The Relationship Between Asthma and Food Allergies in Children
Abstract
:1. Introduction
2. Asthma–Food Allergy Comorbidity
2.1. Co-Morbidity Prevalence and Temporal Development
2.2. Risk Factors
2.3. Severity of Symptoms in Subjects with Asthma and Food Allergy
2.3.1. Food Allergy and Lung Function
2.3.2. Food Allergy and Asthma Exacerbations
2.3.3. Anaphylaxis and Severe Reactions to Food in Asthmatic Children
3. Sensitization and Exposure
4. Molecular Mechanisms of Allergic Reactions
4.1. Mechanism of Allergic Airway Reactions
4.2. Mechanism of Allergic Food Reactions
4.3. The Molecular Link Between Asthma and Food Allergies
5. Treatments and Therapies for Comorbid Asthma and Food Allergies
6. Novel Treatments
6.1. Oral Immunotherapy to Foods in Children with Asthma and Food Allergies
6.2. Biologics in Children with Asthma and Food Allergies
6.2.1. Omalizumab
6.2.2. Other Biologics
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Di Palmo, E.; Gallucci, M.; Cipriani, F.; Bertelli, L.; Giannetti, A.; Ricci, G. Asthma and Food Allergy: Which Risks? Medicina 2019, 55, 509. [Google Scholar] [CrossRef] [PubMed]
- Worldwide variations in the prevalence of asthma symptoms: The International Study of Asthma and Allergies in Childhood (ISAAC). Eur. Respir. J. 1998, 12, 315–335. [CrossRef]
- Mallol, J.; Crane, J.; von Mutius, E.; Odhiambo, J.; Keil, U.; Stewart, A.; ISAAC Phase Three Study Group. The International Study of Asthma and Allergies in Childhood (ISAAC) Phase Three: A global synthesis. Allergol. Immunopathol. 2013, 41, 73–85. [Google Scholar] [CrossRef] [PubMed]
- Asher, M.I.; Rutter, C.E.; Bissell, K.; Chiang, C.Y.; El Sony, A.; Ellwood, E.; Ellwood, P.; García-Marcos, L.; Marks, G.B.; Morales, E.; et al. Is the worldwide burden of asthma symptoms in school children changing? Global Asthma Network Phase I. Lancet 2021, 398, 1569–1580. [Google Scholar] [CrossRef]
- Spolidoro, G.C.I.; Amera, Y.T.; Ali, M.M.; Nyassi, S.; Lisik, D.; Ioannidou, A.; Rovner, G.; Khaleva, E.; Venter, C.; van Ree, R.; et al. Frequency of food allergy in Europe: An updated systematic review and meta-analysis. Allergy 2023, 78, 351–368. [Google Scholar] [CrossRef] [PubMed]
- Foong, R.X.; Du Toit, G.; Fox, A.T. Mini Review—Asthma and Food Allergy. Curr. Pediatr. Rev. 2018, 14, 164–170. [Google Scholar] [CrossRef]
- Hill, D.A.; Spergel, J.M. The atopic march: Critical evidence and clinical relevance. Ann. Allergy Asthma Immunol. 2018, 120, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Rhodes, H.L.; Thomas, P.; Sporik, R.; Holgate, S.T.; Cogswell, J.J. A birth cohort study of subjects at risk of atopy: Twenty-two-year follow-up of wheeze and atopic status. Am. J. Respir. Crit. Care Med. 2002, 165, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Alduraywish, S.A.; Standl, M.; Lodge, C.J.; Abramson, M.J.; Allen, K.J.; Erbas, B.; Von Berg, A.; Heinrich, J.; Lowe, A.J.; Dharmage, S.C. Is there a march from early food sensitization to later childhood allergic airway disease? Results from two prospective birth cohort studies. Pediatr. Allergy Immunol. 2017, 28, 30–37. [Google Scholar] [CrossRef]
- Ödling, M.; Wang, G.; Andersson, N.; Hallberg, J.; Janson, C.; Bergström, A.; Melén, E.; Kull, I. Characterization of Asthma Trajectories from Infancy to Young Adulthood. J. Allergy Clin. Immunol. Pract. 2021, 9, 2368–2376. [Google Scholar] [CrossRef]
- Chang, T.S.; Lemanske, R.F., Jr.; Guilbert, T.W.; Gern, J.E.; Coen, M.H.; Evans, M.D.; Gangnon, R.E.; David Page, C.; Jackson, D.J. Evaluation of the modified asthma predictive index in high-risk preschool children. J. Allergy Clin. Immunol. Pract. 2013, 1, 152–156. [Google Scholar] [CrossRef] [PubMed]
- Caffarelli, C.; Garrubba, M.; Greco, C.; Mastrorilli, C.; Povesi Dascola, C. Asthma and Food Allergy in Children: Is There a Connection or Interaction? Front. Pediatr. 2016, 4, 34. [Google Scholar] [CrossRef] [PubMed]
- Vega, F.; Panizo, C.; Dordal, M.T.; González, M.L.; Velázquez, E.; Valero, A.; Sánchez, M.C.; Rondón, C.; Montoro, J.; Matheu, V.; et al. Relationship between respiratory and food allergy and evaluation of preventive measures. Allegrol. Immunopathol. 2016, 44, 263–275. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, A.; Kumar, R.; Pangamic, J.A.; Sullivan, C.L.; Caruso, D.M.; Costello, J.; Meyer, K.E.; Vucic, Y.; Gupta, R.; Kim, J.S.; et al. Food allergy is associated with an increased risk of asthma. Clin. Exp. Allergy 2009, 39, 261–270. [Google Scholar] [CrossRef] [PubMed]
- Fong, W.C.G.; Chan, A.; Zhang, H.; Holloway, J.W.; Roberts, G.; Kurukulaaratchy, R.; Arshad, S.H. Childhood food allergy and food allergen sensitisation are associated with adult airways disease: A birth cohort study. Pediatr. Allergy Immunol. 2021, 32, 1764–1772. [Google Scholar] [CrossRef]
- Pénard-Morand, C.; Raherison, C.; Kopferschmitt, C.; Caillaud, D.; Lavaud, F.; Charpin, D.; Bousquet, J.; Annesi-Maesano, I. Prevalence of food allergy and its relationship to asthma and allergic rhinitis in schoolchildren. Allergy 2005, 60, 1165–1171. [Google Scholar] [CrossRef]
- Ziyab, A.H. Prevalence of food allergy among schoolchildren in Kuwait and its association with the coexistence and severity of asthma, rhinitis, and eczema: A cross-sectional study. World Allergy Organ. J. 2019, 12, 100024. [Google Scholar] [CrossRef]
- Hansen, M.M.; Nissen, S.P.; Halken, S.; Høst, A. The natural course of cow’s milk allergy and the development of atopic diseases into adulthood. Pediatr. Allergy Immunol. 2021, 32, 727–733. [Google Scholar] [CrossRef]
- Kulig, M.; Bergmann, R.; Klettke, U.; Wahn, V.; Tacke, U.; Wahn, U. Natural course of sensitization to food and inhalant allergens during the first 6 years of life. J. Allergy Clin. Immunol. 1999, 103, 1173–1179. [Google Scholar] [CrossRef]
- Paller, A.S.; Spergel, J.M.; Mina-Osorio, P.; Irvine, A.D. The atopic march and atopic multimorbidity: Many trajectories, many pathways. J. Allergy Clin. Immunol. 2019, 143, 46–55. [Google Scholar] [CrossRef]
- Maiello, N.; Giannetti, A.; Ricci, G.; Cinicola, B.; Carello, R.; Indolfi, C.; Caffarelli, C.; Marseglia, A.; Calvani, M.; Miraglia Del Giudice, M.; et al. Atopic dermatitis and atopic march: Which link? Acta Biomed. 2021, 92, e2021525. [Google Scholar]
- Belgrave, D.C.; Granell, R.; Simpson, A.; Guiver, J.; Bishop, C.; Buchan, I.; Henderson, A.J.; Custovic, A. Developmental profiles of eczema, wheeze, and rhinitis: Two population-based birth cohort studies. PLoS Med. 2014, 11, e1001748. [Google Scholar] [CrossRef]
- Gabryszewski, S.J.; Hill, D.A. One march, many paths: Insights into allergic march trajectories. Ann. Allergy Asthma Immunol. 2021, 127, 293–300. [Google Scholar] [CrossRef]
- Caffarelli, C.; Di Mauro, D.; Mastrorilli, C.; Bottau, P.; Cipriani, F.; Ricci, G. Solid Food Introduction and the Development of Food Allergies. Nutrients 2018, 10, 1790. [Google Scholar] [CrossRef]
- Demenais, F.; Margaritte-Jeannin, P.; Barnes, K.C.; Cookson, W.O.C.; Altmüller, J.; Ang, W.; Barr, R.G.; Beaty, T.H.; Becker, A.B.; Beilby, J.; et al. Multiancestry association study identifies new asthma risk loci that colocalize with immune-cell enhancer marks. Nat. Genet. 2018, 50, 42–53. [Google Scholar] [CrossRef]
- Ferreira, M.A.; Mathur, R.; Vonk, J.M.; Szwajda, A.; Brumpton, B.; Granell, R.; Brew, B.K.; Ullemar, V.; Lu, Y.; Jiang, Y.; et al. Genetic architectures of childhood- and adult-onset asthma are partly distinct. Am. J. Hum. Genet. 2019, 104, 665–684. [Google Scholar] [CrossRef]
- Pividori, M.; Schoettler, N.; Nicolae, D.L.; Ober, C.; Im, H.K. Shared and distinct genetic risk factors for childhood-onset and adult-onset asthma: Genome-wide and transcriptome-wide studies. Lancet Respir. Med. 2019, 7, 509–522. [Google Scholar] [CrossRef]
- Ferreira, M.A.; Vonk, J.M.; Baurecht, H.; Marenholz, I.; Tian, C.; Hoffman, J.D.; Helmer, Q.; Tillander, A.; Ullemar, V.; van Dongen, J.; et al. Shared genetic origin of asthma, hay fever and eczema elucidates allergic disease biology. Nat. Genet. 2017, 49, 1752–1757. [Google Scholar] [CrossRef]
- Suaini, N.H.A.; Wang, Y.; Soriano, V.X.; Martino, D.J.; Allen, K.J.; Ellis, J.A.; Koplin, J.J. Genetic determinants of paediatric food allergy: A systematic review. Allergy 2019, 74, 1631–1648. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, Q.; Wu, C.; Jin, Y. Genetic variants of the C11orf30-LRRC32 region are associated with childhood asthma in the Chinese population. Allergol. Immunopathol. 2020, 48, 390–394. [Google Scholar] [CrossRef] [PubMed]
- Karpathiou, G.; Papoudou-Bai, A.; Ferrand, E.; Dumollard, J.M.; Peoc’h, M. STAT6: A review of a signaling pathway implicated in various diseases with a special emphasis in its usefulness in pathology. Pathol. Res. Pract. 2021, 223, 153477. [Google Scholar] [CrossRef] [PubMed]
- Biagini, J.M.; Kroner, J.W.; Baatyrbek Kyzy, A.; Gonzales, A.; He, H.; Stevens, M.; Grashel, B.; Spagna, D.; Paul, S.; Patel, R.; et al. Longitudinal atopic dermatitis endotypes: An atopic march paradigm that includes Black children. J. Allergy Clin. Immunol. 2022, 149, 1702–1710. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, C.; Li, Y.; Norbäck, D.; Murthy, P.; Sram, R.J.; Deng, Q. Early-life exposure to air pollution associated with food allergy in children: Implications for ‘one allergy’ concept. Environ. Res. 2023, 216, 114713. [Google Scholar] [CrossRef]
- Baloh, C.H.; Mathias, R.A. Recent progress in the genetic and epigenetic underpinnings of atopy. Allergy Clin. Immunol. 2023, 151, 60–69. [Google Scholar] [CrossRef]
- Cheng, Z.X.; Wu, Y.X.; Jie, Z.J.; Li, X.J.; Zhang, J. Genetic evidence on the causality between gut microbiota and various asthma phenotypes: A two-sample Mendelian randomization study. Front. Cell. Infect. Microbiol. 2024, 13, 1270067. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Guo, Q.; Zhao, J.; Kang, W.; Lu, R.; Long, Z.; Huang, L.; Chen, Y.; Zhao, A.; Wu, J.; et al. Assessing causal relationships between gut microbiota and asthma: Evidence from two sample Mendelian randomization analysis. Front. Immunol. 2023, 14, 1148684. [Google Scholar] [CrossRef]
- Gabryszewski, S.J.; Dudley, J.; Grundmeier, R.W.; Hill, D.A. Early-life environmental exposures associate with individual and cumulative allergic morbidity. Pediatr. Allergy Immunol. 2021, 32, 1089–1093. [Google Scholar] [CrossRef]
- Sabounchi, S.; Bollyky, J.; Nadeau, K. Review of environmental impact on the epigenetic regulation of atopic diseases. Curr. Allergy Asthma Rep. 2015, 15, 33. [Google Scholar] [CrossRef]
- Kirjavainen, P.V.; Karvonen, A.M.; Adams, R.I.; Täubel, M.; Roponen, M.; Tuoresmäki, P.; Loss, G.; Jayaprakash, B.; Depner, M.; Ege, M.J.; et al. Farm-like indoor microbiota in non-farm homes protects children from asthma development. Nat. Med. 2019, 25, 1089–1095. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, Z.; Berhane, K.; Urman, R.; Chatzi, V.L.; Breton, C.; Gilliland, F.D. The Dynamic Relationship Between Asthma and Obesity in Schoolchildren. Am. Epidemiol. 2020, 189, 583–591. [Google Scholar] [CrossRef] [PubMed]
- di Palmo, E.; Filice, E.; Cavallo, A.; Caffarelli, C.; Maltoni, G.; Miniaci, A.; Ricci, G.; Pession, A. Childhood obesity and respiratory diseases: Which Link? Children 2021, 8, 177. [Google Scholar] [CrossRef] [PubMed]
- Wood, L.G.; Garg, M.L.; Gibson, P.G. A high-fat challenge increases airway inflammation and impairs bronchodilator recovery in asthma. Allergy Clin. Immunol. 2011, 127, 1133–1140. [Google Scholar] [CrossRef]
- Lang, J.E.; Mougey, E.B.; Hossain, J.; Livingston, F.; Balagopal, P.B.; Langdon, S.; Lima, J.J. Fish oil supplementation in overweight/obese patients with uncontrolled asthma. A randomized trial. Ann. Am. Thorac. Soc. 2019, 16, 554–562. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Beltrán-Velasco, A.I.; Redondo-Flórez, L.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Global Impacts of Western Diet and Its Effects on Metabolism and Health: A Narrative Review. Nutrients 2023, 15, 2749. [Google Scholar] [CrossRef]
- Hoppenbrouwers, T.; Cvejić Hogervorst, J.H.; Garssen, J.; Wichers, H.J.; Willemsen, L.E.M. Long Chain Polyunsaturated Fatty Acids (LCPUFAs) in the Prevention of Food Allergy. Front. Immunol. 2019, 10, 1118. [Google Scholar] [CrossRef] [PubMed]
- Perry, T.T.; Grant, T.L.; Dantzer, J.A.; Udemgba, C.; Jefferson, A.A. Impact of socioeconomic factors on allergic diseases. Allergy Clin. Immunol. 2024, 153, 368–377. [Google Scholar] [CrossRef] [PubMed]
- Pollack, C.E.; Roberts, L.C.; Peng, R.D.; Cimbolic, P.; Judy, D.; Balcer-Whaley, S.; Grant, T.; Rule, A.; Deluca, S.; Davis, M.F.; et al. Association of a housing mobility program with childhood asthma symptoms and exacerbations. JAMA 2023, 329, 1671–1681. [Google Scholar] [CrossRef]
- Udemgba, C.; Sarkaria, S.K.; Gleeson, P.; Bryant-Stephens, T.; Ogbogu, P.U.; Khoury, P.; Apter, A.J. New considerations of health disparities within allergy and immunology. Allergy Clin. Immunol. 2023, 151, 314–323. [Google Scholar] [CrossRef]
- Tackett, A.P.; Farrow, M.L.; McQuaid, E.L. Food security, utilization of food assistance programs, and caregiver perceptions of food-induced anaphylaxis risk in children with food allergies. Pediatr. Allergy Immunol. Pulmonol. 2018, 31, 91–96. [Google Scholar] [CrossRef]
- Sherenian, M.G.; Singh, A.M.; Arguelles, L.; Balmert, L.; Caruso, D.; Wang, X.; Pongracic, J.; Kumar, R. Association of food allergy and decreased lung function in children and young adults with asthma. Ann. Allergy Asthma Immunol. 2018, 121, 588–593.e1. [Google Scholar] [CrossRef]
- Peters, R.L.; Soriano, V.X.; Lycett, K.; Flynn, C.; Idrose, N.S.; Tang, M.L.K.; Wijesuriya, R.; Allen, K.J.; Ranganathan, S.; Lowe, A.J.; et al. Infant food allergy phenotypes and association with lung function deficits and asthma at age 6 years: A population-based, prospective cohort study in Australia. Lancet Child Adolesc. Health 2023, 7, 636–647. [Google Scholar] [CrossRef] [PubMed]
- Friedlander, J.L.; Sheehan, W.J.; Baxi, S.N.; Kopel, L.S.; Gaffin, J.M.; Ozonoff, A.; Fu, C.; Gold, D.R.; Phipatanakul, W. Food allergy and increased asthma morbidity in a School-based Inner-City Asthma Study. J. Allergy Clin. Immunol. Pract. 2013, 1, 479–484. [Google Scholar] [CrossRef] [PubMed]
- Zicari, A.M.; Indinnimeo, L.; De Castro, G.; Zappalà, D.; Tancredi, G.; Bonci, E.; Celani, C.; Duse, M. Food allergy and the development of asthma symptoms. Int. J. Immunopathol. Pharmacol. 2012, 25, 731–740. [Google Scholar] [CrossRef]
- Caffarelli, C.; Cavagni, G.; Giordano, S.; Terzi, V.; Perrone, F. Reduced pulmonary function in multiple food-induced, exercise-related episodes of anaphylaxis. J. Allergy Clin. Immunol. 1996, 98, 762–765. [Google Scholar] [CrossRef] [PubMed]
- Simpson, A.B.; Yousef, E.; Hossain, J. Association between peanut allergy and asthma morbidity. J. Pediatr. 2010, 156, 777–781. [Google Scholar] [CrossRef]
- Ernst, P.; Habbick, B.; Suissa, S.; Hemmelgarn, B.; Cockcroft, D.; Buist, A.S.; Horwitz, R.I.; McNutt, M.; Spitzer, W.O. Is the association between inhaled beta-agonist use and life-threatening asthma because of confounding by severity? Am. Rev. Respir. Dis. 1993, 148, 75–79. [Google Scholar] [CrossRef]
- Vogel, N.M.; Katz, H.T.; Lopez, R.; Lang, D.M. Food allergy is associated with potentially fatal childhood asthma. J. Asthma 2008, 45, 862–866. [Google Scholar] [CrossRef]
- Roberts, G.; Patel, N.; Levi-Schaffer, F.; Habibi, P.; Lack, G. Food allergy as a risk factor for life-threatening asthma in childhood: A case-controlled study. J. Allergy Clin. Immunol. 2003, 112, 168–174. [Google Scholar] [CrossRef] [PubMed]
- van Erp, F.C.; Knulst, A.C.; Kentie, P.A.; Pasmans, S.G.; van der Ent, C.K.; Meijer, Y. Can we predict severe reactions during peanut challenges in children? Pediatr. Allergy Immunol. 2013, 24, 596–602. [Google Scholar] [CrossRef]
- Boyano-Martínez, T.; García-Ara, C.; Pedrosa, M.; Díaz-Pena, J.M.; Quirce, S. Accidental allergic reactions in children allergic to cow’s milk proteins. Allergy Clin. Immunol. 2009, 123, 883–888. [Google Scholar] [CrossRef]
- Bock, S.A.; Muñoz-Furlong, A.; Sampson, H.A. Further fatalities caused by anaphylactic reactions to food, 2001–2006. J. Allergy Clin. Immunol. 2007, 119, 1016–1018. [Google Scholar] [CrossRef]
- Calvani, M.; Cardinale, F.; Martelli, A.; Muraro, A.; Pucci, N.; Savino, F.; Zappalà, D.; Panetta, V.; The Italian Society of Pediatric Allergy and Immunology (SIAIP) anaphylaxis’ study group. Risk factors for severe pediatric food anaphylaxis in Italy. Pediatr. Allergy Immunol. 2011, 22, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Summers, C.W.; Pumphrey, R.S.; Woods, C.N.; McDowell, G.; Pemberton, P.W.; Arkwright, P.D. Factors predicting ana- phylaxis to peanuts and tree nuts in patients referred to a specialist center. Allergy Clin. Immunol. 2008, 121, 632–638. [Google Scholar] [CrossRef] [PubMed]
- Jerschow, E.; Lin, R.Y.; Scaperotti, M.M.; McGinn, A.P. Fatal anaphylaxis in the United States, 1999–2010: Temporal patterns and demographic associations. J. Allergy Clin. Immunol. 2014, 134, 1318–1328.e7. [Google Scholar] [CrossRef]
- Anagnostou, A.; Sharma, V.; Herbert, L.; Turner, P.J. Fatal Food Anaphylaxis: Distinguishing Fact from Fiction. J. Allergy Clin. Immunol. Pract. 2022, 10, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Turner, P.J.; Arasi, S.; Ballmer-Weber, B.; Baseggio Conrado, A.; Deschildre, A.; Gerdts, J.; Halken, S.; Muraro, A.; Patel, N.; Van Ree, R.; et al. Global Allergy, Asthma European Network (GA2LEN) Food Allergy Guideline Group. Risk factors for severe reactions in food allergy: Rapid evidence review with meta-analysis. Allergy 2022, 77, 2634–2652. [Google Scholar] [CrossRef]
- Caffarelli, C.; Cavagni, G.; Menzies, I.S.; Bertolini, P.; Atherton, D.J. Elimination diet and intestinal permeability in atopic eczema: A preliminary study. Clin. Exp. Allergy 1993, 23, 28–31. [Google Scholar] [CrossRef]
- Spergel, J.M.; Mizoguchi, E.; Brewer, J.P.; Martin, T.R.; Bhan, A.K.; Geha, R.S. Epicutaneous sensitization with protein antigen induces localized allergic dermatitis and hyperresponsiveness to methacholine after single exposure to aerosolized antigen in mice. J. Clin. Investig. 1998, 101, 1614–1622. [Google Scholar] [CrossRef]
- Stukus, D.R.; Prince, B.T. Asthma and food allergy: A nuanced relationship. J. Food Allergy 2023, 5, 33–37. [Google Scholar] [CrossRef]
- Quirce, S.; Diaz-Perales, A. Diagnosis and management of grain-induced asthma. Allergy Asthma Immunol. Res. 2013, 5, 348–356. [Google Scholar] [CrossRef]
- Sindher, S.B.; Fiocchi, A.; Zuberbier, T.; Arasi, S.; Wood, R.A.; Chinthrajah, R.S. The Role of Biologics in the Treatment of Food Allergy. J. Allergy Clin. Immunol. Pract. 2024, 12, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Jutel, M.; Agache, I.; Zemelka-Wiacek, M.; Akdis, M.; Chivato, T.; Del Giacco, S.; Gajdanowicz, P.; Gracia, I.E.; Klimek, L.; Lauerma, A.; et al. Nomenclature of allergic diseases and hypersensitivity reactions: Adapted to modern needs: An EAACI position paper. Allergy 2023, 78, 2851–2874. [Google Scholar] [CrossRef] [PubMed]
- Brusselle, G.G.; Koppelman, G.H. Biologic Therapies for Severe Asthma. N. Engl. J. Med. 2022, 386, 157–171. [Google Scholar] [CrossRef]
- Pelaia, C.; Paoletti, G.; Puggioni, F.; Racca, F.; Pelaia, G.; Canonica, G.W.; Heffler, E. Interleukin-5 in the Pathophysiology of Severe Asthma. Front. Physiol. 2019, 10, 1514. [Google Scholar] [CrossRef] [PubMed]
- Ingram, J.L.; Kraft, M. IL-13 in asthma and allergic disease: Asthma phenotypes and targeted therapies. Allergy Clin. Immunol. 2012, 130, 829–842. [Google Scholar] [CrossRef]
- Kaur, D.; Gomez, E.; Doe, C.; Berair, R.; Woodman, L.; Saunders, R.; Hollins, F.; Rose, F.R.; Amrani, Y.; May, R.; et al. IL-33 drives airway hyper-responsiveness through IL-13-mediated mast cell: Airway smooth muscle crosstalk. Allergy 2015, 70, 556–567. [Google Scholar] [CrossRef]
- Koch, S.; Sopel, N.; Finotto, S. Th9 and other IL-9-producing cells in allergic asthma. Semin. Immunopathol. 2017, 39, 55–68. [Google Scholar] [CrossRef]
- Kudo, M.; Melton, A.C.; Chen, C.; Engler, M.B.; Huang, K.E.; Ren, X.; Wang, Y.; Bernstein, X.; Li, J.T.; Atabai, K.; et al. IL-17A produced by alphabeta T cells drives airway hyper-responsiveness in mice and enhances mouse and human airway smooth muscle contraction. Nat. Med. 2012, 18, 547–554. [Google Scholar] [CrossRef]
- Hynes, G.M.; Hinks, T.S.C. The role of interleukin-17 in asthma: A protective response? ERJ Open. Res. 2020, 6, 00364-2019. [Google Scholar] [CrossRef]
- Niessen, N.M.; Gibson, P.G.; Baines, K.J.; Barker, D.; Yang, I.A.; Upham, J.W.; Reynolds, P.N.; Hodge, S.; James, A.L.; Jenkins, C.; et al. Sputum TNF markers are increased in neutrophilic and severe asthma and are reduced by azithromycin treatment. Allergy 2021, 76, 2090–2101. [Google Scholar] [CrossRef]
- Guedes, A.G.; Jude, J.A.; Paulin, J.; Kita, H.; Lund, F.E.; Kannan, M.S. Role of CD38 in TNF-alpha-induced airway hyperresponsiveness. Am. J. Physiol. Lung Cell. Mol. Physiol. 2008, 294, L290–L299. [Google Scholar] [CrossRef] [PubMed]
- Deshpande, D.A.; Walseth, T.F.; Panettieri, R.A.; Kannan, M.S. CD38/cyclic ADP-ribose-mediated Ca2+ signaling contributes to airway smooth muscle hyper-responsiveness. FASEB J. 2003, 17, 452–454. [Google Scholar] [CrossRef]
- Weström, B.; Arévalo Sureda, E.; Pierzynowska, K.; Pierzynowski, S.G.; Pérez-Cano, F.J. The immature gut barrier and its importance in establishing immunity in newborn mammals. Front. Immunol. 2020, 11, 1153. [Google Scholar] [CrossRef] [PubMed]
- Pali-Schöll, I.; Jensen-Jarolim, E. Anti-acid medication as a risk factor for food allergy. Allergy 2011, 66, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Mennini, M.; Fierro, V.; Di Nardo, G.; Pecora, V.; Fiocchi, A. Microbiota in non-IgE-mediated food allergy. Curr. Opin. Allergy Clin. Immunol. 2020, 20, 323–328. [Google Scholar] [CrossRef]
- Diamanti, A.; Fiocchi, A.G.; Capriati, T.; Panetta, F.; Pucci, N.; Bellucci, F.; Torre, G. Cow’s milk allergy and neonatal short bowel syndrome: Comorbidity or true association? Eur. J. Clin. Nutr. 2015, 69, 102–106. [Google Scholar] [CrossRef]
- Brough, H.A.; Nadeau, K.C.; Sindher, S.B.; Alkotob, S.S.; Chan, S.; Bahnson, H.T.; Leung, D.Y.M.; Lack, G. Epicutaneous sensitization in the development of food allergy: What is the evidence and how can this be prevented? Allergy 2020, 75, 2185–2205. [Google Scholar] [CrossRef]
- Celebi Sözener, Z.; Cevhertas, L.; Nadeau, K.; Akdis, M.; Akdis, C.A. Environmental factors in epithelial barrier dysfunction. Allergy Clin. Immunol. 2020, 145, 1517–1528. [Google Scholar] [CrossRef]
- Patel, N.N.; Kohanski, M.A.; Maina, I.W.; Workman, A.D.; Herbert, D.R.; Cohen, N.A. Sentinels at the wall: Epithelial-derived cytokines serve as triggers of upper airway type 2 inflammation. Int. Forum. Allergy Rhinol. 2019, 9, 93–99. [Google Scholar] [CrossRef]
- Krohn, I.K.; Shikhagaie, M.M.; Golebski, K.; Bernink, J.H.; Breynaert, C.; Creyns, B.; Diamant, Z.; Fokkens, W.J.; Gevaert, P.; Hellings, P.; et al. Emerging roles of innate lymphoid cells in inflammatory diseases: Clinical implications. Allergy 2018, 73, 837–885. [Google Scholar] [CrossRef]
- Noval Rivas, M.; Burton, O.T.; Wise, P.; Charbonnier, L.M.; Georgiev, P.; Oettgen, H.C.; Rachid, R.; Chatila, T.A. Regulatory T cell repro- gramming toward a Th2-cell-like lineage impairs oral tolerance and promotes food allergy. Immunity 2015, 42, 512–523. [Google Scholar] [CrossRef] [PubMed]
- Johnston, L.K.; Hsu, C.-L.; Krier-Burris, R.A.; Chhiba, K.D.; Chien, K.B.; McKenzie, A.; Berdnikovs, S.; Bryce, P.J. IL-33 precedes IL-5 in regulating eosinophil commitment and is required for eosinophil homeostasis. J. Immunol. 2016, 197, 3445–3453. [Google Scholar] [CrossRef] [PubMed]
- Ford, A.Q.; Dasgupta, P.; Mikhailenko, I.; Smith, E.M.; Noben-Trauth, N.; Keegan, A.D. Adoptive transfer of IL-4Rα+ macrophages is sufficient to enhance eosinophilic inflammation in a mouse model of allergic lung inflammation. BMC Immunol. 2012, 13, 6. [Google Scholar] [CrossRef] [PubMed]
- Ruffner, M.A.; Wang, K.Y.; Dudley, J.W.; Cianferoni, A.; Grundmeier, R.W.; Spergel, J.M.; Brown-Whitehorn, T.F.; Hill, D.A. Elevated atopic comorbidity in patients with food protein-induced enterocolitis. J. Allergy Clin. Immunol. Pract. 2020, 8, 1039–1046. [Google Scholar] [CrossRef]
- Adel-Patient, K.; Lezmi, G.; Castelli, F.A.; Blanc, S.; Bernard, H.; Soulaines, P.; Dumond, P.; Ah-Leung, S.; Lageix, F.; de Boissieu, D.; et al. Deep analysis of immune response and metabolic signature in children with food protein induced enterocolitis to cow’s milk. Clin. Transl. Allergy 2018, 8, 38. [Google Scholar] [CrossRef]
- Pecora, V.; Prencipe, G.; Valluzzi, R.; Dahdah, L.; Insalaco, A.; Cianferoni, A.; De Benedetti, F.; Fiocchi, A. Inflammatory events during food protein-induced enterocolitis syndrome reactions. Pediatr. Allergy Immunol. 2017, 28, 464–470. [Google Scholar] [CrossRef] [PubMed]
- Chandramouleeswaran, P.M.; Shen, D.; Lee, A.J.; Benitez, A.; Dods, K.; Gambanga, F.; Wilkins, B.J.; Merves, J.; Noah, Y.; Toltzis, S.; et al. Preferential secretion of thymic stromal lymphopoietin (TSLP) by terminally differentiated esophageal epithelial cells: Relevance to eosinophilic esophagitis (EoE). PLoS ONE 2016, 18, 0150968. [Google Scholar] [CrossRef]
- Hammad, H.; Lambrecht, B.N. The basic immunology of asthma. Cell 2021, 184, 1469–1485. [Google Scholar] [CrossRef]
- Gandhi, N.A.; Bennett, B.L.; Graham, N.M.; Pirozzi, G.; Stahl, N.; Yancopoulos, G.D. Targeting key proximal drivers of type 2 inflammation in disease. Nat. Rev. Drug Discov. 2016, 15, 35–50. [Google Scholar] [CrossRef]
- Turcanu, V.; Maleki, S.J.; Lack, G. Characterization of lymphocyte responses to peanuts in normal children, peanut-allergic children, and allergic children who acquired tolerance to peanuts. J. Clin. Investig. 2003, 111, 1065–1072. [Google Scholar] [CrossRef]
- Berin, M.C.; Grishin, A.; Masilamani, M.; Leung, D.Y.M.; Sicherer, S.H.; Jones, S.M.; Burks, A.W.; Henning, A.K.; Dawson, P.; Grabowska, J.; et al. Egg-specific IgE and basophil activation but not egg-specific T-cell counts correlate with phenotypes of clinical egg allergy. J. Allergy Clin. Immunol. 2018, 142, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Ruiter, B.; Smith, N.P.; Monian, B.; Tu, A.A.; Fleming, E.; Virkud, Y.V.; Patil, S.U.; Whittaker, C.A.; Love, J.C.; Shreffler, W.G. Expansion of the CD4+ effector T-cell repertoire characterizes peanut-allergic patients with heightened clinical sensitivity. J. Allergy Clin. Immunol. 2020, 145, 270–282. [Google Scholar] [CrossRef] [PubMed]
- Chiang, D.; Chen, X.; Jones, S.M.; Wood, R.A.; Sicherer, S.H.; Burks, A.W.; Leung, D.Y.M.; Agashe, C.; Grishin, A.; Dawson, P.; et al. Single-cell profiling of peanut-responsive T cells in patients with peanut allergy reveals heterogeneous effector TH2 subsets. J. Allergy Clin. Immunol. 2018, 141, 2107–2120. [Google Scholar] [CrossRef]
- Noah, T.K.; Knoop, K.A.; McDonald, K.G.; Gustafsson, K.; Waggoner, L.; Vanoni, S.; Batie, M.; Arora, K.; Naren, A.P.; Wang, Y.H.; et al. IL-13-induced intestinal secretory epithelial cell antigen passages are required for IgE-mediated food-induced anaphylaxis. J. Allergy Clin. Immunol. 2019, 144, 1058–1073. [Google Scholar] [CrossRef] [PubMed]
- Rajvanshi, N.; Kumar, P.; Goyal, J.P. Global Initiative for Asthma Guidelines 2024: An Update. Indian. Pediatr. 2024, 61, 781–786. [Google Scholar] [CrossRef]
- Maneechotesuwan, K.; Yao, X.; Ito, K.; Jazrawi, E.; Usmani, O.S.; Adcock, I.M.; Barnes, P.J. Suppression of GATA-3 nuclear import and phosphorylation: A novel mechanism of corticosteroid action in allergic disease. PLoS Med. 2009, 6, e1000076. [Google Scholar] [CrossRef]
- Kaur, M.; Chivers, J.E.; Giembycz, M.A.; Newton, R. Long-acting beta2-adrenoceptor agonists synergistically enhance glucocorticoid-dependent transcription in human airway epithelial and smooth muscle cells. Mol. Pharmacol. 2008, 73, 203–214. [Google Scholar] [CrossRef]
- Jones, C.A.; Madison, J.M.; Tom-Moy, M.; Brown, J.K. Muscarinic cholinergic inhibition of adenylate cyclase in airway smooth muscle. Am. J. Physiol. 1987, 253, C97–C104. [Google Scholar] [CrossRef]
- Castro-Rodriguez, J.A.; Beckhaus, A.A.; Forno, E. Efficacy of oral corticosteroids in the treatment of acute wheezing episodes in asthmatic preschoolers: Systematic review with meta-analysis. Pediatr. Pulmonol. 2016, 51, 868–876. [Google Scholar] [CrossRef]
- Griffiths, B.; Kew, K.M. Intravenous magnesium sulfate for treating children with acute asthma in the emergency department. Cochrane Database Syst. Rev. 2016, 4, CD011050. [Google Scholar]
- Long, B.; Lentz, S.; Koyfman, A.; Gottlieb, M. Evaluation and management of the critically ill adult asthmatic in the emergency department setting. Am. J. Emerg Med. 2021, 44, 441–451. [Google Scholar] [CrossRef] [PubMed]
- Baggott, C.; Hardy, J.K.; Sparks, J.; Sabbagh, D.; Beasley, R.; Weatherall, M.; Fingleton, J. Epinephrine (adrenaline) compared to selective beta-2-agonist in adults or children with acute asthma: A systematic review and meta-analysis. Thorax 2022, 77, 563–572. [Google Scholar] [CrossRef] [PubMed]
- Muraro, A.; Worm, M.; Alviani, C.; Cardona, V.; DunnGalvin, A.; Garvey, L.H.; Riggioni, C.; de Silva, D.; Angier, E.; Arasi, S.; et al. European Academy of Allergy and Clinical Immunology, Food Allergy, Anaphylaxis Guidelines Group. EAACI guidelines: Anaphylaxis (2021 update). Allergy 2022, 77, 357–377. [Google Scholar] [CrossRef]
- Bartha, I.; Almulhem, N.; Santos, A.F. Feast for thought: A comprehensive review of food allergy 2021–2023. J. Allergy Clin. Immunol. 2024, 153, 576–594. [Google Scholar] [CrossRef]
- Vickery, B.P.; Scurlock, A.M.; Kulis, M.; Steele, P.H.; Kamilaris, J.; Berglund, J.P.; Burk, C.; Hiegel, A.; Carlisle, S.; Christie, L.; et al. Sustained unresponsiveness to peanut in subjects who have completed peanut oral immunotherapy. J. Allergy Clin. Immunol. 2014, 133, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Anagnostou, K.; Islam, S.; King, Y.; Foley, L.; Pasea, L.; Bond, S.; Palmer, C.; Deighton, J.; Ewan, P.; Clark, A. Assessing the efficacy of oral immunotherapy for the desensitisation of peanut allergy in children (STOP II): A phase 2 randomised controlled trial. Lancet 2014, 383, 1297–1304. [Google Scholar] [CrossRef] [PubMed]
- Tosca, M.A.; Licari, A.; Olcese, R.; Castagnoli, R.; Marseglia, A.; Marseglia, G.L.; Miraglia Del Giudice, M.; Martelli, A.; Calvani, M.; Caffarelli, C.; et al. Allergen immunotherapy in children and adolescents with respiratory diseases. Acta Biomed. 2020, 91, e2020006. [Google Scholar] [CrossRef]
- Anvari, S.; Anagnostou, K. The Nuts and Bolts of Food Immunotherapy: The Future of Food Allergy. Children 2018, 5, 47. [Google Scholar] [CrossRef]
- Özdemir, P.G.; Sato, S.; Yanagida, N.; Ebisawa, M. Oral Immunotherapy in Food Allergy: Where Are We Now? Allergy Asthma Immunol. Res. 2023, 15, 125–144. [Google Scholar] [CrossRef]
- Kauppila, T.K.; Paassilta, M.; Kukkonen, A.K.; Kuitunen, M.; Pelkonen, A.S.; Makela, M.J. Outcome of oral immunotherapy for persistent cow’s milk allergy from 11 years of experience in Finland. Pediatr. Allergy Immunol. 2019, 30, 356–362. [Google Scholar] [CrossRef]
- Pajno, G.B.; Fernandez-Rivas, M.; Arasi, S.; Roberts, G.; Akdis, C.A.; Alvaro-Lozano, M.; Beyer, K.; Bindslev-Jensen, C.; Burks, W.; Ebisawa, M.; et al. EAACI Guidelines on allergen immunotherapy: IgE-mediated food allergy. Allergy 2018, 73, 799–815. [Google Scholar] [CrossRef] [PubMed]
- Abrams, E.M.; Becker, A.B. Oral food challenge outcomes in a pediatric tertiary care center. Allergy Asthma Clin. Immunol. 2017, 13, 43. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Ortiz, M.; Alvaro, M.; Piquer, M.; Giner, M.T.; Dominguez, O.; Lozano, J.; Jiménez-Feijoo, R.; Cambra, F.J.; Plaza, A.M. Life-threatening anaphylaxis to egg and milk oral immunotherapy in asthmatic teenagers. Ann. Allergy Asthma Immunol. 2014, 113, 482–484. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, R.L.; Hague, A.R.; Pence, D.M.; Sugerman, R.W.; Silvers, S.K.; Rolen, J.G.; Herbert, M. Real-World Experience with Peanut Oral Immunotherapy: Lessons Learned from 270 Patients. J. Allergy Clin. Immunol. Pract. 2019, 7, 418–426.e4. [Google Scholar] [CrossRef]
- Patrawala, M.; Shih, J.; Lee, G.; Vickery, B. Peanut Oral Immunotherapy: A current perspective. Curr. Allergy Asthma Rep. 2020, 20, 14. [Google Scholar] [CrossRef]
- Vázquez-Ortiz, M.; Alvaro-Lozano, M.; Alsina, L.; Garcia-Paba, M.B.; Piquer-Gibert, M.; Giner-Muñoz, M.T.; Lozano, J.; Domínguez-Sánchez, O.; Jiménez, R.; Días, M.; et al. Safety and predictors of adverse events during oral immunotherapy for milk allergy: Severity of reaction at oral challenge, specific IgE and prick test. Clin. Exp. Allergy 2013, 43, 92–102. [Google Scholar] [CrossRef]
- Staden, U.; Rolinck-Werninghaus, C.; Brewe, F.; Wahn, U.; Niggemann, B.; Beyer, K. Specific oral tolerance induction in food allergy in children: Efficacy and clinical patterns of reaction. Allergy 2007, 62, 1261–1269. [Google Scholar] [CrossRef]
- Calvani, M.; Anania, C.; Caffarelli, C.; Martelli, A.; Miraglia Del Giudice, M.; Cravidi, C.; Duse, M.; Manti, S.; Tosca, M.A.; Cardinale, F.; et al. Food allergy: An updated review on pathogenesis, diagnosis, prevention and management. Acta Biomed. 2020, 91, e2020012. [Google Scholar] [CrossRef]
- Skripak, J.M.; Matsui, E.C.; Mudd, K.; Wood, R.A. The natural history of IgE-mediated cow’s milk allergy. J. Allergy Clin. Immunol. 2007, 120, 1172–1177. [Google Scholar] [CrossRef]
- Santos, A.; Dias, A.; Pinheiro, J.A. Predictive factors for the persistence of cow’s milk allergy. Pediatr. Allergy Immunol. 2010, 21, 1127–1134. [Google Scholar] [CrossRef]
- Nowak-Węgrzyn, A.; Sampson, H.A. Future therapies for food allergies. J. Allergy Clin. Immunol. 2011, 127, 558–573; quiz 574–575. [Google Scholar] [CrossRef] [PubMed]
- Nachshon, L.; Schwartz, N.; Tsviban, L.; Levy, M.B.; Goldberg, M.R.; Epstein-Rigby, N.; Katz, Y.; Elizur, A. Patient Characteristics and Risk Factors for Home Epinephrine-Treated Reactions During Oral Immunotherapy for Food Allergy. J. Allergy Clin. Immunol. Pract. 2021, 9, 185–192.e3. [Google Scholar] [CrossRef] [PubMed]
- Wasserman, R.L.; Factor, J.; Windom, H.H.; Abrams, E.M.; Begin, P.; Chan, E.S.; Greenhawt, M.; Hare, N.; Mack, D.P.; Mansfield, L.; et al. An Approach to the Office-Based Practice of Food Oral Immunotherapy. J. Allergy Clin. Immunol. Pract. 2021, 9, 1826–1838.e8. [Google Scholar] [CrossRef] [PubMed]
- Bégin, P.; Chan, E.S.; Kim, H.; Wagner, M.; Cellier, M.S.; Favron-Godbout, C.; Abrams, E.M.; Ben-Shoshan, M.; Cameron, S.B.; Carr, S.; et al. CSACI guidelines for the ethical, evidence-based and patient-oriented clinical practice of oral immunotherapy in IgE-mediated food allergy. Allergy Asthma Clin. Immunol. 2020, 16, 20. [Google Scholar] [CrossRef]
- Jay, D.C.; Nadeau, K.C. Immune mechanisms of sublingual immunotherapy. Curr. Allergy Asthma Rep. 2014, 14, 473. [Google Scholar] [CrossRef]
- Enrique, E.; Pineda, F.; Malek, T.; Bartra, J.; Basagaña, M.; Tella, R.; Castelló, J.V.; Alonso, R.; de Mateo, J.A.; Cerdá-Trias, T.; et al. Sublingual immunotherapy for hazelnut food allergy: A randomized, double-blind, placebo-controlled study with a standardized hazelnut extract. J. Allergy Clin. Immunol. 2005, 116, 1073–1079. [Google Scholar] [CrossRef]
- Kim, E.H.; Bird, J.A.; Kulis, M.; Laubach, S.; Pons, L.; Shreffler, W.; Steele, P.; Kamilaris, J.; Vickery, B.; Burks, A.W. Sublingual immunotherapy for peanut allergy: Clinical and immunologic evidence of desensitization. J. Allergy Clin. Immunol. 2011, 127, 640–646.e1. [Google Scholar] [CrossRef]
- Fernández-Rivas, M.; Garrido Fernández, S.; Nadal, J.A.; Díaz de Durana, M.D.; García, B.E.; González-Mancebo, E.; Martín, S.; Barber, D.; Rico, P.; Tabar, A.I. Randomized double-blind, placebo-controlled trial of sublingual immunotherapy with a Pru p 3 quantified peach extract. Allergy 2009, 64, 876–883. [Google Scholar] [CrossRef]
- Jones, S.M.; Agbotounou, W.K.; Fleischer, D.M.; Burks, A.W.; Pesek, R.D.; Harris, M.W.; Martin, L.; Thebault, C.; Ruban, C.; Benhamou, P.H. Safety of epicutaneous immunotherapy for the treatment of peanut allergy: A phase 1 study using the Viaskin patch. J. Allergy Clin. Immunol. 2016, 137, 1258–1261.e10. [Google Scholar] [CrossRef]
- Sampson, H.A.; Shreffler, W.G.; Yang, W.H.; Sussman, G.L.; Brown-Whitehorn, T.F.; Nadeau, K.C.; Cheema, A.S.; Leonard, S.A.; Pongracic, J.A.; Sauvage-Delebarre, C.; et al. Effect of Varying Doses of Epicutaneous Immunotherapy vs Placebo on Reaction to Peanut Protein Exposure Among Patients With Peanut Sensitivity: A Randomized Clinical Trial. JAMA 2017, 318, 1798–1809. [Google Scholar] [CrossRef]
- Jones, S.M.; Sicherer, S.H.; Burks, A.W.; Leung, D.Y.; Lindblad, R.W.; Dawson, P.; Henning, A.K.; Berin, M.C.; Chiang, D.; Vickery, B.P.; et al. Consortium of Food Allergy Research. Epicutaneous immunotherapy for the treatment of peanut allergy in children and young adults. J. Allergy Clin. Immunol. 2017, 139, 1242–1252.e9. [Google Scholar] [CrossRef] [PubMed]
- Pongracic, J.A.; Gagnon, R.; Sussman, G.; Siri, D.; Oriel, R.C.; Brown-Whitehorn, T.F.; Green, T.D.; Campbell, D.E.; Anvari, S.; Berger, W.E.; et al. Safety of Epicutaneous Immunotherapy in Peanut-Allergic Children: REALISE Randomized Clinical Trial Results. J. Allergy Clin. Immunol. Pract. 2022, 10, 1864–1873.e10. [Google Scholar] [CrossRef] [PubMed]
- Sood, A.K.; Scurlock, A.M. Food allergy oral immunotherapy. J. Food Allergy 2020, 2, 75–80. [Google Scholar] [CrossRef]
- Barshow, S.; Tirumalasetty, J.; Sampath, V.; Zhou, X.; Seastedt, H.; Schuetz, J.; Nadeau, K. The Immunobiology and Treatment of Food Allergy. Annu. Rev. Immunol. 2024, 42, 401–425. [Google Scholar] [CrossRef]
- Arasi, S.; Mennini, M.; Cafarotti, A.; Fiocchi, A. Omalizumab as monotherapy for food allergy. Curr. Opin. Allergy Clin. Immunol. 2021, 21, 286–291. [Google Scholar] [CrossRef] [PubMed]
- Fiocchi, A.; Vickery, B.P.; Wood, R.A. The use of biologics in food allergy. Clin. Exp. Allergy 2021, 51, 1006–1018. [Google Scholar] [CrossRef]
- Yu, L.; Zhang, H.; Pan, J.; Ye, L. Pediatric usage of Omalizumab: A promising one. World Allergy Organ. J. 2021, 14, 100614. [Google Scholar] [CrossRef]
- Deschildre, A.; Marguet, C.; Langlois, C.; Pin, I.; Rittié, J.L.; Derelle, J.; Abou Taam, R.; Fayon, M.; Brouard, J.; Dubus, J.C.; et al. Real-life long-termomalizumab therapy in children with severe allergic asthma. Eur. Respir. J. 2015, 46, 856–859. [Google Scholar] [CrossRef]
- Giubergia, V.; Ramírez Farías, M.; Pérez, V.; Crespi, N.; Castaños, C. Clinical impact of omalizumab treatment in children with severe asthma: Report of a local experience. Arch. Argent. Pediatr. 2019, 117, e115–e120. [Google Scholar]
- Sztafińska, A.; Jerzyńska, J.; Stelmach, W.; Woicka-Kolejwa, K.; Stelmach, I. Quality of life in asthmatic children and their caregivers after two-year treatment with omalizumab, a real-life study. Postepy Dermatol. Alergol. 2017, 34, 439–447. [Google Scholar] [CrossRef]
- Licari, A.; Castagnoli, R.; Denicolo, C.; Rossini, L.; Seminara, M.; Sacchi, L.; Testa, G.; De Amici, M.; Marseglia, G.L. Omalizumab in children with severe allergic asthma: The Italian real-life experience. Curr. Respir. Med. Rev. 2017, 13, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Morales-Múnera, O.; Pedraza, Á.; Niño-Serna, L. Omalizumab in children with uncontrolled asthma: A real-life study carried out in Colombia. Rev. Alerg. Mex. 2018, 65, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Tarraf, H.N.; Masoud, H.H.; Zidan, M.; Wahba, B. Effectiveness and safety of omalizumab in severe, persistent IgE-mediated asthma in pediatric and adult patients: A real-world observational study in Egyptian population. J. Asthma 2020, 57, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Folqué, M.M.; Lozano, J.; Riggioni, C.; Piquer, M.; Álvaro, M.; Machinena, A.; Giner, M.T.; Domínguez, O.; Jiménez-Feijoo, R.M.; Dias da Costa, M.; et al. “Real-life” experience in asthmatic children treated with omalizumab up to six-years follow-up. Allergol. Immunopathol. 2019, 47, 336–341. [Google Scholar] [CrossRef]
- Henriksen, D.P.; Bodtger, U.; Sidenius, K.; Maltbaek, N.; Pedersen, L.; Madsen, H.; Andersson, E.A.; Norgaard, O.; Madsen, L.K.; Chawes, B.L. Efficacy of omalizumab in children, adolescents, and adults with severe allergic asthma: A systematic review, meta-analysis, and call for new trials using current guidelines for assessment of severe asthma. Allergy Asthma Clin. Immunol. 2020, 16, 49. [Google Scholar] [CrossRef]
- Nieto García, A.; Garriga-Baraut, T.; Plaza Martín, A.M.; Nieto Cid, M.; Torres Borrego, J.; Folqué Giménez, M.D.M.; Lozano Blasco, J.; Bosque García, M.; Moreno-Galarraga, L.; Tortajada-Girbés, M.; et al. Omalizumab outcomes for up to 6 years in pediatric patients with severe persistent allergic asthma. Pediatr. Allergy Immunol. 2021, 32, 980–991. [Google Scholar] [CrossRef]
- Kopp, M.V.; Hamelmann, E.; Bendiks, M.; Zielen, S.; Kamin, W.; Bergmann, K.; Klein, C.; Wahn, U.; The DUAL study group. Transient impact of omalizumab in pollen allergic patients undergoing specific immunotherapy. Pediatr. Allergy Immunol. 2013, 24, 427–433. [Google Scholar] [CrossRef] [PubMed]
- Stelmach, I.; Majak, P.; Jerzyńska, J.; Bojo, M.; Cichalewski, Ł.; Smejda, K. Children with severe asthma can start allergen immunotherapy after controlling asthma with omalizumab: A case series from Poland. Arch. Med. Sci. 2015, 11, 901–904. [Google Scholar] [CrossRef]
- Bożek, A.; Fischer, A.; Bogacz-Piaseczynska, A.; Canonica, G.W. Adding a biologic to allergen immunotherapy increases treatment efficacy. ERJ Open Res. 2023, 9, 00639–02022. [Google Scholar] [CrossRef]
- Xolair (Omalizumab). Prescribing Information; Genentech USA, Inc.: South San Francisco, CA, USA, 2016; Available online: https://www.gene.com/download/pdf/xolair_prescribing.pdf (accessed on 15 August 2021).
- Sampson, H.A.; Leung, D.Y.; Burks, A.W.; Lack, G.; Bahna, S.L.; Jones, S.M.; Wong, D. A phase II, randomized, doubleblind, parallelgroup, placebocontrolled oral food challenge trial of Xolair (omalizumab) in peanut allergy. J. Allergy Clin. Immunol. 2011, 127, 1309–1310.e1. [Google Scholar] [CrossRef]
- Savage, J.H.; Courneya, J.P.; Sterba, P.M.; Macglashan, D.W.; Saini, S.S.; Wood, R.A. Kinetics of mast cell, basophil, and oral food challenge responses in omalizumab-treated adults with peanut allergy. J. Allergy Clin. Immunol. 2012, 130, 1123–1129.e2. [Google Scholar] [CrossRef] [PubMed]
- Rafi, A.; Do, L.T.; Katz, R.; Sheinkopf, L.E.; Simons, C.W.; Klaustermeyer, W. Effects of omalizumab in patients with food allergy. Allergy Asthma Proc. 2010, 31, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, C.; Nordvall, L.; Johansson, S.G.; Nopp, A. Successful management of severe cow’s milk allergy with omalizumab treatment and CD-sens monitoring. Asia Pac. Allergy 2014, 4, 257–260. [Google Scholar] [CrossRef]
- Dahdah, L.; Ceccarelli, S.; Amendola, S.; Campagnano, P.; Cancrini, C.; Mazzina, O.; Fiocchi, A. IgE Immunoadsorption Knocks Down the Risk of Food-Related Anaphylaxis. Pediatrics 2015, 136, e1617–e1620. [Google Scholar] [CrossRef]
- Fiocchi, A.; Artesani, M.C.; Riccardi, C.; Mennini, M.; Pecora, V.; Fierro, V.; Calandrelli, V.; Dahdah, L.; Valluzzi, R.L. Impact of Omalizumab on Food Allergy in Patients Treated for Asthma: A Real-Life Study. J. Allergy Clin. Immunol. Pract. 2019, 7, 1901–1909.e5. [Google Scholar] [CrossRef]
- Wood, R.A.; Kim, J.S.; Lindblad, R.; Nadeau, K.; Henning, A.K.; Dawson, P.; Plaut, M.; Sampson, H.A. A randomized, double-blind, placebo-controlled study of omalizumab combined with oral immunotherapy for the treatment of cow’s milk allergy. J. Allergy Clin. Immunol. 2016, 137, 1103–1110.e11. [Google Scholar] [CrossRef] [PubMed]
- Andorf, S.; Purington, N.; Kumar, D.; Long, A.; O’Laughlin, K.L.; Sicherer, S.; Sampson, H.; Cianferoni, A.; Whitehorn, T.B.; Petroni, D.; et al. A Phase 2 Randomized Controlled Multisite Study Using Omalizumab-facilitated Rapid Desensitization to Test Continued vs Discontinued Dosing in Multifood Allergic Individuals. EClinicalMedicine 2019, 7, 27–38. [Google Scholar] [CrossRef]
- MacGinnitie, A.J.; Rachid, R.; Gragg, H.; Little, S.V.; Lakin, P.; Cianferoni, A.; Heimall, J.; Makhija, M.; Robison, R.; Chinthrajah, R.S.; et al. Omalizumab facilitates rapid oral desensitization for peanut allergy. J. Allergy Clin. Immunol. 2017, 139, 873–881.e8. [Google Scholar] [CrossRef]
- Wood, R.A.; Togias, A.; Sicherer, S.H.; Shreffler, W.G.; Kim, E.H.; Jones, S.M.; Leung, D.Y.M.; Vickery, B.P.; Bird, J.A.; Spergel, J.M.; et al. Omalizumab for the Treatment of Multiple Food Allergies. N. Engl. J. Med. 2024, 390, 889–899. [Google Scholar] [CrossRef]
- Bégin, P.; Dominguez, T.; Wilson, S.P.; Bacal, L.; Mehrotra, A.; Kausch, B.; Trela, A.; Tavassoli, M.; Hoyte, E.; O’Riordan, G.; et al. Phase 1 results of safety and tolerability in a rush oral immunotherapy protocol to multiple foods using Omalizumab. Allergy Asthma Clin. Immunol. 2014, 10, 7. [Google Scholar] [CrossRef]
- Yee, C.S.K.; Albuhairi, S.; Noh, E.; El-Khoury, K.; Rezaei, S.; Abdel-Gadir, A.; Umetsu, D.T.; Burke-Roberts, E.; LeBovidge, J.; Schneider, L.; et al. Long-Term Outcome of Peanut Oral Immunotherapy Facilitated Initially by Omalizumab. J. Allergy Clin. Immunol. Pract. 2019, 7, 451–461.e7. [Google Scholar] [CrossRef] [PubMed]
- Langlois, A.; Lavergne, M.H.; Leroux, H.; Killer, K.; Azzano, P.; Paradis, L.; Samaan, K.; Lacombe-Barrios, J.; Mâsse, B.; Des Roches, A.; et al. Protocol for a double-blind, randomized controlled trial on the dose-related efficacy of omalizumab in multi-food oral immunotherapy. Allergy Asthma Clin. Immunol. 2020, 16, 25. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wood, R.A.; Raymond, S.; Suárez-Fariñas, M.; Yang, N.; Sicherer, S.H.; Sampson, H.A.; Li, X.M. Double-Blind, Placebo-Controlled Study of E-B-FAHF-2 in Combination With Omalizumab-Facilitated Multiallergen Oral Immunotherapy. J. Allergy Clin. Immunol. Pract. 2023, 11, 2208–2216.e1. [Google Scholar] [CrossRef] [PubMed]
- Andorf, S.; Purington, N.; Block, W.M.; Long, A.J.; Tupa, D.; Brittain, E.; Rudman Spergel, A.; Desai, M.; Galli, S.J.; Nadeau, K.C.; et al. Anti-IgE treatment with oral immunotherapy in multifood allergic participants: A double-blind, randomised, controlled trial. Lancet Gastroenterol. Hepatol. 2018, 3, 85–94. [Google Scholar] [CrossRef]
- Azzano, P.; Paquin, M.; Langlois, A.; Morin, C.; Parizeault, G.; Lacombe-Barrios, J.; Samaan, K.; Graham, F.; Paradis, L.; Des Roches, A.; et al. Determinants of omalizumab dose-related efficacy in oral immunotherapy: Evidence from a cohort of 181 patients. J. Allergy Clin. Immunol. 2021, 147, 233–243. [Google Scholar] [CrossRef]
- Harb, H.; Chatila, T.A. Mechanisms of Dupilumab. Clin. Exp. Allergy 2020, 50, 5–14. [Google Scholar] [CrossRef]
- Thibodeaux, Q.; Smith, M.P.; Ly, K.; Beck, K.; Liao, W.; Bhutani, T. A review of dupilumab in the treatment of atopic diseases. Hum. Vaccin. Immunother. 2019, 15, 2129–2139. [Google Scholar] [CrossRef]
- Beck, L.A.; Thaçi, D.; Hamilton, J.D.; Graham, N.M.; Bieber, T.; Rocklin, R.; Ming, J.E.; Ren, H.; Kao, R.; Simpson, E.; et al. Dupilumab treatment in adults with moderate-to-severe atopic dermatitis. N. Engl. J. Med. 2014, 371, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Abramowicz, M.; Zuccotti, G.; Pflomm, J.-M. Dupilumab (Dupixent) for Asthma. JAMA 2019, 321, 1000–1001. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, W.; Lee, L.; Saxena, J.; Sindher, S.; Chinthrajah, R.S.; Dant, C.; Nadeau, K. Biologic therapy for food allergy. J. Food Allergy 2020, 2, 86–90. [Google Scholar] [CrossRef]
- Rial, M.J.; Barroso, B.; Sastre, J. Dupilumab for treatment of food allergy. J. Allergy Clin. Immunol. Pract. 2019, 7, 673–674. [Google Scholar] [CrossRef] [PubMed]
- Peanut Oral Immunotherapy. ClinicalTrials.gov Identifier: NCT03682770. Available online: https://clinicaltrials.gov/ct2/show/NCT03682770 (accessed on 16 August 2024).
- Study to Evaluate Dupilumab Monotherapy in Pediatric Patients with Peanut Allergy. ClinicalTrials.gov Identifier:NCT03793608. Available online: https://clinicaltrials.gov/ct2/show/NCT03793608 (accessed on 16 August 2024).
- Clinical Study Using Biologics to Improve Multi OIT Outcomes. ClinicalTrials.gov Identifier: NCT03679676. Available online: https://clinicaltrials.gov/ct2/show/NCT03679676 (accessed on 16 August 2024).
- Albuhairi, S.; Rachid, R. The emerging biologic therapies on food allergy. Ann. Allergy Asthma Immunol. 2019, 122, 556–558. [Google Scholar] [CrossRef]
- Chan, A.; Yu, J.E. Food allergy and asthma. J. Food Allergy 2020, 2, 44–47. [Google Scholar] [CrossRef]
- Abdel-Gadir, A.; Schneider, L.; Casini, A.; Charbonnier, L.M.; Little, S.V.; Harrington, T.; Umetsu, D.T.; Rachid, R.; Chatila, T.A. Oral immunotherapy with omalizumab reverses the Th2 cell-like programme of regulatory T cells and restores their function. Clin. Exp. Allergy 2018, 48, 825–836. [Google Scholar] [CrossRef]
- Varricchi, G.; Canonica, G.W. The role of interleukin 5 in asthma. Expert. Rev. Clin. Immunol. 2016, 12, 903–905. [Google Scholar] [CrossRef] [PubMed]
- Olivieri, B.; Tinazzi, E.; Caminati, M.; Lunardi, C. Biologics for the Treatment of Allergic Conditions: Eosinophil Disorders. Immunol. Allergy Clin. N. Am. 2020, 40, 649–665. [Google Scholar] [CrossRef]
- Bleecker, E.R.; FitzGerald, J.M.; Chanez, P.; Papi, A.; Weinstein, S.F.; Barker, P.; Sproule, S.; Gilmartin, G.; Aurivillius, M.; Werkström, V.; et al. Efficacy and safety of benralizumab for patients with severe asthma uncontrolled with high-dosage inhaled corticosteroids and long-acting β2-agonists (SIROCCO): A randomised, multicentre, placebo-controlled phase 3 trial. Lancet 2016, 388, 2115–2127. [Google Scholar] [CrossRef]
- Busse, W.; Chupp, G.; Nagase, H.; Albers, F.C.; Doyle, S.; Shen, Q.; Bratton, D.J.; Gunsoy, N.B. Anti-IL-5 treatments in patients with severe asthma by blood eosinophil thresholds: Indirect treatment comparison. J. Allergy Clin. Immunol. 2019, 143, 190–200.e20. [Google Scholar] [CrossRef] [PubMed]
- Wilson, J.M.; Li, R.C.; McGowan, E.C. The Role of Food Allergy in Eosinophilic Esophagitis. J. Asthma Allergy 2020, 13, 679–688. [Google Scholar] [CrossRef]
- Kurihara, M.; Kabata, H.; Irie, M.; Fukunaga, K. Current summary of clinical studies on anti-TSLP antibody, Tezepelumab, in asthma. Allergol. Int. 2023, 72, 24–30. [Google Scholar] [CrossRef]
- Arm, J.P.; Bottoli, I.; Skerjanec, A.; Floch, D.; Groenewegen, A.; Maahs, S.; Owen, C.E.; Jones, I.; Lowe, P.J. Pharmacokinetics, pharmacodynamics and safety of QGE031 (ligelizumab), a novel high-affinity anti-IgE antibody, in atopic subjects. Clin. Exp. Allergy 2014, 44, 1371–1385. [Google Scholar] [CrossRef] [PubMed]
CELLS | MEDIATORS | |||
ASTHMA |
|
|
|
|
FOOD ALLERGY |
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cunico, D.; Giannì, G.; Scavone, S.; Buono, E.V.; Caffarelli, C. The Relationship Between Asthma and Food Allergies in Children. Children 2024, 11, 1295. https://doi.org/10.3390/children11111295
Cunico D, Giannì G, Scavone S, Buono EV, Caffarelli C. The Relationship Between Asthma and Food Allergies in Children. Children. 2024; 11(11):1295. https://doi.org/10.3390/children11111295
Chicago/Turabian StyleCunico, Daniela, Giuliana Giannì, Sara Scavone, Enrico Vito Buono, and Carlo Caffarelli. 2024. "The Relationship Between Asthma and Food Allergies in Children" Children 11, no. 11: 1295. https://doi.org/10.3390/children11111295
APA StyleCunico, D., Giannì, G., Scavone, S., Buono, E. V., & Caffarelli, C. (2024). The Relationship Between Asthma and Food Allergies in Children. Children, 11(11), 1295. https://doi.org/10.3390/children11111295