Next Article in Journal
Incomplete Pattern of Steroidogenic Protein Expression in Functioning Adrenocortical Carcinomas
Next Article in Special Issue
The Heat Shock Protein 27 Immune Complex Enhances Exosomal Cholesterol Efflux
Previous Article in Journal
Clinical Significance of Electronegative Low-Density Lipoprotein Cholesterol in Atherothrombosis
Previous Article in Special Issue
Extracellular Vesicles in Acute Stroke Diagnostics
Review

A Two-Dimensional Affinity Capture and Separation Mini-Platform for the Isolation, Enrichment, and Quantification of Biomarkers and Its Potential Use for Liquid Biopsy

1
Princeton Biochemicals, Inc., Princeton, NJ 08816, USA
2
Department of Internal Medicine, University of California at San Francisco, San Francisco, CA 94143, USA
*
Author to whom correspondence should be addressed.
Affiliation 2 is present address.
Biomedicines 2020, 8(8), 255; https://doi.org/10.3390/biomedicines8080255
Received: 19 June 2020 / Revised: 22 July 2020 / Accepted: 26 July 2020 / Published: 30 July 2020
Biomarker detection for disease diagnosis, prognosis, and therapeutic response is becoming increasingly reliable and accessible. Particularly, the identification of circulating cell-free chemical and biochemical substances, cellular and subcellular entities, and extracellular vesicles has demonstrated promising applications in understanding the physiologic and pathologic conditions of an individual. Traditionally, tissue biopsy has been the gold standard for the diagnosis of many diseases, especially cancer. More recently, liquid biopsy for biomarker detection has emerged as a non-invasive or minimally invasive and less costly method for diagnosis of both cancerous and non-cancerous diseases, while also offering information on the progression or improvement of disease. Unfortunately, the standardization of analytical methods to isolate and quantify circulating cells and extracellular vesicles, as well as their extracted biochemical constituents, is still cumbersome, time-consuming, and expensive. To address these limitations, we have developed a prototype of a portable, miniaturized instrument that uses immunoaffinity capillary electrophoresis (IACE) to isolate, concentrate, and analyze cell-free biomarkers and/or tissue or cell extracts present in biological fluids. Isolation and concentration of analytes is accomplished through binding to one or more biorecognition affinity ligands immobilized to a solid support, while separation and analysis are achieved by high-resolution capillary electrophoresis (CE) coupled to one or more detectors. When compared to other existing methods, the process of this affinity capture, enrichment, release, and separation of one or a panel of biomarkers can be carried out on-line with the advantages of being rapid, automated, and cost-effective. Additionally, it has the potential to demonstrate high analytical sensitivity, specificity, and selectivity. As the potential of liquid biopsy grows, so too does the demand for technical advances. In this review, we therefore discuss applications and limitations of liquid biopsy and hope to introduce the idea that our affinity capture-separation device could be used as a form of point-of-care (POC) diagnostic technology to isolate, concentrate, and analyze circulating cells, extracellular vesicles, and viruses. View Full-Text
Keywords: low abundance biomarkers; frequent diagnosis-prognosis testing; circulating cells; extracellular vesicles; exosomes; liquid biopsy; immunoaffinity capillary electrophoresis; molecular biorecognition; non-coding RNAs; point-of-care instrument; proteomics; telemedicine low abundance biomarkers; frequent diagnosis-prognosis testing; circulating cells; extracellular vesicles; exosomes; liquid biopsy; immunoaffinity capillary electrophoresis; molecular biorecognition; non-coding RNAs; point-of-care instrument; proteomics; telemedicine
Show Figures

Figure 1

MDPI and ACS Style

Guzman, N.A.; Guzman, D.E. A Two-Dimensional Affinity Capture and Separation Mini-Platform for the Isolation, Enrichment, and Quantification of Biomarkers and Its Potential Use for Liquid Biopsy. Biomedicines 2020, 8, 255. https://doi.org/10.3390/biomedicines8080255

AMA Style

Guzman NA, Guzman DE. A Two-Dimensional Affinity Capture and Separation Mini-Platform for the Isolation, Enrichment, and Quantification of Biomarkers and Its Potential Use for Liquid Biopsy. Biomedicines. 2020; 8(8):255. https://doi.org/10.3390/biomedicines8080255

Chicago/Turabian Style

Guzman, Norberto A., and Daniel E. Guzman. 2020. "A Two-Dimensional Affinity Capture and Separation Mini-Platform for the Isolation, Enrichment, and Quantification of Biomarkers and Its Potential Use for Liquid Biopsy" Biomedicines 8, no. 8: 255. https://doi.org/10.3390/biomedicines8080255

Find Other Styles
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop