Effects of Ambient Air Pollutants on Hospital Admissions among Children Due to Asthma and Wheezing-Associated Lower Respiratory Infections in Mysore, India: A Time Series Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO. Asthma. Available online: https://www.who.int/news-room/fact-sheets/detail/asthma (accessed on 21 January 2023).
- GINA. Global Strategy for Asthma Management and Prevention; Global INitiative for Asthma: Washington, DC, USA, 2022; pp. 1–222. Available online: www.ginasthma.org (accessed on 30 October 2022).
- Yang, J.F.; Chaudhuri, R.; Thomson, N.C.; Ramparsad, N.; O’Pray, H.; Barclay, S.; MacBride-Stewart, S.; McCallum, C.; Sharma, V.; McSharry, C.; et al. Insights into frequent asthma exacerbations from a primary care perspective and the implications of UK National Review of Asthma Deaths recommendations. NPJ Prim. Care Respir. Med. 2018, 28, 35–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- DiMango, E.; Rogers, L.; Reibman, J.; Gerald, L.B.; Brown, M.; Sugar, E.A.; Henderson, R.; Holbrook, J.T. Risk Factors for Asthma Exacerbation and Treatment Failure in Adults and Adolescents with Well-controlled Asthma during Continuation and Step-Down Therapy. Ann. Am. Thorac. Soc. 2018, 15, 955–961. [Google Scholar] [CrossRef] [PubMed]
- Porsbjerg, C.; Melén, E.; Lehtimäki, L.; Shaw, D. Asthma. Lancet 2023, 401, 858–873. [Google Scholar] [CrossRef]
- Weinmayr, G.; Romeo, E.; De Sario, M.; Weiland, S.K.; Forastiere, F. Short-Term Effects of PM₁₀ and NO₂ on Respiratory Health among Children with Asthma or Asthma-like Symptoms: A Systematic Review and Meta-Analysis. Environ. Health Perspect. 2010, 118, 449–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iskandar, A.; Andersen, Z.J.; Bønnelykke, K.; Ellermann, T.; Andersen, K.K.; Bisgaard, H. Coarse and fine particles but not ultrafine particles in urban air trigger hospital admission for asthma in children. Thorax 2012, 67, 252–257. [Google Scholar] [CrossRef] [Green Version]
- Ross, K.; Chmiel, J.F.; Ferkol, T. The Impact of the Clean Air Act. J. Pediatr. 2012, 161, 781–786. [Google Scholar] [CrossRef] [Green Version]
- Gleason, J.A.; Bielory, L.; Fagliano, J.A. Associations between ozone, PM2.5, and four pollen types on emergency department pediatric asthma events during the warm season in New Jersey: A case-crossover study. Environ. Res. 2014, 132, 421–429. [Google Scholar] [CrossRef]
- Malamardi, S.; Lambert, K.A.; Batra, M.; Tham, R.; Padukudru Anand, M.; Erbas, B. A systematic review of the evidence of outdoor air pollution on asthma hospital visits in children and adolescents in South Asia—A call for data. Wellcome Open Res. 2021, 6, 174. [Google Scholar] [CrossRef]
- Dąbrowiecki, P.; Chciałowski, A.; Dąbrowiecka, A.; Badyda, A. Ambient Air Pollution and Risk of Admission Due to Asthma in the Three Largest Urban Agglomerations in Poland: A Time-Stratified, Case-Crossover Study. Int. J. Environ. Res. Public Health 2022, 19, 5988. [Google Scholar] [CrossRef]
- Khilnani, C.G.; Tiwari, C.P. Air pollution in India and related adverse respiratory health effects: Past, present, and future directions. Curr. Opin. Pulm. Med. 2018, 24, 108–116. [Google Scholar] [CrossRef]
- Guarnieri, M.M.D.; Balmes, J.R.D. Outdoor air pollution and asthma. Lancet 2014, 383, 1581–1592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WHO. Air Pollution. Available online: https://www.who.int/health-topics/air-pollution? (accessed on 21 January 2021).
- Kumar, A.; Patil, R.S.; Dikshit, A.K.; Kumar, R. Assessment of Spatial Ambient Concentration of NH3 and its Health Impact for Mumbai City. Asian J. Atmos. Environ. (AJAE) 2019, 13. [Google Scholar] [CrossRef]
- Pande, J.N.; Bhatta, N.; Biswas, D.; Pandey, R.M.; Ahluwalia, G.; Siddaramaiah, N.H.; Khilnani, G.C. Outdoor air pollution and emergency room visits at a hospital in Delhi. Indian J. Chest Dis. Allied Sci. 2002, 44, 13–20. [Google Scholar]
- Agarwal, R.; Jayaraman, G.; Anand, S.; Marimuthu, P. Assessing respiratory morbidity through pollution status and meteorological conditions for Delhi. Environ. Monit. Assess. 2006, 114, 489–504. [Google Scholar] [CrossRef] [PubMed]
- Maji, S.; Ghosh, S.; Ahmed, S. Association of air quality with respiratory and cardiovascular morbidity rate in Delhi, India. Int. J. Environ. Health Res. 2018, 28, 471–490. [Google Scholar] [CrossRef]
- Pant, P.; Lal, R.M.; Guttikunda, S.K.; Russell, A.G.; Nagpure, A.S.; Ramaswami, A.; Peltier, R.E. Monitoring particulate matter in India: Recent trends and future outlook. Air Qual. Atmos. Health 2019, 12, 45–58. [Google Scholar] [CrossRef]
- Yadav, R.; Nagori, A.; Mukherjee, A.; Singh, V.; Lodha, R.; Kabra, S.K.; Yadav, G.; Saini, J.K.; Singhal, K.K.; Jat, K.R.; et al. Effects of ambient air pollution on emergency room visits of children for acute respiratory symptoms in Delhi, India. Environ. Sci. Pollut. Res. Int. 2021, 28, 45853–45866. [Google Scholar] [CrossRef] [PubMed]
- Papi, A.; Brightling, C.; Pedersen, S.E.; Reddel, H.K. Asthma. Lancet 2018, 391, 783. [Google Scholar] [CrossRef]
- Zheng, X.-Y.; Ding, H.; Jiang, L.-N.; Chen, S.-W.; Zheng, J.-P.; Qiu, M.; Zhou, Y.-X.; Chen, Q.; Guan, W.-J. Association between Air Pollutants and Asthma Emergency Room Visits and Hospital Admissions in Time Series Studies: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0138146. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, K.; Tsugawa, Y.; Brown, D.F.; Camargo, C.A., Jr. Childhood Asthma Hospitalizations in the United States, 2000–2009. J. Pediatr. 2013, 163, 1127–1133.e1123. [Google Scholar] [CrossRef] [Green Version]
- Kuo, C.-Y.; Chan, C.-K.; Wu, C.-Y.; Phan, D.-V.; Chan, C.-L. The Short-Term Effects of Ambient Air Pollutants on Childhood Asthma Hospitalization in Taiwan: A National Study. Int. J. Environ. Res. Public Health 2019, 16, 203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puranik, S.; Forno, E.; Bush, A.; Celedón, J.C. Predicting severe asthma exacerbations in children. Am. J. Respir. Crit. Care Med. 2017, 195, 854–859. [Google Scholar] [CrossRef] [Green Version]
- Martinez, F.D.; Wright, A.L.; Taussig, L.M.; Holberg, C.J.; Halonen, M.; Morgan, W.J. Asthma and Wheezing in the First Six Years of Life. N. Engl. J. Med. 1995, 332, 133–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shah, D.; Gupta, P. Pertinent issues in diagnosis and management of wheezing in under-five children at community level. Indian Pediatr. 2010, 47, 56–60. [Google Scholar] [CrossRef] [PubMed]
- Beale, C.A.; Paulot, F.; Randles, C.A.; Wang, R.; Guo, X.; Clarisse, L.; Van Damme, M.; Coheur, P.-F.; Clerbaux, C.; Shephard, M.W.; et al. Large sub-regional differences of ammonia seasonal patterns over India reveal inventory discrepancies. Environ. Res. Lett. 2022, 17, 104006. [Google Scholar] [CrossRef]
- Central Pollution Control Board. National Ambient Air Quality Status and Trends 2019; NAAQMS/45/2019-2020; Ministry of Environment, Forest, and Climate Change: New Delhi, India, 2020; p. 156. Available online: https://cpcb.nic.in/upload/NAAQS_ (accessed on 12 October 2020).
- Majumder, S. Socioeconomic status scales: Revised Kuppuswamy, BG Prasad, and Udai Pareekh’s scale updated for 2021. J. Fam. Med. Prim. Care 2021, 10, 3964–3967. [Google Scholar] [CrossRef]
- CDC. Overweight and Obesity, Defining Child BMI Categories. Available online: https://www.cdc.gov/obesity/basics/childhood-defining.html (accessed on 12 April 2023).
- Wood, S.N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 2011, 73, 3–36. [Google Scholar] [CrossRef] [Green Version]
- Wilkinson, L. ggplot2: Elegant Graphics for Data Analysis by WICKHAM, H. Biometrics 2011, 67, 678–679. [Google Scholar] [CrossRef]
- Dijkema, M.B.A.; van Strien, R.T.; van der Zee, S.C.; Mallant, S.F.; Fischer, P.; Hoek, G.; Brunekreef, B.; Gehring, U. Spatial variation in nitrogen dioxide concentrations and cardiopulmonary hospital admissions. Environ. Res. 2016, 151, 721–727. [Google Scholar] [CrossRef]
- Grineski, S.E.; Staniswalis, J.G.; Bulathsinhala, P.; Peng, Y.; Gill, T.E. Hospital admissions for asthma and acute bronchitis in El Paso, Texas: Do age, sex, and insurance status modify the effects of dust and low wind events? Environ. Res. 2011, 111, 1148–1155. [Google Scholar] [CrossRef] [Green Version]
- USEPA. Integrated Science Assessment (ISA) for Nitrogen Dioxide—Health Criteria (Final Report, January 2016); EPA/600/R-15/068; United States Environmental Protection Agency: Washington, DC, USA, 2016; pp. 1–40.
- Nagpure, A.S.; Gurjar, B.R.; Kumar, V.; Kumar, P. Estimation of exhaust and non-exhaust gaseous, particulate matter and air toxics emissions from on-road vehicles in Delhi. Atmos. Environ. 2016, 127, 118–124. [Google Scholar] [CrossRef]
- Nori-Sarma, A.; Thimmulappa, R.; Venkataraman, G.V.; Warren, J.L.; Berman, J.D.; Whittaker, S.D.; Kulick, E.R.; Wellenius, G.A.; Mahesh, P.A.; Bell, M.L. NO2 exposure and lung function decline in a cohort of adults in Mysore, India. Environ. Res. Commun. 2021, 3, 55001. [Google Scholar] [CrossRef]
- Kakkad, K.M.; Oza, C.; Dutta, P.; Chorsiya, V.; Rajput, P. Linking PM Pollution to the Respiratory Health of Children: A Cross-sectional Study from Ahmedabad City in Western India. Aerosol Air Qual. Res. 2022, 22, 220038. [Google Scholar] [CrossRef]
- Ueda, K.; Nitta, H.; Odajima, H. The effects of weather, air pollutants, and Asian dust on hospitalization for asthma in Fukuoka. Environ. Health Prev. Med. 2010, 15, 350–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jo, E.-J.; Lee, W.-S.; Jo, H.-Y.; Kim, C.-H.; Eom, J.-S.; Mok, J.-H.; Kim, M.-H.; Lee, K.; Kim, K.-U.; Lee, M.-K.; et al. Effects of particulate matter on respiratory disease and the impact of meteorological factors in Busan, Korea. Respir. Med. 2017, 124, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.-K.; Zhang, Q.; Qiu, Z.; Chung, K.F. Mechanistic impact of outdoor air pollution on asthma and allergic diseases. J. Thorac. Dis. 2015, 7, 23–33. [Google Scholar] [CrossRef]
- Venkataraman, C.; Brauer, M.; Tibrewal, K.; Sadavarte, P.; Ma, Q.; Cohen, A.; Sreelekha, C.; Frostad, J.; Klimont, Z.; Martin, R.V.; et al. Source influence on emission pathways and ambient PM2.5 pollution over India (2015–2050). Atmos. Chem. Phys. 2018, 18, 8017–8039. [Google Scholar] [CrossRef] [Green Version]
- Fauzie, A.K.; Venkataramana, G.V. Vehicular particulate emissions in Mysore city. Asian J. Environ. Sci. 2016, 11, 78–86. [Google Scholar] [CrossRef]
- Samoli, E.; Nastos, P.T.; Paliatsos, A.G.; Katsouyanni, K.; Priftis, K.N. Acute effects of air pollution on pediatric asthma exacerbation: Evidence of association and effect modification. Environ. Res. 2011, 111, 418–424. [Google Scholar] [CrossRef]
- Winijkul, E.; Yan, F.; Lu, Z.; Streets, D.G.; Bond, T.C.; Zhao, Y. Size-resolved global emission inventory of primary particulate matter from energy-related combustion sources. Atmos. Environ. 2015, 107, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Holst, G.; Thygesen, M.; Pedersen, C.B.; Peel, R.G.; Brandt, J.; Christensen, J.H.; Bønløkke, J.H.; Hertel, O.; Sigsgaard, T. Ammonia, ammonium, and the risk of asthma: A register-based case–control study in Danish children. Environ. Epidemiol. 2018, 2, e019. [Google Scholar] [CrossRef]
- Sharma, S.B.; Jain, S.; Khirwadkar, P.; Kulkarni, S. The effects of air pollution on the environment and human health. Indian J. Res. Pharm. Biotechnol. 2013, 1, 391–396. [Google Scholar]
- Mirabelli, M.C. Exposure to Airborne Emissions from Confined Swine Feeding Operations as a Trigger of Childhood Respiratory Symptoms; ProQuest Dissertations Publishing: Ann Arbor, MI, USA, 2005. [Google Scholar]
- Pavilonis, B.T.; Sanderson, W.T.; Merchant, J.A. Relative exposure to swine animal feeding operations and childhood asthma prevalence in an agricultural cohort. Environ. Res. 2013, 122, 74–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chakraborty, P.; Chakraborty, A.; Ghosh, D.; Mandal, J.; Biswas, S.; Mukhopadhyay, U.K.; Gupta Bhattacharya, S. Effect of airborne Alternaria conidia, ozone exposure, PM10 and weather on emergency visits for asthma in school-age children in Kolkata city, India. Aerobiologia 2014, 30, 137–148. [Google Scholar] [CrossRef]
- Rhomberg, L.R.; Chandalia, J.K.; Long, C.M.; Goodman, J.E. Measurement error in environmental epidemiology and the shape of exposure-response curves. Crit. Rev. Toxicol. 2011, 41, 651–671. [Google Scholar] [CrossRef] [PubMed]
- Rhomberg, L.R.; Goodman, J.E.; Haber, L.T.; Dourson, M.; Andersen, M.E.; Klaunig, J.E.; Meek, B.; Price, P.S.; McClellan, R.O.; Cohen, S.M. Linear low-dose extrapolation for noncancer heath effects is the exception, not the rule. Crit. Rev. Toxicol. 2011, 41, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cox, L.A. Effects of exposure estimation errors on estimated exposure-response relations for PM2.5. Environ. Res. 2018, 164, 636–646. [Google Scholar] [CrossRef]
- Cox, L.A. Nonlinear dose-time-response functions and health-protective exposure limits for inflammation-mediated diseases. Environ. Res. 2020, 182, 109026. [Google Scholar] [CrossRef]
- Mead, J. Dysanapsis in normal lungs assessed by the relationship between maximal flow, static recoil, and vital capacity. Am. Rev. Respir. Dis. 1980, 121, 339–342. [Google Scholar]
- Fuseini, H.; Newcomb, D.C. Mechanisms Driving Gender Differences in Asthma. Curr. Allergy Asthma Rep. 2017, 17, 19. [Google Scholar] [CrossRef] [Green Version]
- Hoo, A.-F.; Dezateux, C.; Hanrahan, J.P.; Cole, T.J.; Tepper, R.S.; Stocks, J. Sex-specific prediction equations for V maxFRC in infancy: A multicenter collaborative study. Am. J. Respir. Crit. Care Med. 2002, 165, 1084–1092. [Google Scholar] [CrossRef] [PubMed]
- Pagtakhan, R.D.; Bjelland, J.C.; Landau, L.I.; Loughlin, G.; Kaltenborn, W.; Seeley, G.; Taussig, L.M. Sex differences in growth patterns of the airways and lung parenchyma in children. J. Appl. Physiol. 1984, 56, 1204–1210. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Dey, S.; Smith, K.R. Ambient PM 2.5 exposure and expected premature mortality to 2100 in India under climate change scenarios. Nat. Commun. 2018, 9, 318. [Google Scholar] [CrossRef] [Green Version]
- Zein, J.G.; Udeh, B.L.; Teague, W.G.; Koroukian, S.M.; Schlitz, N.K.; Bleecker, E.R.; Busse, W.B.; Calhoun, W.J.; Castro, M.; Comhair, S.A.; et al. Impact of Age and Sex on Outcomes and Hospital Cost of Acute Asthma in the United States, 2011–2012. PLoS ONE 2016, 11, e0157301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Opara, N.U.; Hensley, B.M.; Judy, C. Evaluating the Benefits of Viral Respiratory Panel Test in the Reduction of Emergency Department Throughput Time for Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Curēus 2021, 13, e19213. [Google Scholar] [CrossRef]
- Brotons, P.; Villaronga, M.; Henares, D.; Armero, G.; Launes, C.; Jordan, I.; Muñoz-Almagro, C. Clinical impact of rapid viral respiratory panel testing on pediatric critical care of patients with acute lower respiratory infection. Enfermedades Infecc. Y Microbiol. Clin. 2022, 40, 53–58. [Google Scholar] [CrossRef]
- Thattakkat, K. A clinical study of the benefits and effectiveness of a respiratory viral panel PCR study in children presenting with respiratory tract infections. Br. J. Child Health 2022, 3, 95–97. [Google Scholar] [CrossRef]
Variable | All | Boys | Girls | p Value |
---|---|---|---|---|
N (%) | 362 | 232 (64.08) | 130 (35.91) | |
Mean age ± SD | 5.34 (±4.66) | 5.69 (4.85) | 5.16 (4.47) | |
Age group, N (%) | ||||
<5 years (N = 194) | 194, (53.59) | 116 (59.79) | 62 (31.95) | |
≥5 years (N = 161 + 7) | 168 (46.40) | 116 (69.04) | 68 (40.47) | |
Diagnosis N (%) | ||||
Asthma | 211 (57.34) | 134 (57.58) | 77 (56.91) | |
WALRI | 151 (42.66) | 98 (42.42) | 53 (43.09) | |
Weight (in kgs), mean (SD) | 18.07055 (12.5943) | 17.61 (12.04156) | 18.94906 (13.59612) | |
Height (in cm), mean (SD) | 103.2295 (28.22597) | 102.2735 (27.19837) | 105.0516 (30.12417) | |
BMI, mean (±SD) | 15.48876 (3.30534) | 15.48056 (3.408503) | 15.50438 (3.113445) | p = 0.511 |
BMI (min, max) | (9.002058, 27.6601) | (10.38781, 27.6601) | (9.002058, 27.38558) | |
BMI group N (%) | ||||
Underweight | 23 (6.4) | 15 (6.4) | 23 (6.4) | p = 0.70 |
Normal | 285 (79.4) | 189 (80.1) | 285 (79.2) | |
Overweight | 15 (4.2) | 7 (3.0) | 15 (4.2) | |
Obese | 37 (10.3) | 25 (10.6) | 37 (10.3) | |
Average hospital stays (in days), mean (SD) (>3 days) | 3.69 (2.74) | 3.77 (3.10) | 3.54 (1.88) | |
Total duration of hospital stays (in days) N (min, max) | 360 (0, 28) | 236 (0, 28) | 124 (0, 10) | |
No of previous hospital admissions N (min, max) | 208 (1, 12) | 137 (1, 12) | 71 (1, 7) | |
No of previous hospital admissions within 12 months N (min, max) | 121 (1, 12) | 82 (1, 4) | 39 (1, 12) | |
No of previous hospital admissions within 28 days N (min, max) | 37 (1, 4) | 24 (1, 2) | 13 (1, 4) | |
Socioeconomic status N (%) | ||||
Lower | 36 (11.84) | 27 (13.30) | 9 (8.91) | |
Lower middle | 76 (25.00) | 46 (22.66) | 30 (29.70) | |
Middle | 167 (54.93) | 117 (57.64) | 50 (49.50) | |
Upper middle | 25 (8.22) | 13 (6.40) | 12 (11.88) | |
Family history of Asthma N (%) | ||||
Paternal history N (%) | 41 (11.71) | 18 (7.86) | 23 (19.01) | |
Maternal history N (%) | 26 (7.43) | 15 (6.55) | 11 (9.09) | |
Sibling history N (%) | 7 (2.61) | 4 (2.31) | 3 (3.16) | |
Season N (%) | ||||
Winter | 77 (21.39) | 44 (18.64) | 33 (26.61) | |
Summer | 58 (16.11) | 38 (16.10) | 20 (16.13) | |
Monsoon | 158 (43.89) | 112 (47.46) | 46 (37.10) | |
Autumn | 67 (18.61) | 42 (17.80) | 25 (20.16) |
Variable | Mean (SD) | Percentile | Min | Max | |||
---|---|---|---|---|---|---|---|
25 | 50 | 75 | 90 | ||||
PM2.5 (µgm−3) | 25.68 (5.35) | 24.00 | 26.40 | 29.00 | 31.00 | 8.00 | 41.40 |
PM10 (µgm−3) | 50.37 (8.61) | 46.00 | 51.00 | 55.00 | 59.00 | 20.00 | 77.00 |
NO2 (µgm−3) | 15.72 (2.55) | 14.09 | 15.10 | 16.62 | 19.70 | 11.20 | 24.20 |
NH3 (µgm−3) | 14.42 (2.98) | 12.69 | 14.11 | 15.64 | 17.03 | 9.62 | 38.30 |
Temperature (max) in Celsius | 30.91 (2.34) | 29.00 | 31.00 | 32.00 | 34.00 | 21.00 | 38.00 |
Humidity (%) | 73 (26.02) | 53 | 76.00 | 65.2 | 86.3 | 17.0 | 98.4 |
Asthma admission (total 362) | 0.1982 (0.548) | 0 | 0 | 0 | 1 | 0 | 4 |
Weekdays * | N (%) | ||||||
Monday | 51 (14.09) | 0 | 0 | 0 | 1 | 0 | 3 |
Tuesday | 61 (16.85) | 0 | 0 | 0 | 1 | 0 | 3 |
Wednesday | 49 (13.54) | 0 | 0 | 0 | 1 | 0 | 3 |
Thursday | 59 (16.30) | 0 | 0 | 0 | 1 | 0 | 4 |
Friday | 58 (16.02) | 0 | 0 | 0 | 1 | 0 | 4 |
Saturday | 44 (12.15) | 0 | 0 | 0 | 1 | 0 | 3 |
Sunday | 40 (11.05) | 0 | 0 | 0 | 1 | 0 | 4 |
Total | 362 (100) | 0 | 0 | 0 | 1 | 0 | 4 |
Month ** | N (%) | ||||||
January | 31 (8.56) | 0 | 0 | 0 | 1 | 0 | 3 |
February | 20 (5.52) | 0 | 0 | 0 | 1 | 0 | 2 |
March | 25 (6.91) | 0 | 0 | 0 | 1 | 0 | 2 |
April | 16 (4.42) | 0 | 0 | 0 | 0 | 0 | 3 |
May | 08 (2.21) | 0 | 0 | 0 | 0 | 0 | 2 |
June | 17 (4.70) | 0 | 0 | 0 | 0 | 0 | 3 |
July | 34 (9.39) | 0 | 0 | 0 | 1 | 0 | 4 |
August | 53 (14.64) | 0 | 0 | 0 | 1 | 0 | 3 |
September | 60 (16.57) | 0 | 0 | 1 | 1.5 | 0 | 4 |
October | 52 (14.36) | 0 | 0 | 0 | 1 | 0 | 4 |
November | 25 (6.91) | 0 | 0 | 0 | 1 | 0 | 3 |
December | 21 (5.80) | 0 | 0 | 0 | 1 | 0 | 3 |
Total | 362 (100) | 0 | 0 | 0 | 1 | 0 | 4 |
GAM * | All Participants * (N = 362) | Boys * (N = 232) | Girls * (N = 130) | Children Less than 5 Years * (N = 194) | Children More than Equal to 5 Years * (N = 168) |
---|---|---|---|---|---|
Air Pollutants + s (Time) + Day of Week Categorical + s (Tempmax) + s (Relative Humidity) | Edf (p Value); logLIK | Edf (p Value); logLIK | Edf (p Value); logLIK | Edf (p Value); logLIK | Edf (p Value); logLIK |
NO2 | 2.428 (0.0223); −879.839 | 2.483 (0.00814); −651.784 | 1.000 (0.931); −109.829 | 1.000 (0.931); −179.266 | 1.000 (0.740); −145.630 |
PM2.5 | 3.910 (0.0113); −876.890 | 3.844 (0.016); −651.283 | 1.000 (0.572); −109.67 | 1.000 (0.790); −179.235 | 1.000 (0.762); −145.640 |
PM10 | 1.006 (0.0534); −884.725 | 2.049 (0.0271); −655.08 | 1.000 (0.916); −109.828 | 1.000 (0.959); −179.269 | 1.000 (0.640); −145.575 |
NH3 | 4.810 (<0.0001); −831.068 | 4.532 (<0.0001); −631.238 | 5.705 (0.00074); −357.64 | 3.751 (<0.0001); −553.186 | 4.919 (<0.0001); −466.177 |
GLM | All Participants * (N = 362) | Boys * (N = 232) | Girls * (N = 130) | Children Less than 5 Years * (N = 194) | Children More than Equal to 5 Years * (N = 168) |
---|---|---|---|---|---|
Air Pollutants | RR (95% CI); p Value; logLIK | RR (95% CI); p Value; logLIK | RR (95% CI); p Value; logLIK | RR (95% CI); p Value; logLIK | RR (95% CI); p Value; logLIK |
NO2 | Non-linear (Refer to Figure S2) | Non-linear | 0.995 (0.915, 1.082); 0.671; −109.91 | 0.956 (0.878, 1.042); 0.314; −135.56 | 1.005 (0.912, 1.108); 0.905; −146.23 |
PM2.5 | Non-linear (Refer to Figure S3) | Non-linear | 0.994 (0.971, 1.017); 0.642; −109.810 | 0.993 (0.969, 1.018); 0.613; −135.96 | 0.990 (0.961, 1.019); 0.509; −146.03 |
PM10 | 1.028 (1.013, 1.043); <0.0001; −104.634 | Non-linear (Refer to Figure S4) | 0.998 (0.977, 1.020); 0.914; −109.910 | 0.999 (0.970, 1.029); 0.988; −136.08 | 0.987 (0.952, 1.024); 0.507; −146.02 |
NH3 | Non-linear (Refer to Figure S5) | Non-linear | Non-linear | Non-linear | Non-linear |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malamardi, S.; Lambert, K.; Siddaiah, J.B.; Erbas, B.; Mahesh, P.A. Effects of Ambient Air Pollutants on Hospital Admissions among Children Due to Asthma and Wheezing-Associated Lower Respiratory Infections in Mysore, India: A Time Series Study. Children 2023, 10, 1322. https://doi.org/10.3390/children10081322
Malamardi S, Lambert K, Siddaiah JB, Erbas B, Mahesh PA. Effects of Ambient Air Pollutants on Hospital Admissions among Children Due to Asthma and Wheezing-Associated Lower Respiratory Infections in Mysore, India: A Time Series Study. Children. 2023; 10(8):1322. https://doi.org/10.3390/children10081322
Chicago/Turabian StyleMalamardi, Sowmya, Katrina Lambert, Jayaraj Biligere Siddaiah, Bircan Erbas, and Padukudru Anand Mahesh. 2023. "Effects of Ambient Air Pollutants on Hospital Admissions among Children Due to Asthma and Wheezing-Associated Lower Respiratory Infections in Mysore, India: A Time Series Study" Children 10, no. 8: 1322. https://doi.org/10.3390/children10081322
APA StyleMalamardi, S., Lambert, K., Siddaiah, J. B., Erbas, B., & Mahesh, P. A. (2023). Effects of Ambient Air Pollutants on Hospital Admissions among Children Due to Asthma and Wheezing-Associated Lower Respiratory Infections in Mysore, India: A Time Series Study. Children, 10(8), 1322. https://doi.org/10.3390/children10081322