministry of Health; The Ministry of Health: Riyadh, Saudi Arabia, 2008. [Google Scholar]
- Hagberg, C.; Larson, O.; Milerad, J. Incidence of cleft lip and palate and risks of additional malformations. Cleft Palate-Craniofacial J. Off. Publ. Am. Cleft Palate-Craniofacial Assoc. 1998, 35, 40–45. [Google Scholar] [CrossRef]
- Salari, N.; Darvishi, N.; Heydari, M.; Bokaee, S.; Darvishi, F.; Mohammadi, M. Global prevalence of cleft palate, cleft lip and cleft palate and lip: A comprehensive systematic review and meta-analysis. J. Stomatol. Oral Maxillofac. Surg. 2022, 123, 110–120. [Google Scholar] [CrossRef]
- Ramstad, T.; Ottem, E.; Shaw, W.C. Psychosocial adjustment in Norwegian adults who had undergone standardised treatment of complete cleft lip and palate. I. Education, employment and marriage. Scand. J. Plast. Reconstr. Surg. Hand Surg. 1995, 29, 251–257. [Google Scholar]
- Brantley, H.T.; Clifford, E. Maternal and child locus of control and field-dependence in cleft palate children. Cleft Palate J. 1979, 16, 183–187. [Google Scholar]
- Broder, H.; Strauss, R.P. Self-concept of early primary school age children with visible or invisible defects. Cleft Palate J. 1989, 26, 114–117; discussion 117–118. [Google Scholar] [PubMed]
- Leonard, B.J.; Brust, J.D.; Abrahams, G.; Sielaff, B. Self-concept of children and adolescents with cleft lip and/or palate. Cleft Palate-Craniofacial J. Off. Publ. Am. Cleft Palate-Craniofacial Assoc. 1991, 28, 347–353. [Google Scholar] [CrossRef]
- Persson, M.; Aniansson, G.; Becker, M.; Svensson, H. Self-concept and introversion in adolescents with cleft lip and palate. Scand. J. Plast. Reconstr. Surg. Hand Surg. 2002, 36, 24–27. [Google Scholar] [PubMed]
- Marcusson, A.; Paulin, G.; Ostrup, L. Facial appearance in adults who had cleft lip and palate treated in childhood. Scand. J. Plast. Reconstr. Surg. Hand Surg. 2002, 36, 16–23. [Google Scholar]
- Hunt, O.; Burden, D.; Hepper, P.; Johnston, C. The psychosocial effects of cleft lip and palate: A systematic review. Eur. J. Orthod. 2005, 27, 274–285. [Google Scholar] [CrossRef]
- Parker, S.E.; Mai, C.T.; Canfield, M.A.; Rickard, R.; Wang, Y.; Meyer, R.E.; Anderson, P.; Mason, C.A.; Collins, J.S.; Kirby, R.S.; et al. Updated National Birth Prevalence estimates for selected birth defects in the United States, 2004–2006. Birth Defects Res. Part A Clin. Mol. Teratol. 2010, 88, 1008–1016. [Google Scholar]
- Wehby, G.L.; Cassell, C.H. The impact of orofacial clefts on quality of life and healthcare use and costs. Oral Dis. 2010, 16, 3–10. [Google Scholar] [CrossRef]
- Berkowitz, S. Cleft lip and palate research: An updated state of the art. Section III. Orofacial growth and dentistry. Cleft Palate J. 1977, 14, 288–301. [Google Scholar]
- Berkowitz, S. The Facial Growth Pattern and the Amount of Palatal Bone Deficiency Relative to Cleft Size Should Be Considered in Treatment Planning. Plast. Reconstr. Surg. Glob. Open 2016, 4, e705. [Google Scholar] [CrossRef]
- Berkowitz, S. A multicenter retrospective 3D study of serial complete unilateral cleft lip and palate and complete bilateral cleft lip and palate casts to evaluate treatment: Part 1—The participating institutions and research aims. Cleft Palate-Craniofacial J. Off. Publ. Am. Cleft Palate-Craniofacial Assoc. 1999, 36, 413–424. [Google Scholar] [CrossRef]
- Casal, C.; Rivera, A.; Rubio, G.; Sentís-Vilalta, J.; Alonso, A.; Gay-Escoda, C. Examination of craniofacial morphology in 10-month to 5-year-old children with cleft lip and palate. Cleft Palate-Craniofacial J. Off. Publ. Am. Cleft Palate-Craniofacial Assoc. 1997, 34, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Manna, F.; Pensiero, S.; Clarich, G.; Guarneri, G.F.; Parodi, P.C. Cleft lip and palate: Current status from the literature and our experience. J. Craniofacial Surg. 2009, 20, 1383–1387. [Google Scholar] [CrossRef]
- Jensen, B.L.; Kreiborg, S.; Dahl, E.; Fogh-Andersen, P. Cleft lip and palate in Denmark, 1976–1981: Epidemiology, variability, and early somatic development. Cleft Palate J. 1988, 25, 258–269. [Google Scholar] [PubMed]
- Lestrel, P.E.; Berkowitz, S.; Takahashi, O. Shape changes in the cleft palate maxilla: A longitudinal study. Cleft Palate-Craniofacial J. Off. Publ. Am. Cleft Palate-Craniofacial Assoc. 1999, 36, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Mars, M.; James, D.R.; Lamabadusuriya, S.P. The Sri Lankan Cleft Lip and Palate Project: The unoperated cleft lip and palate. Cleft Palate J. 1990, 27, 3–6. [Google Scholar] [PubMed]
- Mars, M.; Houston, W.J. A preliminary study of facial growth and morphology in unoperated male unilateral cleft lip and palate subjects over 13 years of age. Cleft Palate J. 1990, 27, 7–10. [Google Scholar]
- Liao, Y.F.; Mars, M. Long-term effects of lip repair on dentofacial morphology in patients with unilateral cleft lip and palate. Cleft Palate-Craniofacial J. Off. Publ. Am. Cleft Palate-Craniofacial Assoc. 2005, 42, 526–532. [Google Scholar] [CrossRef]
- Kim, N.Y.; Baek, S.H. Cleft sidedness and congenitally missing or malformed permanent maxillary lateral incisors in Korean patients with unilateral cleft lip and alveolus or unilateral cleft lip and palate. Am. J. Orthod. Dentofac. Orthop. Off. Publ. Am. Assoc. Orthod. Its Const. Soc. Am. Board Orthod. 2006, 130, 752–758. [Google Scholar] [CrossRef]
- Ranta, R. Hypodontia and delayed development of the second premolars in cleft palate children. Eur. J. Orthod. 1983, 5, 145–148. [Google Scholar] [CrossRef]
- da Silva, A.P.; Costa, B.; de Carvalho Carrara, C.F. Dental anomalies of number in the permanent dentition of patients with bilateral cleft lip: Radiographic study. Cleft Palate-Craniofacial J. Off. Publ. Am. Cleft Palate-Craniofacial Assoc. 2008, 45, 473–476. [Google Scholar] [CrossRef]
- Al-Kharboush, G.H.; Al-Balkhi, K.M.; Al-Moammar, K. The prevalence of specific dental anomalies in a group of Saudi cleft lip and palate patients. Saudi Dent. J. 2015, 27, 75–80. [Google Scholar] [CrossRef] [PubMed]
- Al Jamal, G.A.; Hazza’a, A.M.; Rawashdeh, M.A. Prevalence of dental anomalies in a population of cleft lip and palate patients. Cleft Palate-Craniofacial J. Off. Publ. Am. Cleft Palate-Craniofacial Assoc. 2010, 47, 413–420. [Google Scholar]
- Pegelow, M.; Alqadi, N.; Karsten, A.L. The prevalence of various dental characteristics in the primary and mixed dentition in patients born with non-syndromic unilateral cleft lip with or without cleft palate. Eur. J. Orthod. 2012, 34, 561–570. [Google Scholar] [CrossRef] [PubMed]
- Paranaiba, L.M.; Coletta, R.D.; Swerts, M.S.; Quintino, R.P.; de Barros, L.M.; Martelli-Júnior, H. Prevalence of Dental Anomalies in Patients With Nonsyndromic Cleft Lip and/or Palate in a Brazilian Population. Cleft Palate-Craniofacial J. Off. Publ. Am. Cleft Palate-Craniofacial Assoc. 2013, 50, 400–405. [Google Scholar] [CrossRef] [PubMed]
- Hardin-Jones, M.A.; Jones, D.L. Speech production of preschoolers with cleft palate. Cleft Palate-Craniofacial J. Off. Publ. Am. Cleft Palate-Craniofacial Assoc. 2005, 42, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Hellquist, R.; Linder-Aronson, S.; Norling, M.; Ponten, B.; Stenberg, T. Dental abnormalities in patients with alveolar clefts, operated upon with or without primary periosteoplasty. Eur. J. Orthod. 1979, 1, 169–180. [Google Scholar] [CrossRef]
- Luijsterburg, A.J.; Rozendaal, A.M.; Vermeij-Keers, C. Classifying common oral clefts: A new approach after descriptive registration. Cleft Palate-Craniofacial J. Off. Publ. Am. Cleft Palate-Craniofacial Assoc. 2014, 51, 381–391. [Google Scholar]
- Watkins, S.E.; Meyer, R.E.; Strauss, R.P.; Aylsworth, A.S. Classification, epidemiology, and genetics of orofacial clefts. Clin. Plast. Surg. 2014, 41, 149–163. [Google Scholar] [CrossRef]
- Suzuki, S.; Marazita, M.L.; Cooper, M.E.; Miwa, N.; Hing, A.; Jugessur, A.; Natsume, N.; Shimozato, K.; Ohbayashi, N.; Suzuki, Y.; et al. Mutations in BMP4 are associated with subepithelial, microform, and overt cleft lip. Am. J. Hum. Genet. 2009, 84, 406–411. [Google Scholar] [CrossRef]
- Martin, R.A.; Hunter, V.; Neufeld-Kaiser, W.; Flodman, P.; Spence, M.A.; Furnas, D.; Martin, K.A. Ultrasonographic detection of orbicularis oris defects in first degree relatives of isolated cleft lip patients. Am. J. Med. Genet. 2000, 90, 155–161. [Google Scholar]
- Shkoukani, M.A.; Chen, M.; Vong, A. Cleft lip—A comprehensive review. Front. Pediatr. 2013, 1, 53. [Google Scholar] [CrossRef] [PubMed]
- Kernahan, D.A.; Stark, R.B. A new classification for cleft lip and cleft palate. Plast. Reconstr. Surg. Transplant. Bull. 1958, 22, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Nyberg, D.A.; Sickler, G.K.; Hegge, F.N.; Kramer, D.J.; Kropp, R.J. Fetal cleft lip with and without cleft palate: US classification and correlation with outcome. Radiology 1995, 195, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Veau, V. Division Palatine; Anatomie, Chirurgie, Phonétique; Masson et cie Paris: Paris, France, 1931. [Google Scholar]
- McBride, W.A.; McIntyre, G.T.; Carroll, K.; Mossey, P.A. Subphenotyping and Classification of Orofacial Clefts: Need for Orofacial Cleft Subphenotyping Calls for Revised Classification. Cleft Palate-Craniofacial J. Off. Publ. Am. Cleft Palate-Craniofacial Assoc. 2016, 53, 539–549. [Google Scholar] [CrossRef]
- Patcas, R.; Bornstein, M.M.; Schätzle, M.A.; Timofte, R. Artificial intelligence in medico-dental diagnostics of the face: A narrative review of opportunities and challenges. Clin. Oral Investig. 2022, 26, 6871–6879. [Google Scholar] [CrossRef]
- Habel, A.; Elhadi, N.; Sommerlad, B.; Powell, J. Delayed detection of cleft palate: An audit of newborn examination. Arch. Dis. Child. 2006, 91, 238–240. [Google Scholar] [CrossRef]
- Currie, G.; Hawk, K.E.; Rohren, E.; Vial, A.; Klein, R. Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging. J. Med. Imaging Radiat. Sci. 2019, 50, 477–487. [Google Scholar] [CrossRef]
- Soffer, S.; Ben-Cohen, A.; Shimon, O.; Amitai, M.M.; Greenspan, H.; Klang, E. Convolutional Neural Networks for Radiologic Images: A Radiologist’s Guide. Radiology 2019, 290, 590–606. [Google Scholar]
- Hiraiwa, T.; Ariji, Y.; Fukuda, M.; Kise, Y.; Nakata, K.; Katsumata, A.; Fujita, H.; Ariji, E. A deep-learning artificial intelligence system for assessment of root morphology of the mandibular first molar on panoramic radiography. Dento Maxillo Facial Radiol. 2019, 48, 20180218. [Google Scholar] [CrossRef]
- Ariji, Y.; Yanashita, Y.; Kutsuna, S.; Muramatsu, C.; Fukuda, M.; Kise, Y.; Nozawa, M.; Kuwada, C.; Fujita, H.; Katsumata, A.; et al. Automatic detection and classification of radiolucent lesions in the mandible on panoramic radiographs using a deep learning object detection technique. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2019, 128, 424–430. [Google Scholar]
- Ishibashi, K.; Ariji, Y.; Kuwada, C.; Kimura, M.; Hashimoto, K.; Umemura, M.; Nagao, T.; Ariji, E. Efficacy of a deep leaning model created with the transfer learning method in detecting sialoliths of the submandibular gland on panoramic radiography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2022, 133, 238–244. [Google Scholar] [CrossRef] [PubMed]
- McCullough, M.; Ly, S.; Auslander, A.; Yao, C.; Campbell, A.; Scherer, S.; Magee, W.P., 3rd. Convolutional Neural Network Models for Automatic Preoperative Severity Assessment in Unilateral Cleft Lip. Plast. Reconstr. Surg. 2021, 148, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Hallac, R.R.; Mishra, R.; Li, C.; Daescu, O.; Kane, A.A. Image Based Detection of Craniofacial Abnormalities using Feature Extraction by Classical Convolutional Neural Network. In Proceedings of the 2018 IEEE 8th International Conference on Computational Advances in Bio and Medical Sciences (ICCABS), Las Vegas, NV, USA, 18–20 October 2018; pp. 1–6. [Google Scholar]
- Descamps, M.J.; Golding, S.J.; Sibley, J.; McIntyre, A.; Alvey, C.; Goodacre, T. MRI for definitive in utero diagnosis of cleft palate: A useful adjunct to antenatal care? Cleft Palate-Craniofacial J. Off. Publ. Am. Cleft Palate-Craniofacial Assoc. 2010, 47, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Oftedal, A.; Bekkhus, M.; Haugen, G.N.; Czajkowski, N.O.; Kaasen, A. The impact of diagnosed fetal anomaly, diagnostic severity and prognostic ambiguity on parental depression and traumatic stress: A prospective longitudinal cohort study. Acta Obstet. Gynecol. Scand. 2022, 101, 1291–1299. [Google Scholar] [PubMed]
- Rey-Bellet, C.; Hohlfeld, J. Prenatal diagnosis of facial clefts: Evaluation of a specialised counselling. Swiss Med. Wkly. 2004, 134, 640–644. [Google Scholar] [CrossRef]
- Arangio, P.; Manganaro, L.; Pacifici, A.; Basile, E.; Cascone, P. Importance of fetal MRI in evaluation of craniofacial deformities. J. Craniofacial Surg. 2013, 24, 773–776. [Google Scholar] [CrossRef]
- Jurek, J.; Wójtowicz, W.; Wójtowicz, A. Syntactic pattern recognition-based diagnostics of fetal palates. Pattern Recognit. Lett. 2020, 133, 144–150. [Google Scholar] [CrossRef]
- Nakamoto, T.; Taguchi, A.; Verdonschot, R.G.; Kakimoto, N. Improvement of region of interest extraction and scanning method of computer-aided diagnosis system for osteoporosis using panoramic radiographs. Oral Radiol. 2019, 35, 143–151. [Google Scholar] [CrossRef]
- Kuwada, C.; Ariji, Y.; Kise, Y.; Funakoshi, T.; Fukuda, M.; Kuwada, T.; Gotoh, K.; Ariji, E. Detection and classification of unilateral cleft alveolus with and without cleft palate on panoramic radiographs using a deep learning system. Sci. Rep. 2021, 11, 16044. [Google Scholar]
- Kuwada, C.; Ariji, Y.; Kise, Y.; Fukuda, M.; Nishiyama, M.; Funakoshi, T.; Takeuchi, R.; Sana, A.; Kojima, N.; Ariji, E. Deep-learning systems for diagnosing cleft palate on panoramic radiographs in patients with cleft alveolus. Oral Radiol. 2023, 39, 349–354. [Google Scholar] [CrossRef]
- Li, Q.; Kim, Y.; Suktitipat, B.; Hetmanski, J.B.; Marazita, M.L.; Duggal, P.; Beaty, T.H.; Bailey-Wilson, J.E. Gene-Gene Interaction Among WNT Genes for Oral Cleft in Trios. Genet. Epidemiol. 2015, 39, 385–394. [Google Scholar] [PubMed]
- Liu, D.; Wang, M.; Yuan, Y.; Schwender, H.; Wang, H.; Wang, P.; Zhou, Z.; Li, J.; Wu, T.; Zhu, H.; et al. Gene-gene interaction among cell adhesion genes and risk of nonsyndromic cleft lip with or without cleft palate in Chinese case-parent trios. Mol. Genet. Genom. Med. 2019, 7, e00872. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Pei, Y.; Chen, S.; Guo, Y.; Ma, G.; Xu, T.; Zha, H. Volumetric Registration-Based Cleft Volume Estimation of Alveolar Cleft Grafting Procedures. In Proceedings of the 2020 IEEE 17th International Symposium on Biomedical Imaging (ISBI), Iowa City, IA, USA, 3–7 April 2020; pp. 99–103. [Google Scholar]
- Wang, X.; Pastewait, M.; Wu, T.H.; Lian, C.; Tejera, B.; Lee, Y.T.; Lin, F.C.; Wang, L.; Shen, D.; Li, S.; et al. 3D morphometric quantification of maxillae and defects for patients with unilateral cleft palate via deep learning-based CBCT image auto-segmentation. Orthod. Craniofacial Res. 2021, 24 (Suppl. S2), 108–116. [Google Scholar]
- Takada, K.; Yagi, M.; Horiguchi, E. Computational formulation of orthodontic tooth-extraction decisions. Part I: To extract or not to extract. Angle Orthod. 2009, 79, 885–891. [Google Scholar]
- Yagi, M.; Ohno, H.; Takada, K. Computational formulation of orthodontic tooth-extraction decisions. Part II: Which tooth should be extracted? Angle Orthod. 2009, 79, 892–898. [Google Scholar] [CrossRef]
- Xie, X.; Wang, L.; Wang, A. Artificial neural network modeling for deciding if extractions are necessary prior to orthodontic treatment. Angle Orthod. 2010, 80, 262–266. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.K.; Kim, T.W. New approach for the diagnosis of extractions with neural network machine learning. Am. J. Orthod. Dentofac. Orthop. 2016, 149, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Kong, D.; Tang, T.; Su, D.; Yang, P.; Wang, H.; Zhao, Z.; Liu, Y. Orthodontic Treatment Planning based on Artificial Neural Networks. Sci. Rep. 2019, 9, 2037. [Google Scholar] [CrossRef]
- Choi, H.I.; Jung, S.K.; Baek, S.H.; Lim, W.H.; Ahn, S.J.; Yang, I.H.; Kim, T.W. Artificial Intelligent Model With Neural Network Machine Learning for the Diagnosis of Orthognathic Surgery. J. Craniofacial Surg. 2019, 30, 1986–1989. [Google Scholar] [CrossRef]
- Shin, W.; Yeom, H.G.; Lee, G.H.; Yun, J.P.; Jeong, S.H.; Lee, J.H.; Kim, H.K.; Kim, B.C. Deep learning based prediction of necessity for orthognathic surgery of skeletal malocclusion using cephalogram in Korean individuals. BMC Oral Health 2021, 21, 130. [Google Scholar] [CrossRef]
- Dixon, M.J.; Marazita, M.L.; Beaty, T.H.; Murray, J.C. Cleft lip and palate: Understanding genetic and environmental influences. Nat. Rev. Genet. 2011, 12, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Beaty, T.H.; Taub, M.A.; Scott, A.F.; Murray, J.C.; Marazita, M.L.; Schwender, H.; Parker, M.M.; Hetmanski, J.B.; Balakrishnan, P.; Mansilla, M.A.; et al. Confirming genes influencing risk to cleft lip with/without cleft palate in a case-parent trio study. Hum. Genet. 2013, 132, 771–781. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, A.J.; Lie, R.T.; Solvoll, K.; Taylor, J.; McConnaughey, D.R.; Abyholm, F.; Vindenes, H.; Vollset, S.E.; Drevon, C.A. Folic acid supplements and risk of facial clefts: National population based case-control study. BMJ (Clin. Res. Ed.) 2007, 334, 464. [Google Scholar]
- Jamilian, A.; Sarkarat, F.; Jafari, M.; Neshandar, M.; Amini, E.; Khosravi, S.; Ghassemi, A. Family history and risk factors for cleft lip and palate patients and their associated anomalies. Stomatologija 2017, 19, 78–83. [Google Scholar] [PubMed]
- Hynes, P.J.; Earley, M.J. Assessment of secondary alveolar bone grafting using a modification of the Bergland grading system. Br. J. Plast. Surg. 2003, 56, 630–636. [Google Scholar] [CrossRef]
- Baqain, Z.H.; Anabtawi, M.; Karaky, A.A.; Malkawi, Z. Morbidity from anterior iliac crest bone harvesting for secondary alveolar bone grafting: An outcome assessment study. J. Oral Maxillofac. Surg. Off. J. Am. Assoc. Oral Maxillofac. Surg. 2009, 67, 570–575. [Google Scholar] [CrossRef] [PubMed]
- Swan, M.C.; Goodacre, T.E. Morbidity at the iliac crest donor site following bone grafting of the cleft alveolus. Br. J. Oral Maxillofac. Surg. 2006, 44, 129–133. [Google Scholar]
- Ma, L.; Hou, Y.; Liu, G.; Zhang, T. Effectiveness of presurgical orthodontics in cleft lip and palate patients with alveolar bone grafting: A systematic review. J. Stomatol. Oral Maxillofac. Surg. 2021, 122, 13–17. [Google Scholar] [CrossRef]
- Chetpakdeechit, W.; Pisek, P.; Pitiphat, W.; Rattanakanokchai, S. Cleft Size and Success of Secondary Alveolar Bone Grafting-A Systematic Review. Cleft Palate-Craniofacial J. Off. Publ. Am. Cleft Palate-Craniofacial Assoc. 2023, 60, 285–298. [Google Scholar] [CrossRef]
- Linderup, B.W.; Küseler, A.; Jensen, J.; Cattaneo, P.M. A novel semiautomatic technique for volumetric assessment of the alveolar bone defect using cone beam computed tomography. Cleft Palate-Craniofacial J. Off. Publ. Am. Cleft Palate-Craniofacial Assoc. 2015, 52, e47–e55. [Google Scholar]
- de Moura, P.M.; Hallac, R.; Kane, A.; Seaward, J. Improving the Evaluation of Alveolar Bone Grafts With Cone Beam Computerized Tomography. Cleft Palate-Craniofacial J. Off. Publ. Am. Cleft Palate-Craniofacial Assoc. 2016, 53, 57–63. [Google Scholar]
- Yu, X.; Huang, Y.; Li, W. Correlation between alveolar cleft morphology and the outcome of secondary alveolar bone grafting for unilateral cleft lip and palate. BMC Oral Health 2022, 22, 251. [Google Scholar]
- Shaw, W.C.; Semb, G. Current approaches to the orthodontic management of cleft lip and palate. J. R. Soc. Med. 1990, 83, 30–33. [Google Scholar] [CrossRef] [PubMed]
- Aung, Y.Y.M.; Wong, D.C.S.; Ting, D.S.W. The promise of artificial intelligence: A review of the opportunities and challenges of artificial intelligence in healthcare. Br. Med. Bull. 2021, 139, 4–15. [Google Scholar]
- Wang, A.; Xiu, X.; Liu, S.; Qian, Q.; Wu, S. Characteristics of Artificial Intelligence Clinical Trials in the Field of Healthcare: A Cross-Sectional Study on ClinicalTrials.gov. Int. J. Environ. Res. Public Health 2022, 19, 13691. [Google Scholar]
- Khan, B.; Fatima, H.; Qureshi, A.; Kumar, S.; Hanan, A.; Hussain, J.; Abdullah, S. Drawbacks of Artificial Intelligence and Their Potential Solutions in the Healthcare Sector. Biomed. Mater. Devices 2023, 1, 731–738. [Google Scholar] [CrossRef]
Author | Objective | Sample | AI Methods | Findings |
---|---|---|---|---|
McCullough et al., 2021 [56] | Diagnosis and severity assessment | Eight experts reviewed 800 preoperative images from unilateral patients with CL in the United Kingdom. These images were manually annotated for cleft-specific landmarks and rated using a previously validated severity scale. | Five CNN models were trained for landmark detection and severity grade assignment | All five models demonstrated excellent performance in both landmark detection and severity grade assignment, with the residual network model performing the best (89%). The mobile device–compatible network, MobileNet, exhibiting high accuracy (86%). |
Agarwal et al., 2018 [57] | Diagnosis and severity assessment | Photographs of 136 bilateral CLP, 670 normal cases, and 412 unilateral CLP. | CNN, specifically AlexNet model and SVM classifier Radial Basis Function | The success rate averaged at 95%. The accuracy for UCLP and BCLP were 92% and normal cases at 99%. |
Jurek et al., 2020 [62] | Pre-natal Diagnosis | 49 histograms, 13 of which are diagnosed with CLP, and 36 are normal at 11–13 weeks of gestation. | DL algorithm, applying a parser for a GDPLL(k) string grammar (Generalized Dynamically Programmed LL(k) grammar) for classifying abnormalities (in the recognition phase) | The average efficiency was 81.6% in diagnosing CP prenatally, with 40 out of 49 correctly diagnosed (29 normal cases and 11 cases with CLP. |
Kuwada et al., 2021 [64] | Diagnosis | Panoramic radiographs of 383 patients with CA, both with and without CP, and 210 patients without any cleft anomalies. | Two DL models on the DetectNet | The overall accuracy of their second model surpassed that of the initial model and outperformed even human observers, thereby underlining the immense potential of DL algorithms in assisting healthcare professionals. Model 1 had a false positive detection accuracy in 12/30, while model 2 had reduced false positive detection in 1/30. |
Kuwada et al., 2021 [64] | Diagnosis | Panoramic radiographs of 491 patients with unilateral or bilateral CA. | Two DL models on the DetectNet | Models A and B demonstrated high areas under the receiver operating characteristic curve of 0.95 and 0.93, respectively, outperforming the radiologists whose scores were 0.70 and 0.63. |
Li et al., 2015 [66] | Gene interactions | A trio-based design to examine the collective impact of multiple genetic variants within the WNT gene family on the risk of developing oral clefts. | G × G interactions using machine learning and regression-based methods | Significant gene-gene interactions among specific WNT genes, suggesting a complex relationship between these genes in the etiology of oral clefts and identified specific combinations of genetic variants that increased the susceptibility to oral clefts |
Liu et al., 2019 [67] | Gene interactions | 1475 CLP case-parent trios and 1962 controls and analyzed 1455 single-nucleotide variation (SNV) in 158 candidate cell adhesion genes. | A machine learning algorithm was used to investigate both two-way and multi-way interactions that may affect the risk of CLP | The findings reveal significant gene-gene interactions among three genes (CDH1, CDH2, and CTNNA2) involved in cell adhesion pathways. |
Zhang et al., 2020 [68] | Diagnosis and alveolar graft assessment | The dataset consists of 21 CBCT images of unilateral and bilateral CLP patients to undergo the secondary alveolar cleft grafting surgery. | A 3D U-Net model and parameterized the non-linear mapping from the one-channel intensity CBCT image to six-channel inverse deformation vector fields (DVF). | The average accuracy was as high as 92% in estimating graft volumes |
Wang et al., 2021 [69] | Diagnosis and maxillary defects | CBCT images of 60 patients with unilateral CP were acquired. | DL algorithms to assess the maxilla and its defects. | The success rate averaged segmentation accuracy of 96%, surpassing manual methods. |
Takada et al., 2009 [70] | Orthodontic extraction decision | 188 conventional orthodontic records of patients with good treatment outcomes were collected. | A mathematical model | The model’s accuracy was 90.4%. Overjet and upper and lower arch length discrepancies were identified as the key factors influencing extraction decisions. |
Yagi et al., 2009 [71] | Orthodontic extraction decision | 193 females who underwent orthodontic tooth-extraction treatment that was considered successful. | A mathematical model | The model’s accuracy was 86%. Overjet and upper incisor protrusion were identified as the key factors influencing extraction decisions. |
Xie et al., 2010 [72] | Orthodontic extraction decision | 200 patients; among them, 120 were accepted for extraction treatments, and 80 were chosen for non-extraction treatments. | DL algorithms using ANN | 80% accuracy rate was achieved for differentiating between extraction and non-extraction decisions. |
Jung and Kim, 2016 [73] | Orthodontic extraction decision | 156 patients with 12 cephalometric variables and 6 indexes. | Four neural network machine learning models | 93% identification accuracy for patients in need of extractions, with an overall accuracy of 84% for the extraction plan. |
Li et al., 2019 [74] | Orthodontic extraction decision | 302 cases from the Department of Orthodontics, West China Hospital of Stomatology. | DL algorithms using ANN | An accuracy of 94% in predicting the need for extraction, with an anchorage pattern accuracy of approximately 92.8%. The curves of Spee, angle ANB, and upper arch crowding were important features for accurate prediction. |
Choi et al., 2019 [75] | Orthognathic surgery | 316 cases of Korean patients who visited the Department of Orthodontics, Seoul National University Dental Hospital. | DL algorithms using ANN | 97% accuracy for discerning the suitability of surgery versus non-surgical methods. Achieved 95% in the control group and 100% in the experimental group, with an overall accuracy of 97% in identifying cases requiring extractions. |
Shin et al., 2021 [76] | Orthognathic surgery | 840 Korean patients (244 with Class II malocclusion, 447 with Class III, and 149 with facial asymmetry). | DL algorithms using CNN | An accuracy of 95.4%, sensitivity of 84.4%, and a specificity as high as 99.3% was achieved in determining the need for orthognathic surgery. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almoammar, K.A. Harnessing the Power of Artificial Intelligence in Cleft Lip and Palate: An In-Depth Analysis from Diagnosis to Treatment, a Comprehensive Review. Children 2024, 11, 140. https://doi.org/10.3390/children11020140
Almoammar KA. Harnessing the Power of Artificial Intelligence in Cleft Lip and Palate: An In-Depth Analysis from Diagnosis to Treatment, a Comprehensive Review. Children. 2024; 11(2):140. https://doi.org/10.3390/children11020140
Chicago/Turabian StyleAlmoammar, Khalid A. 2024. "Harnessing the Power of Artificial Intelligence in Cleft Lip and Palate: An In-Depth Analysis from Diagnosis to Treatment, a Comprehensive Review" Children 11, no. 2: 140. https://doi.org/10.3390/children11020140
APA StyleAlmoammar, K. A. (2024). Harnessing the Power of Artificial Intelligence in Cleft Lip and Palate: An In-Depth Analysis from Diagnosis to Treatment, a Comprehensive Review. Children, 11(2), 140. https://doi.org/10.3390/children11020140