Caries-Free Prevalence among Schoolchildren in Malaysia—Time-Series Analysis of Trends and Projections from 1996 to 2030
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Participants, Data Source and Description
2.2. Data Analysis
3. Results
3.1. Trends of Caries-Free Prevalence among 6-, 12- and 16-Year-Old Schoolchildren in Malaysia from 1996 to 2019
3.2. Selection of the Best Time Series Model for Projecting Caries-Free Prevalence for Each Age Group
3.3. Projection of Caries-Free Prevalence in 6-, 12- and 16-Year-Old Schoolchildren until 2030
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kassebaum, N.J.; Smith, A.G.; Bernabé, E.; Fleming, T.D.; Reynolds, A.E.; Vos, T.; Murray, C.; Marcenes, W.; Collaborators, G.O.H. Global, regional, and national prevalence, incidence, and disability-adjusted life years for oral conditions for 195 countries, 1990–2015: A systematic analysis for the global burden of diseases, injuries, and risk factors. J. Dent. Res. 2017, 96, 380–387. [Google Scholar] [CrossRef]
- Qiu, W.; Zhou, Y.; Li, Z.; Huang, T.; Xiao, Y.; Cheng, L.; Peng, X.; Zhang, L.; Ren, B. Application of antibiotics/antimicrobial agents on dental caries. BioMed Res. Int. 2020, 2020, 5658212. [Google Scholar] [CrossRef] [PubMed]
- Quock, R.L. Dental caries: A current understanding and implications. J. Nat. Sci. 2015, 1, 27. [Google Scholar]
- Selwitz, R.H.; Ismail, A.I.; Pitts, N.B. Dental caries. Lancet 2007, 369, 51–59. [Google Scholar] [CrossRef] [PubMed]
- Stephens, M.B.; Wiedemer, J.P.; Kushner, G.M. Dental problems in primary care. Am. Fam. Physician 2018, 98, 654–660. [Google Scholar]
- Crall, J.J.; Vujicic, M. Children’s Oral Health: Progress, Policy Development, And Priorities For Continued Improvement: Study examines improvements in American children’s oral health and oral health care that stem from major federal and state initiatives, and persistent disparities. Health Aff. 2020, 39, 1762–1769. [Google Scholar]
- Bönecker, M.; Abanto, J.; Tello, G.; Oliveira, L.B. Impact of dental caries on preschool children’s quality of life: An update. Braz. Oral Res. 2012, 26, 103–107. [Google Scholar] [CrossRef]
- WHO. Sugar and Dental Caries; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Kundu, H.; Patthi, B.; Singla, A.; Jankiram, C.; Jain, S.; Singh, K. Dental caries scenario among 5, 12 and 15-year-old children in India-A retrospective analysis. J. Clin. Diagn. Res. JCDR 2015, 9, ZE01. [Google Scholar] [CrossRef]
- UNICEF. The State of the World’s Children 2019: Children, Food and Nutrition: Growing Well in a Changing World; UNICEF: Pyrmont, Australia, 2019. [Google Scholar]
- Tinanoff, N.; Baez, R.J.; Diaz Guillory, C.; Donly, K.J.; Feldens, C.A.; McGrath, C.; Phantumvanit, P.; Pitts, N.B.; Seow, W.K.; Sharkov, N. Early childhood caries epidemiology, aetiology, risk assessment, societal burden, management, education, and policy: Global perspective. Int. J. Paediatr. Dent. 2019, 29, 238–248. [Google Scholar] [CrossRef]
- Pitts, N.; Mayne, C. A Global Consensus for Achieving a Dental Cavity-Free Future. 2021. Available online: https://kclpure.kcl.ac.uk/portal/en/publications/a-global-consensus-for-achieving-a-dental-cavityfree-future(c3b4777e-f615-4a5e-934d-e47a11843183).html (accessed on 2 December 2022).
- Nohss, O.H.D.; Ministry of Health Malaysia. National Oral Health Survey of School Children. In Volume II: Oral Health Status of 12-Year-Old School Children; University of Adelaide Press: Adelaide, Australia, 2017; Volume II. [Google Scholar]
- NOHPS, O.H.D.; Ministry of Health Malaysia. National Oral Health Survey of Preschool Children 2015 (NOHPS 2015). In Oral Health Status and Caries Treatment Needs of 5-Year-Old Children; Ministry of Health: Putrajaya, Malaysia, 2015; Volume 1, pp. 3–58. [Google Scholar]
- Rozier, R.G.; White, B.A.; Slade, G.D. Trends in oral diseases in the US population. J. Dent. Educ. 2017, 81, eS97–eS109. [Google Scholar] [CrossRef]
- Ahmar, A.S.; Boj, E. The date predicted 200.000 cases of Covid-19 in Spain. J. Appl. Sci. Eng. Technol. Educ. 2020, 2, 188–193. [Google Scholar] [CrossRef]
- Xi, J.-Y.; Lin, X.; Hao, Y.-T. Measurement and projection of the burden of disease attributable to population aging in 188 countries, 1990–2050: A population-based study. J. Glob. Health 2022, 12, 04093. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.; Abllah, Z.; Radhi, N.A.M.; Musa, S.; Halim, M.F.A.A. Time-series forecasting analysis on the major treatment need among patients referred for periodontal and conservative treatments in IIUM Dental Outpatient Clinic. J. Int. Oral Health 2021, 13, 485. [Google Scholar]
- Zhang, X.; Zhang, L.; Zhang, Y.; Liao, Z.; Song, J. Predicting trend of early childhood caries in mainland China: A combined meta-analytic and mathematical modelling approach based on epidemiological surveys. Sci. Rep. 2017, 7, 6507. [Google Scholar]
- Jordan, R.A.; Krois, J.; Schiffner, U.; Micheelis, W.; Schwendicke, F. Trends in caries experience in the permanent dentition in Germany 1997–2014, and projection to 2030: Morbidity shifts in an aging society. Sci. Rep. 2019, 9, 5534. [Google Scholar] [CrossRef]
- Nagarajan, R.; Panny, A.; Ryan, M.; Murphy, S.; Vujicic, M.; Nycz, G. Forecasting Preventive Dental Quality Measures. medRxiv 2021. [Google Scholar] [CrossRef]
- Tiwari, R.; Bhayat, A.; Chikte, U. Forecasting for the need of dentists and specialists in South Africa until 2030. PLoS ONE 2021, 16, e0251238. [Google Scholar] [CrossRef]
- Glick, M.; Williams, D.M. FDI vision 2030: Delivering optimal oral health for all. Int. Dent. J. 2021, 71, 3. [Google Scholar] [CrossRef]
- Hyndman, R.J.; George, A. Forecasting: Principles and Practice, 2nd ed.; OTexts: Melbourne, Australia, 2018. [Google Scholar]
- Hyndman, R.J.; Kostenko, A.V. Minimum sample size requirements for seasonal forecasting models. Foresight 2007, 6, 12–15. [Google Scholar]
- Al-Qazzaz, R.A.; Yousif, S.A. High performance time series models using auto autoregressive integrated moving average. Indones. J. Electr. Eng. Comput. Sci. 2022, 27, 422–430. [Google Scholar] [CrossRef]
- Booranawong, T.; Booranawong, A. Simple and double exponential smoothing methods with designed input data for forecasting a seasonal time series: In an application for lime prices in Thailand. Suranaree J. Sci. Technol. 2017, 24, 301–310. [Google Scholar]
- Lazim, M. Introductory Business Forecasting. A Practical Approach, 3rd ed.; Routledge: Abingdon, UK, 2013. [Google Scholar]
- Abdulgader, Q.M. Time series forecasting using ARIMA methodology with application on census data in Iraq. Sci. J. Univ. Zakho 2016, 4, 258–268. [Google Scholar] [CrossRef]
- Chatfield, M.J.; Borman, P.J. Acceptance criteria for method equivalency assessments. Anal. Chem. 2009, 81, 9841–9848. [Google Scholar] [PubMed]
- Kolassa, S. Why the “best” point forecast depends on the error or accuracy measure. Int. J. Forecast. 2020, 36, 208–211. [Google Scholar] [CrossRef]
- Lewis, C. International and Business Forecasting Methods; Butterworths: London, UK, 1982; p. 144. [Google Scholar]
- Kazeminia, M.; Abdi, A.; Shohaimi, S.; Jalali, R.; Vaisi-Raygani, A.; Salari, N.; Mohammadi, M. Dental caries in primary and permanent teeth in children’s worldwide, 1995 to 2019: A systematic review and meta-analysis. Head Face Med. 2020, 16, 1–21. [Google Scholar]
- Goldberg, M. Deciduous tooth and dental caries. Ann. Pediatr. Child Health 2017, 5, 1120. [Google Scholar]
- Mendes, F.M.; Braga, M.M. Caries detection in primary teeth is less challenging than in permanent teeth. Dent. Hypotheses 2013, 4, 17–20. [Google Scholar] [CrossRef]
- Health, M.O. Annual Report 2020. 2020. Oral Health Division, Ministry of Health Malaysia: Putrajaya, 2020. Available online: https://ohd.moh.gov.my/images/pdf/annual_rpt/annual_%20rpt20.pdf (accessed on 3 December 2022).
- Bohari, N.F.M.; Kruger, E.; John, J.; Tennant, M. Analysis of dental services distribution in Malaysia: A geographic information systems–based approach. Int. Dent. J. 2019, 69, 223–229. [Google Scholar] [CrossRef]
- Karim, F.A.; Yusof, Z.Y.M.; Nor, N.A.M. Water Fluoridation And Oral Health In Malaysia: A Review Of Literature. J. Health Transl. Med. 2020, 23, 76–91. [Google Scholar]
- Mahfouz, M.; Abu Esaid, A. Dental caries prevalence among 12–15 year old Palestinian children. Int. Sch. Res. Not. 2014, 2014, 785404. [Google Scholar] [CrossRef]
- Murray, J.; Vernazza, C.; Holmes, R. Forty years of national surveys: An overview of children’s dental health from 1973–2013. Br. Dent. J. 2015, 219, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Ab Mumin, N.; Yusof, Z.Y.M.; Marhazlinda, J.; Obaidellah, U. Exploring the opinions of secondary school students on the strengths and weaknesses of the school dental service in Selangor, Malaysia: A qualitative study. BMC Oral Health 2021, 21, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Zemaitiene, M.; Grigalauskiene, R.; Andruskeviciene, V.; Matulaitiene, Z.K.; Zubiene, J.; Narbutaite, J.; Slabsinskiene, E. Dental caries risk indicators in early childhood and their association with caries polarization in adolescence: A cross-sectional study. BMC Oral Health 2017, 17, 1–6. [Google Scholar] [CrossRef]
Error Measures | Error Values | ||||||||
---|---|---|---|---|---|---|---|---|---|
6 Years Old | 12 Years Old | 16 Years Old | |||||||
DES | ETS (A,Ad,N) | ARIMA (0,1,0) | DES | ETS (A,Ad,N) | ARIMA (0,1,0) | DES | ETS (A,A,N) | ARIMA (0,1,0) | |
MSE | 5.73 | 4.00 | 6.82 | 4.70 | 3.41 | 5.55 | 1.29 | 1.30 | 1.65 |
RMSE | 2.39 | 2.00 | 2.61 | 2.17 | 1.85 | 2.36 | 1.14 | 1.14 | 1.28 |
MAPE | 8.29 | 6.37 | 7.48 | 3.25 | 2.39 | 3.24 | 2.29 | 2.30 | 2.45 |
MAD | 2.10 | 1.46 | 1.98 | 1.62 | 1.16 | 1.75 | 0.93 | 0.93 | 0.82 |
ME | 0.95 | 0.29 | 0.001 | 0.68 | 0.35 | 0.002 | 0.39 | 1.53 | 0.004 |
Error Measures | Error Values | ||||||||
---|---|---|---|---|---|---|---|---|---|
6 Years Old | 12 Years Old | 16 Years Old | |||||||
DES | ETS (A,Ad,N) | ARIMA (0,1,0) | DES | ETS (A,Ad,N) | ARIMA (0,1,0) | DES | ETS (A,A,N) | ARIMA (0,1,0) | |
MSE | 14.92 | 4.25 | 2.64 | 1.69 | 4.95 | 6.17 | 3.41 | 2.77 | 19.68 |
RMSE | 3.86 | 2.06 | 1.62 | 1.30 | 2.22 | 2.48 | 1.85 | 1.66 | 4.43 |
MAPE | 9.78 | 4.92 | 4.18 | 1.75 | 2.89 | 3.35 | 3.11 | 2.78 | 7.06 |
MAD | 3.59 | 1.82 | 1.52 | 1.22 | 2.02 | 2.33 | 1.57 | 1.75 | 3.32 |
ME | 3.59 | 4.66 | 1.52 | 1.22 | 2.01 | 2.33 | 1.56 | 1.75 | 3.98 |
Error Measures | Error Values | ||||||||
---|---|---|---|---|---|---|---|---|---|
6 Years Old | 12 YEARS Old | 16 Years Old | |||||||
DES | ETS (A,Ad,N) | ARIMA (0,1,0) | DES | ETS (A,Ad,N) | ARIMA (0,1,0) | DES | ETS (A,A,N) | ARIMA (0,1,0) | |
MSE | 2.03 | 1.783 | 0.74 | 0.36 | 2.712 | 0.65 | 0.92 | 1.00 | 2.25 |
RMSE | 1.42 | 1.33 | 0.86 | 0.60 | 1.64 | 0.80 | 0.96 | 1.00 | 1.50 |
MAPE | 2.56 | 2.97 | 2.12 | 0.68 | 2.315 | 1.04 | 1.51 | 1.53 | 2.08 |
MAD | 0.91 | 1.10 | 0.75 | 0.47 | 1.55 | 0.71 | 0.85 | 0.86 | 1.17 |
ME | 0.73 | 1.10 | 0.40 | 0.47 | 1.61 | 0.61 | 0.21 | 0.27 | 1.17 |
Forecasted Years Ahead | Caries-Free Prevalence (95%CI) | ||
---|---|---|---|
6 Years Old | 12 Years Old | 16 Years Old | |
2019 | 38.99 (34.03, 43.95) | - | - |
2020 | 40.07 (33.06, 47.09) | 72.60 (68.38, 76.82) | 56.36 (53.98, 58.74) |
2021 | 41.16 (32.57, 49.75) | 73.91 (69.36, 78.45) | 56.41 (53.69, 59.13) |
2022 | 42.25 (32.33, 52.16) | 75.21 (70.01, 80.42) | 56.46 (53.10, 59.83) |
2023 | 43.33 (32.24, 54.42) | 76.52 (70.32, 82.72) | 56.51 (52.24, 60.79) |
2024 | 44.42 (32.27, 56.57) | 77.82 (70.32, 85.32) | 56.57 (51.17, 61.96) |
2025 | 45.50 (32.38, 58,63) | 79.13 (70.08, 88.18) | 56.62 (49.94, 63.31) |
2026 | 46.59 (32.56, 60.62) | 80.43 (69.62, 91.24) | 56.67 (48.54, 64.80) |
2027 | 47.68 (32.80, 62.55) | 81.74 (68.99, 94.48) | 56.72 (47.03, 66.41) |
2028 | 48.76 (33.08, 64.45) | 83.04 (68.20, 97.88) | 56.77 (45.41, 68.13) |
2029 | 49.85 (33.40, 66.30) | 84.35 (67.28, 101.42) | 56.82 (43.68, 69.96) |
2030 | 50.94 (33.76, 68.12) | 85.65 (66.22, 105.08) | 56.87 (41.86, 71.88) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Najihah, L.; Husin, W.Z.W.; Jalal, T.M.T.; Marhazlinda, J. Caries-Free Prevalence among Schoolchildren in Malaysia—Time-Series Analysis of Trends and Projections from 1996 to 2030. Children 2023, 10, 264. https://doi.org/10.3390/children10020264
Najihah L, Husin WZW, Jalal TMT, Marhazlinda J. Caries-Free Prevalence among Schoolchildren in Malaysia—Time-Series Analysis of Trends and Projections from 1996 to 2030. Children. 2023; 10(2):264. https://doi.org/10.3390/children10020264
Chicago/Turabian StyleNajihah, Lokman, Wan Zakiyatussariroh Wan Husin, Tengku Mardhiah Tengku Jalal, and Jamaludin Marhazlinda. 2023. "Caries-Free Prevalence among Schoolchildren in Malaysia—Time-Series Analysis of Trends and Projections from 1996 to 2030" Children 10, no. 2: 264. https://doi.org/10.3390/children10020264
APA StyleNajihah, L., Husin, W. Z. W., Jalal, T. M. T., & Marhazlinda, J. (2023). Caries-Free Prevalence among Schoolchildren in Malaysia—Time-Series Analysis of Trends and Projections from 1996 to 2030. Children, 10(2), 264. https://doi.org/10.3390/children10020264