Preschoolers’ Moderate-to-Vigorous Physical Activity Measured by a Tri-Axial Accelerometer: Compliance with International Guidelines and Different Cut-Points
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometric Measures
2.3. Physical Activity (PA) and Sedentary Behavior (SB) Measurement
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chia, A.; Toh, J.Y.; Natarajan, P.; Cai, S.; Ong, Y.Y.; Descarpentrie, A.; Chong, M.F. Trajectories of lifestyle patterns from 2 to 8 years of age and cardiometabolic risk in children: The GUSTO study. Int. J. Behav. Nutr. Phys. Act. 2024, 21, 9. [Google Scholar] [CrossRef] [PubMed]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in underweight and obesity from 1990 to 2022: A pooled analysis of 3663 population-representative studies with 222 million children, adolescents, and adults. Lancet 2024, 403, 1027–1050. [Google Scholar] [CrossRef] [PubMed]
- Vale, S.M.; Santos, R.M.; da Cruz Soares-Miranda, L.M.; Moreira, C.M.; Ruiz, J.R.; Mota, J.A. Objectively measured physical activity and body mass index in preschool children. Int. J. Pediatr. 2010, 2010, 479439. [Google Scholar] [CrossRef] [PubMed]
- Machado-Rodrigues, A.M.; Rodrigues, D.; Gama, A.; Nogueira, H.; Silva, M.G.; Mascarenhas, L.P.; Padez, C. Objectively measured sedentary time and physical activity levels in a sample of pre-school children: Amounts and obesity risk. Minerva Pediatr. 2021. [Google Scholar] [CrossRef]
- Tonge, K.L.; Jones, R.A.; Okely, A.D. Correlates of children’s objectively measured physical activity and sedentary behavior in early childhood education and care services: A systematic review. Prev. Med. 2016, 89, 129–139. [Google Scholar] [CrossRef]
- Nilsen, A.K.O.; Anderssen, S.A.; Resaland, G.K.; Johannessen, K.; Ylvisaaker, E.; Aadland, E. Boys, older children, and highly active children benefit most from the preschool arena regarding moderate-to-vigorous physical activity: A cross-sectional study of Norwegian preschoolers. Prev. Med. Rep. 2019, 14, 100837. [Google Scholar] [CrossRef]
- Machado-Rodrigues, A.M.; Figueiredo, A.J.; Mota, J.; Cumming, S.P.; Eisenmann, J.C.; Malina, R.M.; Coelho-e-Silva, M.J. Concurrent validation of estimated activity energy expenditure using a 3-day diary and accelerometry in adolescents. Scand. J. Med. Sci. Sports 2012, 22, 259–264. [Google Scholar] [CrossRef]
- Machado-Rodrigues, A.M.; Coelho-e-Silva, M.J.; Mota, J.; Cyrino, E.; Cumming, S.P.; Riddoch, C.; Malina, R.M. Agreement in activity energy expenditure assessed by accelerometer and self-report in adolescents: Variation by sex, age, and weight status. J. Sports Sci. 2011, 29, 1503–1514. [Google Scholar] [CrossRef]
- Machado-Rodrigues, A.M.; Leite, N.; Coelho-e-Silva, M.J.; Enes, F.; Fernandes, R.; Mascarenhas, L.P.; Malina, R.M. Metabolic risk and television time in adolescent females. Int. J. Public Health 2015, 60, 157–165. [Google Scholar] [CrossRef]
- Hislop, J.F.; Bulley, C.; Mercer, T.H.; Reilly, J.J. Comparison of accelerometry cut points for physical activity and sedentary behavior in preschool children: A validation study. Pediatr. Exerc. Sci. 2012, 24, 563–576. [Google Scholar] [CrossRef]
- Phillips, S.M.; Summerbell, C.; Hobbs, M.; Hesketh, K.R.; Saxena, S.; Muir, C.; Hillier-Brown, F.C. A systematic review of the validity, reliability, and feasibility of measurement tools used to assess the physical activity and sedentary behaviour of pre-school aged children. Int. J. Behav. Nutr. Phys. Act. 2021, 18, 141. [Google Scholar] [CrossRef] [PubMed]
- Pate, R.R.; Almeida, M.J.; McIver, K.L.; Pfeiffer, K.A.; Dowda, M. Validation and calibration of an accelerometer in preschool children. Obesity 2006, 14, 2000–2006. [Google Scholar] [CrossRef] [PubMed]
- Pate, R.R.; McIver, K.; Dowda, M.; Brown, W.H.; Addy, C. Directly observed physical activity levels in preschool children. J. Sch. Health 2008, 78, 438–444. [Google Scholar] [CrossRef] [PubMed]
- Butte, N.F.; Wong, W.W.; Lee, J.S.; Adolph, A.L.; Puyau, M.R.; Zakeri, I.F. Prediction of energy expenditure and physical activity in preschoolers. Med. Sci. Sports Exerc. 2014, 46, 1216–1226. [Google Scholar] [CrossRef]
- Leppanen, M.H.; Migueles, J.H.; Abdollahi, A.M.; Engberg, E.; Ortega, F.B.; Roos, E. Comparing estimates of physical activity in children across different cut-points and the associations with weight status. Scand. J. Med. Sci. Sports 2022, 32, 971–983. [Google Scholar] [CrossRef]
- Bourke, M.; Haddara, A.; Loh, A.; Carson, V.; Breau, B.; Tucker, P. Adherence to the World Health Organization’s physical activity recommendation in preschool-aged children: A systematic review and meta-analysis of accelerometer studies. Int. J. Behav. Nutr. Phys. Act. 2023, 20, 52. [Google Scholar] [CrossRef]
- Banda, J.A.; Haydel, K.F.; Davila, T.; Desai, M.; Bryson, S.; Haskell, W.L.; Matheson, D.; Robinson, T.N. Effects of Varying Epoch Lengths, Wear Time Algorithms, and Activity Cut-Points on Estimates of Child Sedentary Behavior and Physical Activity from Accelerometer Data. PLoS ONE 2016, 11, e0150534. [Google Scholar] [CrossRef]
- Gaba, A.; Dygryn, J.; Mitas, J.; Jakubec, L.; Fromel, K. Effect of Accelerometer Cut-Off Points on the Recommended Level of Physical Activity for Obesity Prevention in Children. PLoS ONE 2016, 11, e0164282. [Google Scholar] [CrossRef]
- Johansson, E.; Larisch, L.M.; Marcus, C.; Hagstromer, M. Calibration and Validation of a Wrist- and Hip-Worn Actigraph Accelerometer in 4-Year-Old Children. PLoS ONE 2016, 11, e0162436. [Google Scholar] [CrossRef]
- Rodrigues, D.; Gama, A.; Machado-Rodrigues, A.M.; Nogueira, H.; Silva, M.G.; Rosado-Marques, V.; Padez, C. Social inequalities in traditional and emerging screen devices among Portuguese children: A cross-sectional study. BMC Public Health 2020, 20, 902. [Google Scholar] [CrossRef]
- Cole, T.J.; Bellizzi, M.C.; Flegal, K.M.; Dietz, W.H. Establishing a standard definition for child overweight and obesity worldwide: International survey. BMJ 2000, 320, 1240–1243. [Google Scholar] [CrossRef] [PubMed]
- Vale, S.; Santos, R.; Silva, P.; Soares-Miranda, L.; Mota, J. Preschool children physical activity measurement: Importance of epoch length choice. Pediatr. Exerc. Sci. 2009, 21, 413–420. [Google Scholar] [CrossRef] [PubMed]
- Andersen, L.B.; Harro, M.; Sardinha, L.B.; Froberg, K.; Ekelund, U.; Brage, S.; Anderssen, S.A. Physical activity and clustered cardiovascular risk in children: A cross-sectional study (The European Youth Heart Study). Lancet 2006, 368, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Bringolf-Isler, B.; Grize, L.; Mader, U.; Ruch, N.; Sennhauser, F.H.; Braun-Fahrlander, C. Assessment of intensity, prevalence and duration of everyday activities in Swiss school children: A cross-sectional analysis of accelerometer and diary data. Int. J. Behav. Nutr. Phys. Act. 2009, 6, 50. [Google Scholar] [CrossRef]
- Machado-Rodrigues, A.M.; Coelho-e-Silva, M.J.; Ribeiro, L.P.; Fernandes, R.; Mota, J.; Malina, R.M. Waist Circumference and Objectively Measured Sedentary Behavior in Rural School Adolescents. J. Sch. Health 2016, 86, 54–60. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Rodrigues, D.; Muc, M.; Machado-Rodrigues, A.M.; Padez, C. Less obesity but higher inequalities in Portuguese children: Trends of childhood obesity between 2002–2016. Acta Paediatr. 2021, 110, 1526–1533. [Google Scholar] [CrossRef]
- Leeger-Aschmann, C.S.; Schmutz, E.A.; Zysset, A.E.; Kakebeeke, T.H.; Messerli-Burgy, N.; Stulb, K.; Kriemler, S. Accelerometer-derived physical activity estimation in preschoolers—Comparison of cut-point sets incorporating the vector magnitude vs the vertical axis. BMC Public Health 2019, 19, 513. [Google Scholar] [CrossRef]
- Fairclough, S.J.; Noonan, R.; Rowlands, A.V.; Van Hees, V.; Knowles, Z.; Boddy, L.M. Wear Compliance and Activity in Children Wearing Wrist- and Hip-Mounted Accelerometers. Med. Sci. Sports Exerc. 2016, 48, 245–253. [Google Scholar] [CrossRef]
- Migueles, J.H.; Delisle Nystrom, C.; Leppanen, M.H.; Henriksson, P.; Lof, M. Revisiting the cross-sectional and prospective association of physical activity with body composition and physical fitness in preschoolers: A compositional data approach. Pediatr. Obes. 2022, 17, e12909. [Google Scholar] [CrossRef]
- Ahmadi, M.N.; Trost, S.G. Device-based measurement of physical activity in pre-schoolers: Comparison of machine learning and cut point methods. PLoS ONE 2022, 17, e0266970. [Google Scholar] [CrossRef] [PubMed]
- Carson, V.; Barnes, J.; LeBlanc, C.M.A.; Moreau, E.; Tremblay, M.S. Increasing Canadian paediatricians’ awareness and use of the new Canadian Physical Activity and Sedentary Behaviour Guidelines for ages 0 to 17 years. Paediatr. Child Health 2017, 22, 17–22. [Google Scholar] [CrossRef]
- Ahmadi, M.N.; Brookes, D.; Chowdhury, A.; Pavey, T.; Trost, S.G. Free-living Evaluation of Laboratory-based Activity Classifiers in Preschoolers. Med. Sci. Sports Exerc. 2020, 52, 1227–1234. [Google Scholar] [CrossRef] [PubMed]
- Kwon, S.; O’Brien, M.K.; Welch, S.B.; Honegger, K. Physical Activity among U.S. Preschool-Aged Children: Application of Machine Learning Physical Activity Classification to the 2012 National Health and Nutrition Examination Survey National Youth Fitness Survey. Children 2022, 9, 1433. [Google Scholar] [CrossRef] [PubMed]
- Kretschmer, L.; Salali, G.D.; Andersen, L.B.; Hallal, P.C.; Northstone, K.; Sardinha, L.B.; International Children’s Accelerometry Database Collaborators. Gender differences in the distribution of children’s physical activity: Evidence from nine countries. Int. J. Behav. Nutr. Phys. Act. 2023, 20, 103. [Google Scholar] [CrossRef]
- Leao, O.A.A.; Mielke, G.I.; Hallal, P.C.; Cairney, J.; Mota, J.; Domingues, M.R.; Murray, J.; Bertoldi, A.D. Longitudinal Associations Between Device-Measured Physical Activity and Early Childhood Neurodevelopment. J. Phys. Act. Health 2022, 19, 80–88. [Google Scholar] [CrossRef]
- Pulakka, A.; Cheung, Y.B.; Ashorn, U.; Penpraze, V.; Maleta, K.; Phuka, J.C.; Ashorn, P. Feasibility and validity of the ActiGraph GT3X accelerometer in measuring physical activity of Malawian toddlers. Acta Paediatr. 2013, 102, 1192–1198. [Google Scholar] [CrossRef]
- Kwon, S.; Zavos, P.; Nickele, K.; Sugianto, A.; Albert, M.V. Hip and Wrist-Worn Accelerometer Data Analysis for Toddler Activities. Int. J. Environ. Res. Public Health 2019, 16, 2598. [Google Scholar] [CrossRef]
- Altenburg, T.M.; de Vries, L.; Op den Buijsch, R.; Eyre, E.; Dobell, A.; Duncan, M.; Chinapaw, M.J.M. Cross-validation of cut-points in preschool children using different accelerometer placements and data axes. J. Sports Sci. 2022, 40, 379–385. [Google Scholar] [CrossRef]
- Nilsen, A.K.O.; Anderssen, S.A.; Loftesnes, J.M.; Johannessen, K.; Ylvisaaker, E.; Aadland, E. The multivariate physical activity signature associated with fundamental motor skills in preschoolers. J. Sports Sci. 2020, 38, 264–272. [Google Scholar] [CrossRef]
Males (n = 74) | Females (n = 60) | ||||||
---|---|---|---|---|---|---|---|
Mean (SE) | CI (95%) | Greenhouse–Geisser | Mean (SE) | CI (95%) | Greenhouse–Geisser | ||
Sedentary time [min/day] | Pate | 506.35 (17.26) A | 471.95–540.75 | 0.552 ** | 539.96 (22.86) A | 494.22–585.71 | 0.526 ** |
Butte | 420.87 (14.96) B | 391.05–450.69 | 449.27 (21.17) B | 406.90–491.65 | |||
Johansson | 526.40 (17.92) C | 490.68–562.12 | 561.58 (23.46) A | 514.63–608.53 | |||
Light PA [min/day] | Pate | 57.94 (2.28) A | 53.38–62.49 | 0.741 ** | 58.74 (2.65) A | 53.43–64.04 | 0.804 ** |
Butte | 159.64 (6.33) B | 147.01–172.27 | 164.76 (7.14) B | 150.46–179.06 | |||
Johansson | 112.58 (4.65) C | 103.30–121.86 | 105.37 (5.47) C | 94.41–116.33 | |||
MVPA [min/day] | Pate | 86.09 (4.05) A | 78.01–94.17 | 0.555 | 77.79 (4.30) A | 69.19–86.40 | 0.538 |
Butte | 69.86 (3.33) B | 63.21–76.51 | 62.47 (3.67) B | 55.10–69.83 | |||
Johansson | 11.39 (1.04) C | 9.30–13.48 | 9.55 (0.68) C | 8.18–10.91 |
Males (n = 74) | Females (n = 60) | ||||||
---|---|---|---|---|---|---|---|
Mean (SE) | CI (95%) | Greenhouse–Geisser | Mean (SE) | CI (95%) | Greenhouse–Geisser | ||
Sedentary time [min/day] | Pate | 606.54 (10.35) A | 585.90–627.19 | 0.574 ** | 633.28 (12.28) A | 608.70–657.87 | 0.569 ** |
Butte | 505.74 (9.85) B | 486.11–525.38 | 531.51 (12.63) B | 506.23–556.79 | |||
Johansson | 627.47 (10.52) C | 606.50–648.44 | 656.35 (12.40) A | 631.52–681.17 | |||
Light PA [min/day] | Pate | 63.32 (1.32) A | 60.68–65.97 | 0.762 ** | 61.47 (1.90) A | 57.66–65.28 | 0.727 ** |
Butte | 180.13 (4.24) B | 171.66–188.59 | 179.20 (5.33) B | 16853–189.87 | |||
Johansson | 121.14 (2.90) C | 115.35–126.92 | 106.02 (3.54) C | 98.92–113,13 | |||
MVPA [min/day] | Pate | 90.87 (2.53) A | 85.82–95.93 | 0.708 ** | 77.60 (2.79) A | 72.00–83.20 | 0.585 ** |
Butte | 74.89 (2.29) B | 70.32–79.46 | 61.64 (2.32) B | 56.99–66.29 | |||
Johansson | 12.24 (0.59) C | 11.06–13.42 | 9.98 (0.54) C | 8.89–11.08 |
Males (n = 74) | Females (n = 60) | ||||||
---|---|---|---|---|---|---|---|
Mean (SE) | CI (95%) | Greenhouse–Geisser | Mean (SE) | CI (95%) | Greenhouse–Geisser | ||
Sedentary time [min/day] | Pate | 577.92 (9.51) A | 558.96–596.88 | 0.579 ** | 606.62 (13.31) A | 579.99–633.25 | 0.541 ** |
Butte | 481.50 (8.99) B | 463.56–499.43 | 508.01 (13.45) B | 481.10–534.93 | |||
Johansson | 598.59 (9.76) C | 579.13–618.05 | 629.27 (13.53) A | 602.19–656.35 | |||
Light activity [min/day] | Pate | 61.78 (1.26) A | 59.26–64.30 | 0.735 ** | 60.69 (1.83) A | 57.01–64.37 | 0.753 ** |
Butte | 174.27 (4.01) B | 166.26–182.28 | 175.07 (5.08) B | 164.90–185.25 | |||
Johansson | 118.69 (2.66) C | 113.93–124.00 | 105.84 (3.56) C | 98.71–112.96 | |||
MVPA [min/day] | Pate | 89.51 (2.36) A | 84.79–94.23 | 0.713 | 77.66 (2.78) A | 72.08–83.23 | 0.582 |
Butte | 73.45 (2.06) B | 69.34–77.56 | 61.88 (2.35) B | 57.16–66.59 | |||
Johansson | 12.00 (0.58) C | 10.83–13.17 | 9.86 (0.47) C | 8.91–10.80 |
% of Active Children by Cut-Off Points for Total Sample and for Males and Females Separately | |||||||
---|---|---|---|---|---|---|---|
Total | Sex | ||||||
Males | Females | p-Value | |||||
≥60 min | <60 min | ≥60 min | <60 min | ≥60 min | <60 min | ||
Weekend days | |||||||
Pate | 116 (85.57) | 18 (13.43) | 69 (93.24) | 5 (6.76) | 47 (78.33) | 13 (21.67) | 0.012 |
Butte | 87 (64.93) | 47 (35.07) | 56 (75.68) | 18 (24.32) | 31 (51.67) | 29 (48.33) | 0.004 |
Johansson | 0 | 134 (100.00) | - | 74 (100) | - | 60 (100) | - |
Weekdays | |||||||
Pate | 99 (73.88) | 35 (26.12) | 58 (78.38) | 16 (21.62) | 41 (68.33) | 19 (31.67) | 0.188 |
Butte | 76 (56.72) | 58 (43.28) | 44 (59.46) | 30 (40.54) | 32 (53.33) | 28 (46.67) | 0.477 |
Johansson | 0 | 134 (100) | - | 74 (100) | - | 60 (100) | - |
Total days (seven days) | |||||||
Pate | 117 (87.31) | 17 (12.69) | 71 (95.95) | 3 (4.05) | 46 (76.67) | 14 (23.33) | 0.001 |
Butte | 91 (67.91) | 43 (32.09) | 58 (78.38) | 16 (21.62) | 33 (55.00) | 27 (45.00) | 0.004 |
Johansson | - | 134 (100) | - | 74 (100) | - | 60 (100) | - |
Pate | Butte | |
---|---|---|
Agreement (Kappa) | Agreement (Kappa) | |
Total days (7 days) | ||
Pate | - | - |
Butte | 82.42% (0.265) ** | - |
Johansson | 4.05% (0.000) | 21.62% (0.000) |
Weekdays | ||
Pate | - | - |
Butte | 81.08% (0.576) ** | - |
Johansson | 21.62% (0.000) | 40.54% (0.000) |
Weekend days | ||
Pate | - | - |
Butte | 82.43% (0.367) ** | - |
Johansson | 6.76% (0.000) | 24.32% (0.000) |
Pate | Butte | |
---|---|---|
Agreement (Kappa) | Agreement (Kappa) | |
Total days (7 days) | ||
Pate | - | - |
Butte | 75.00% (0.471) ** | - |
Johansson | 23.33% (0.000) | 45.00% (0.000) |
Weekdays | ||
Pate | - | - |
Butte | 85.00% (0.692) ** | - |
Johansson | 31.67% (0.000) | 46.67% (0.000) |
Weekend days | ||
Pate | - | - |
Butte | 73.33% (0.456) ** | - |
Johansson | 21.67% (0.000) | 48.33% (0.000) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Machado-Rodrigues, A.M.; da Silva, T.P.R.; Mendes, L.L.; Neto, A.S.; Nogueira, H.; Rodrigues, D.; Padez, C. Preschoolers’ Moderate-to-Vigorous Physical Activity Measured by a Tri-Axial Accelerometer: Compliance with International Guidelines and Different Cut-Points. Children 2024, 11, 1296. https://doi.org/10.3390/children11111296
Machado-Rodrigues AM, da Silva TPR, Mendes LL, Neto AS, Nogueira H, Rodrigues D, Padez C. Preschoolers’ Moderate-to-Vigorous Physical Activity Measured by a Tri-Axial Accelerometer: Compliance with International Guidelines and Different Cut-Points. Children. 2024; 11(11):1296. https://doi.org/10.3390/children11111296
Chicago/Turabian StyleMachado-Rodrigues, Aristides M., Thales P. Rodrigues da Silva, Larissa L. Mendes, António Stabelini Neto, Helena Nogueira, Daniela Rodrigues, and Cristina Padez. 2024. "Preschoolers’ Moderate-to-Vigorous Physical Activity Measured by a Tri-Axial Accelerometer: Compliance with International Guidelines and Different Cut-Points" Children 11, no. 11: 1296. https://doi.org/10.3390/children11111296
APA StyleMachado-Rodrigues, A. M., da Silva, T. P. R., Mendes, L. L., Neto, A. S., Nogueira, H., Rodrigues, D., & Padez, C. (2024). Preschoolers’ Moderate-to-Vigorous Physical Activity Measured by a Tri-Axial Accelerometer: Compliance with International Guidelines and Different Cut-Points. Children, 11(11), 1296. https://doi.org/10.3390/children11111296