JAK Inhibitor and Crohn’s Disease
Abstract
:1. Introduction
2. Pathophysiology
2.1. Genetic Factors
2.2. Immune System Response Disorders
2.3. Dysbiosis of Intestinal Microbiota
3. The Use of JAK Inhibitors in Crohn’s Disease
3.1. Tofacitinib
3.2. Filgotinib
3.3. Upadacitinib
3.4. Other JAK Inhibitors
4. Safety of JAK Inhibitors
4.1. Infectious
4.2. Major Adverse Cardiovascular Events
4.3. Thrombosis
4.4. Malignant Tumor
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Thia, K.T.; Sandborn, W.J.; Harmsen, W.S.; Zinsmeister, A.R.; Loftus, E.V. Risk Factors Associated With Progression to Intestinal Complications of Crohn’s Disease in a Population-Based Cohort. Gastroenterology 2010, 139, 1147–1155. [Google Scholar] [CrossRef] [PubMed]
- Peyrin-Biroulet, L.; Loftus, E.V.J.; Colombel, J.-F.; Sandborn, W.J. The Natural History of Adult Crohn’s Disease in Population-Based Cohorts. Off. J. Am. Coll. Gastroenterol. ACG 2010, 105, 289. [Google Scholar] [CrossRef] [PubMed]
- Molodecky, N.A.; Soon, I.S.; Rabi, D.M.; Ghali, W.A.; Ferris, M.; Chernoff, G.; Benchimol, E.I.; Panaccione, R.; Ghosh, S.; Barkema, H.W.; et al. Increasing Incidence and Prevalence of the Inflammatory Bowel Diseases With Time, Based on Systematic Review. Gastroenterology 2012, 142, 46–54.e42. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.C.; Tang, W.; Ching, J.Y.; Wong, M.; Chow, C.M.; Hui, A.J.; Wong, T.C.; Leung, V.K.; Tsang, S.W.; Yu, H.H.; et al. Incidence and Phenotype of Inflammatory Bowel Disease Based on Results From the Asia-Pacific Crohn’s and Colitis Epidemiology Study. Gastroenterology 2013, 145, 158–165.e2. [Google Scholar] [CrossRef]
- Agrawal, M.; Allin, K.H.; Petralia, F.; Colombel, J.-F.; Jess, T. Multiomics to elucidate inflammatory bowel disease risk factors and pathways. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 399–409. [Google Scholar] [CrossRef]
- Kamada, N.; Seo, S.-U.; Chen, G.Y.; Núñez, G. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol. 2013, 13, 321–335. [Google Scholar] [CrossRef]
- Hirahara, K.; Nakayama, T. CD4 + T-cell subsets in inflammatory diseases: Beyond the T h 1/T h 2 paradigm. Int. Immunol. 2016, 28, 163–171. [Google Scholar] [CrossRef]
- Caparrós, E.; Wiest, R.; Scharl, M.; Rogler, G.; Gutiérrez Casbas, A.; Yilmaz, B.; Wawrzyniak, M.; Francés, R. Dysbiotic microbiota interactions in Crohn’s disease. Gut Microbes 2021, 13, 1949096. [Google Scholar] [CrossRef]
- Estevinho, M.M.; Midya, V.; Cohen-Mekelburg, S.; Allin, K.H.; Fumery, M.; Pinho, S.S.; Colombel, J.-F.; Agrawal, M. Emerging role of environmental pollutants in inflammatory bowel disease risk, outcomes and underlying mechanisms. Gut 2024, 74, 477–486. [Google Scholar] [CrossRef]
- Kaser, A.; Zeissig, S.; Blumberg, R.S. Inflammatory Bowel Disease. Annu. Rev. Immunol. 2010, 28, 573–621. [Google Scholar] [CrossRef]
- Rozich, J.J.; Holmer, A.; Singh, S. Effect of Lifestyle Factors on Outcomes in Patients with Inflammatory Bowel Diseases. Am. J. Gastroenterol. 2020, 115, 832–840. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, G.G. The global burden of IBD: From 2015 to 2025. Nat. Rev. Gastroenterol. Hepatol. 2015, 12, 720–727. [Google Scholar] [CrossRef]
- Dolinger, M.; Torres, J.; Vermeire, S. Crohn’s disease. Lancet 2024, 403, 1177–1191. [Google Scholar] [CrossRef] [PubMed]
- Virtanen, A.; Spinelli, F.R.; Telliez, J.B.; O’Shea, J.J.; Silvennoinen, O.; Gadina, M. JAK inhibitor selectivity: New opportunities, better drugs? Nat. Rev. Rheumatol. 2024, 20, 649–665. [Google Scholar] [CrossRef]
- Plevy, S. A molecular connection hints at how a genetic risk factor drives Crohn’s disease. Nature 2021, 593, 201–203. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Cong, Y. Gut microbiota-derived metabolites in the regulation of host immune responses and immune-related inflammatory diseases. Cell Mol. Immunol. 2021, 18, 866–877. [Google Scholar] [CrossRef]
- Rosenstiel, P.; Fantini, M.; Bräutigam, K.; Kühbacher, T.; Waetzig, G.H.; Seegert, D.; Schreiber, S. TNF-alpha and IFN-gamma regulate the expression of the NOD2 (CARD15) gene in human intestinal epithelial cells. Gastroenterology 2003, 124, 1001–1009. [Google Scholar] [CrossRef]
- Strober, W.; Watanabe, T. NOD2, an Intracellular Innate Immune Sensor Involved in Host Defense and Crohn’s Disease. Mucosal Immunol. 2011, 4, 484–495. [Google Scholar] [CrossRef]
- Masaki, S.; Masuta, Y.; Honjo, H.; Kudo, M.; Watanabe, T. NOD2-mediated dual negative regulation of inflammatory responses triggered by TLRs in the gastrointestinal tract. Front. Immunol. 2024, 15, 1433620. [Google Scholar] [CrossRef]
- Park, J.-H.; Kim, Y.-G.; McDonald, C.; Kanneganti, T.-D.; Hasegawa, M.; Body-Malapel, M.; Inohara, N.; Núñez, G. RICK/RIP2 mediates innate immune responses induced through Nod1 and Nod2 but not TLRs. J. Immunol. 2007, 178, 2380–2386. [Google Scholar] [CrossRef]
- Honjo, H.; Watanabe, T.; Kamata, K.; Minaga, K.; Kudo, M. RIPK2 as a New Therapeutic Target in Inflammatory Bowel Diseases. Front. Pharmacol. 2021, 12, 650403. [Google Scholar] [CrossRef] [PubMed]
- Sabbah, A.; Chang, T.H.; Harnack, R.; Frohlich, V.; Tominaga, K.; Dube, P.H.; Xiang, Y.; Bose, S. Activation of innate immune antiviral response by NOD2. Nat. Immunol. 2009, 10, 1073–1080. [Google Scholar] [CrossRef] [PubMed]
- Cooney, R.; Baker, J.; Brain, O.; Danis, B.; Pichulik, T.; Allan, P.; Ferguson, D.J.P.; Campbell, B.J.; Jewell, D.; Simmons, A. NOD2 stimulation induces autophagy in dendritic cells influencing bacterial handling and antigen presentation. Nat. Med. 2010, 16, 90–97. [Google Scholar] [CrossRef]
- Travassos, L.H.; Carneiro, L.A.M.; Ramjeet, M.; Hussey, S.; Kim, Y.-G.; Magalhães, J.G.; Yuan, L.; Soares, F.; Chea, E.; Le Bourhis, L.; et al. Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry. Nat. Immunol. 2010, 11, 55–62. [Google Scholar] [CrossRef]
- Strober, W.; Fuss, I.J. Proinflammatory cytokines in the pathogenesis of inflammatory bowel diseases. Gastroenterology 2011, 140, 1756–1767. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Asano, N.; Murray, P.J.; Ozato, K.; Tailor, P.; Fuss, I.J.; Kitani, A.; Strober, W. Muramyl dipeptide activation of nucleotide-binding oligomerization domain 2 protects mice from experimental colitis. J. Clin. Investig. 2008, 118, 545–559. [Google Scholar] [CrossRef]
- Okai, N.; Masuta, Y.; Otsuka, Y.; Hara, A.; Masaki, S.; Kamata, K.; Minaga, K.; Honjo, H.; Kudo, M.; Watanabe, T. Crosstalk between NOD2 and TLR2 suppresses the development of TLR2-mediated experimental colitis. J. Clin. Biochem. Nutr. 2024, 74, 146–153. [Google Scholar] [CrossRef]
- Masaki, S.; Watanabe, T.; Arai, Y.; Sekai, I.; Hara, A.; Kurimoto, M.; Otsuka, Y.; Masuta, Y.; Yoshikawa, T.; Takada, R.; et al. Expression levels of cellular inhibitor of apoptosis proteins and colitogenic cytokines are inversely correlated with the activation of interferon regulatory factor 4. Clin. Exp. Immunol. 2022, 207, 340–350. [Google Scholar] [CrossRef]
- Chang, J.T. Pathophysiology of Inflammatory Bowel Diseases. N. Engl. J. Med. 2020, 383, 2652–2664. [Google Scholar] [CrossRef]
- Abraham, C.; Cho, J.H. Inflammatory Bowel Disease. N. Engl. J. Med. 2009, 361, 2066–2078. [Google Scholar] [CrossRef]
- Tezuka, H.; Ohteki, T. Regulation of intestinal homeostasis by dendritic cells. Immunol. Rev. 2010, 234, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Kucharzik, T.; Maaser, C.; Lügering, A.; Kagnoff, M.; Mayer, L.; Targan, S.; Domschke, W. Recent understanding of IBD pathogenesis: Implications for future therapies. Inflamm. Bowel Dis. 2006, 12, 1068–1083. [Google Scholar] [CrossRef] [PubMed]
- Hart, A.L.; Al-Hassi, H.O.; Rigby, R.J.; Bell, S.J.; Emmanuel, A.V.; Knight, S.C.; Kamm, M.A.; Stagg, A.J. Characteristics of Intestinal Dendritic Cells in Inflammatory Bowel Diseases. Gastroenterology 2005, 129, 50–65. [Google Scholar] [CrossRef]
- Saez, A.; Herrero-Fernandez, B.; Gomez-Bris, R.; Sánchez-Martinez, H.; Gonzalez-Granado, J.M. Pathophysiology of Inflammatory Bowel Disease: Innate Immune System. Int. J. Mol. Sci. 2023, 24, 1526. [Google Scholar] [CrossRef]
- Sakuraba, A.; Sato, T.; Kamada, N.; Kitazume, M.; Sugita, A.; Hibi, T. Th1/Th17 immune response is induced by mesenteric lymph node dendritic cells in Crohn’s disease. Gastroenterology 2009, 137, 1736–1745. [Google Scholar] [CrossRef] [PubMed]
- Bernink, J.H.; Peters, C.P.; Munneke, M.; te Velde, A.A.; Meijer, S.L.; Weijer, K.; Hreggvidsdottir, H.S.; Heinsbroek, S.E.; Legrand, N.; Buskens, C.J.; et al. Human type 1 innate lymphoid cells accumulate in inflamed mucosal tissues. Nat. Immunol. 2013, 14, 221–229. [Google Scholar] [CrossRef]
- Annunziato, F.; Cosmi, L.; Santarlasci, V.; Maggi, L.; Liotta, F.; Mazzinghi, B.; Parente, E.; Filì, L.; Ferri, S.; Frosali, F.; et al. Phenotypic and functional features of human Th17 cells. J. Exp. Med. 2007, 204, 1849–1861. [Google Scholar] [CrossRef]
- Asseman, C.; Mauze, S.; Leach, M.W.; Coffman, R.L.; Powrie, F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J. Exp. Med. 1999, 190, 995–1004. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Kitani, A.; Fuss, I.; Pedersen, A.; Harada, N.; Nawata, H.; Strober, W. TGF-beta 1 plays an important role in the mechanism of CD4+CD25+ regulatory T cell activity in both humans and mice. J. Immunol. 2004, 172, 834–842. [Google Scholar] [CrossRef]
- Collison, L.W.; Chaturvedi, V.; Henderson, A.L.; Giacomin, P.R.; Guy, C.; Bankoti, J.; Finkelstein, D.; Forbes, K.; Workman, C.J.; Brown, S.A.; et al. IL-35-mediated induction of a potent regulatory T cell population. Nat. Immunol. 2010, 11, 1093–1101. [Google Scholar] [CrossRef]
- Ngo, B.; Farrell, C.P.; Barr, M.; Wolov, K.; Bailey, R.; Mullin, J.M.; Thornton, J.J. Tumor necrosis factor blockade for treatment of inflammatory bowel disease: Efficacy and safety. Curr. Mol. Pharmacol. 2010, 3, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Shih, D.Q.; Michelsen, K.S.; Barrett, R.J.; Biener-Ramanujan, E.; Gonsky, R.; Zhang, X.; Targan, S.R. Insights into TL1A and IBD pathogenesis. Adv. Exp. Med. Biol. 2011, 691, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Ni, J.; Wu, G.D.; Albenberg, L.; Tomov, V.T. Gut microbiota and IBD: Causation or correlation? Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 573–584. [Google Scholar] [CrossRef]
- Iliev, I.D.; Ananthakrishnan, A.N.; Guo, C.-J. Microbiota in inflammatory bowel disease: Mechanisms of disease and therapeutic opportunities. Nat. Rev. Microbiol. 2025, 1–16. [Google Scholar] [CrossRef]
- Torres, J.; Petralia, F.; Sato, T.; Wang, P.; Telesco, S.E.; Choung, R.S.; Strauss, R.; Li, X.-J.; Laird, R.M.; Gutierrez, R.L.; et al. Serum Biomarkers Identify Patients Who Will Develop Inflammatory Bowel Diseases Up to 5 Years Before Diagnosis. Gastroenterology 2020, 159, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Lapaquette, P.; Glasser, A.-L.; Huett, A.; Xavier, R.J.; Darfeuille-Michaud, A. Crohn’s disease-associated adherent-invasive E. coli are selectively favoured by impaired autophagy to replicate intracellularly. Cell. Microbiol. 2010, 12, 99–113. [Google Scholar] [CrossRef]
- Ozbey, D.; Saribas, S.; Kocazeybek, B. Gut microbiota in Crohn’s disease pathogenesis. World J. Gastroenterol. 2025, 31, 101266. [Google Scholar] [CrossRef]
- Caio, G.; Lungaro, L.; Caputo, F.; Zoli, E.; Giancola, F.; Chiarioni, G.; De Giorgio, R.; Zoli, G. Nutritional Treatment in Crohn’s Disease. Nutrients 2021, 13, 1628. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Qin, C.; Li, Y.; Wu, Z.; Liu, L. Oat phenolic compounds regulate metabolic syndrome in high fat diet-fed mice via gut microbiota. Food Biosci. 2022, 50, 101946. [Google Scholar] [CrossRef]
- Li, Y.; Qin, C.; Dong, L.; Zhang, X.; Wu, Z.; Liu, L.; Yang, J.; Liu, L. Whole grain benefit: Synergistic effect of oat phenolic compounds and β-glucan on hyperlipidemia via gut microbiota in high-fat-diet mice. Food Funct. 2022, 13, 12686–12696. [Google Scholar] [CrossRef]
- Massironi, S.; Furfaro, F.; Bencardino, S.; Allocca, M.; Danese, S. Immunity in digestive diseases: New drugs for inflammatory bowel disease treatment—Insights from Phase II and III trials. J. Gastroenterol. 2024, 59, 761–787. [Google Scholar] [CrossRef]
- Singh, S.; Fumery, M.; Sandborn, W.J.; Murad, M.H. Systematic review and network meta-analysis: First- and second-line biologic therapies for moderate-severe Crohn’s disease. Aliment. Pharmacol. Ther. 2018, 48, 394–409. [Google Scholar] [CrossRef]
- Williams, C.J.M.; Peyrin-Biroulet, L.; Ford, A.C. Systematic review with meta-analysis: Malignancies with anti-tumour necrosis factor-α therapy in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2014, 39, 447–458. [Google Scholar] [CrossRef] [PubMed]
- Chanchlani, N.; Lin, S.; Bewshea, C.; Hamilton, B.; Thomas, A.; Smith, R.; Roberts, C.; Bishara, M.; Nice, R.; Lees, C.W.; et al. Mechanisms and management of loss of response to anti-TNF therapy for patients with Crohn’s disease: 3-year data from the prospective, multicentre PANTS cohort study. Lancet Gastroenterol. Hepatol. 2024, 9, 521–538. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, N.A.; Heap, G.A.; Green, H.D.; Hamilton, B.; Bewshea, C.; Walker, G.J.; Thomas, A.; Nice, R.; Perry, M.H.; Bouri, S.; et al. Predictors of anti-TNF treatment failure in anti-TNF-naive patients with active luminal Crohn’s disease: A prospective, multicentre, cohort study. Lancet Gastroenterol. Hepatol. 2019, 4, 341–353. [Google Scholar] [CrossRef] [PubMed]
- Sandborn, W.J.; Lee, S.D.; Tarabar, D.; Louis, E.; Klopocka, M.; Klaus, J.; Reinisch, W.; Hébuterne, X.; Park, D.-I.; Schreiber, S.; et al. Phase II evaluation of anti-MAdCAM antibody PF-00547659 in the treatment of Crohn’s disease: Report of the OPERA study. Gut 2018, 67, 1824–1835. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Feagan, B.G.; Rutgeerts, P.; Hanauer, S.; Colombel, J.-F.; Sands, B.E.; Lukas, M.; Fedorak, R.N.; Lee, S.; Bressler, B.; et al. Vedolizumab as induction and maintenance therapy for Crohn’s disease. N. Engl. J. Med. 2013, 369, 711–721. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Vermeire, S.; Tyrrell, H.; Hassanali, A.; Lacey, S.; Tole, S.; Tatro, A.R.; Etrolizumab Global Steering Committee. Etrolizumab for the Treatment of Ulcerative Colitis and Crohn’s Disease: An Overview of the Phase 3 Clinical Program. Adv. Ther. 2020, 37, 3417–3431. [Google Scholar] [CrossRef]
- Xin, P.; Xu, X.; Deng, C.; Liu, S.; Wang, Y.; Zhou, X.; Ma, H.; Wei, D.; Sun, S. The role of JAK/STAT signaling pathway and its inhibitors in diseases. Int. Immunopharmacol. 2020, 80, 106210. [Google Scholar] [CrossRef]
- Sarapultsev, A.; Gusev, E.; Komelkova, M.; Utepova, I.; Luo, S.; Hu, D. JAK-STAT signaling in inflammation and stress-related diseases: Implications for therapeutic interventions. Mol. Biomed. 2023, 4, 40. [Google Scholar] [CrossRef]
- Coskun, M.; Salem, M.; Pedersen, J.; Nielsen, O.H. Involvement of JAK/STAT signaling in the pathogenesis of inflammatory bowel disease. Pharmacol. Res. 2013, 76, 1–8. [Google Scholar] [CrossRef]
- Fleischman, A.G.; Tyner, J.W. Causal role for JAK2 V617F in thrombosis. Blood 2013, 122, 3705–3706. [Google Scholar] [CrossRef]
- Raju, R.; Palapetta, S.M.; Sandhya, V.K.; Sahu, A.; Alipoor, A.; Balakrishnan, L.; Advani, J.; George, B.; Kini, K.R.; Geetha, N.P.; et al. A Network Map of FGF-1/FGFR Signaling System. J. Signal Transduct. 2014, 2014, 962962. [Google Scholar] [CrossRef]
- Gotthardt, D.; Trifinopoulos, J.; Sexl, V.; Putz, E.M. JAK/STAT Cytokine Signaling at the Crossroad of NK Cell Development and Maturation. Front. Immunol. 2019, 10, 2590. [Google Scholar] [CrossRef]
- Ramakrishna, C.; Mason, A.; Edwards, C.J. Tyrosine kinase 2 inhibitors in autoimmune diseases. Autoimmun. Rev. 2024, 23, 103649. [Google Scholar] [CrossRef]
- Capone, A.; Volpe, E. Transcriptional Regulators of T Helper 17 Cell Differentiation in Health and Autoimmune Diseases. Front. Immunol. 2020, 11, 348. [Google Scholar] [CrossRef]
- Cordes, F.; Foell, D.; Ding, J.N.; Varga, G.; Bettenworth, D. Differential regulation of JAK/STAT-signaling in patients with ulcerative colitis and Crohn’s disease. World J. Gastroenterol. 2020, 26, 4055–4075. [Google Scholar] [CrossRef]
- Cai, J.; Cui, J.; Wang, L. S-palmitoylation regulates innate immune signaling pathways: Molecular mechanisms and targeted therapies. Eur. J. Immunol. 2023, 53, e2350476. [Google Scholar] [CrossRef]
- Chen, Z.; Jiang, P.; Su, D.; Zhao, Y.; Zhang, M. Therapeutic inhibition of the JAK-STAT pathway in the treatment of inflammatory bowel disease. Cytokine Growth Factor Rev. 2024, 79, 1–15. [Google Scholar] [CrossRef]
- Villarino, A.V.; Laurence, A.D.; Davis, F.P.; Nivelo, L.; Brooks, S.R.; Sun, H.-W.; Jiang, K.; Afzali, B.; Frasca, D.; Hennighausen, L.; et al. A central role for STAT5 in the transcriptional programing of T helper cell metabolism. Sci. Immunol. 2022, 7, eabl9467. [Google Scholar] [CrossRef]
- Lin, Y.; Li, B.; Yang, X.; Liu, T.; Shi, T.; Deng, B.; Zhang, Y.; Jia, L.; Jiang, Z.; He, R. Non-hematopoietic STAT6 induces epithelial tight junction dysfunction and promotes intestinal inflammation and tumorigenesis. Mucosal Immunol. 2019, 12, 1304–1315. [Google Scholar] [CrossRef]
- De Vries, L.C.S.; Wildenberg, M.E.; De Jonge, W.J.; D’Haens, G.R. The Future of Janus Kinase Inhibitors in Inflammatory Bowel Disease. J. Crohn’s Colitis 2017, 11, 885–893. [Google Scholar] [CrossRef]
- Aaronson, D.S.; Horvath, C.M. A road map for those who don’t know JAK-STAT. Science 2002, 296, 1653–1655. [Google Scholar] [CrossRef]
- Coskun, M.; Olsen, J.; Seidelin, J.B.; Nielsen, O.H. MAP kinases in inflammatory bowel disease. Clin. Chim. Acta 2011, 412, 513–520. [Google Scholar] [CrossRef]
- Boneschansker, L.; Ananthakrishnan, A.N.; Massachusetts General Hospital Crohn’s And Colitis Center Collaborators. Comparative Effectiveness of Upadacitinib and Tofacitinib in Inducing Remission in Ulcerative Colitis: Real-World Data. Clin. Gastroenterol. Hepatol. 2023, 21, 2427–2429.e1. [Google Scholar] [CrossRef]
- Panés, J.; D’Haens, G.R.; Sands, B.E.; Ng, S.C.; Lawendy, N.; Kulisek, N.; Guo, X.; Wu, J.; Vranic, I.; Panaccione, R.; et al. Analysis of tofacitinib safety in ulcerative colitis from the completed global clinical developmental program up to 9.2 years of drug exposure. United Eur. Gastroenterol. J. 2024, 12, 793–801. [Google Scholar] [CrossRef]
- Ekin, A.; Misirci, S.; İldemir, S.; Coskun, B.N.; Yagiz, B.; Dalkilic, E.; Pehlivan, Y. Efficacy and safety of tofacitinib in rheumatoid arthritis: Nine years of real-world data. Clin. Transl. Sci. 2024, 17, e70084. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Ghosh, S.; Panes, J.; Vranic, I.; Wang, W.; Niezychowski, W.; Vermeire, S.A.R.A.; Dewit, O.; Peeters, H.; Stehlik, J.; et al. A Phase 2 Study of Tofacitinib, an Oral Janus Kinase Inhibitor, in Patients With Crohn’s Disease. Clin. Gastroenterol. Hepatol. 2014, 12, 1485–1493.e2. [Google Scholar] [CrossRef]
- Panés, J.; Sandborn, W.J.; Schreiber, S.; Sands, B.E.; Vermeire, S.; D’Haens, G.; Panaccione, R.; Higgins, P.D.R.; Colombel, J.-F.; Feagan, B.G.; et al. Tofacitinib for induction and maintenance therapy of Crohn’s disease: Results of two phase IIb randomised placebo-controlled trials. Gut 2017, 66, 1049–1059. [Google Scholar] [CrossRef]
- Nakase, H.; Sato, N.; Mizuno, N.; Ikawa, Y. The influence of cytokines on the complex pathology of ulcerative colitis. Autoimmun. Rev. 2022, 21, 103017. [Google Scholar] [CrossRef]
- Namour, F.; Anderson, K.; Nelson, C.; Tasset, C. Filgotinib: A Clinical Pharmacology Review. Clin. Pharmacokinet. 2022, 61, 819–832. [Google Scholar] [CrossRef]
- Van Rompaey, L.; Galien, R.; van der Aar, E.M.; Clement-Lacroix, P.; Nelles, L.; Smets, B.; Lepescheux, L.; Christophe, T.; Conrath, K.; Vandeghinste, N.; et al. Preclinical Characterization of GLPG0634, a Selective Inhibitor of JAK1, for the Treatment of Inflammatory Diseases. J. Immunol. 2013, 191, 3568–3577. [Google Scholar] [CrossRef] [PubMed]
- Namour, F.; Diderichsen, P.M.; Cox, E.; Vayssière, B.; Van der Aa, A.; Tasset, C.; Van‘t Klooster, G. Pharmacokinetics and Pharmacokinetic/Pharmacodynamic Modeling of Filgotinib (GLPG0634), a Selective JAK1 Inhibitor, in Support of Phase IIB Dose Selection. Clin. Pharmacokinet. 2015, 54, 859–874. [Google Scholar] [CrossRef] [PubMed]
- Vermeire, S.; Schreiber, S.; Petryka, R.; Kuehbacher, T.; Hebuterne, X.; Roblin, X.; Klopocka, M.; Goldis, A.; Wisniewska-Jarosinska, M.; Baranovsky, A.; et al. Clinical remission in patients with moderate-to-severe Crohn’s disease treated with filgotinib (the FITZROY study): Results from a phase 2, double-blind, randomised, placebo-controlled trial. Lancet 2017, 389, 266–275. [Google Scholar] [CrossRef]
- Vermeire, S.; Schreiber, S.; Rubin, D.T.; D’Haens, G.; Reinisch, W.; Watanabe, M.; Mehta, R.; Roblin, X.; Beales, I.; Gietka, P.; et al. Efficacy and safety of filgotinib as induction and maintenance therapy for Crohn’s disease (DIVERSITY): A phase 3, double-blind, randomised, placebo-controlled trial. Lancet Gastroenterol. Hepatol. 2025, 10, 138–153. [Google Scholar] [CrossRef] [PubMed]
- Loftus, E.V.; Panés, J.; Lacerda, A.P.; Peyrin-Biroulet, L.; D’Haens, G.; Panaccione, R.; Reinisch, W.; Louis, E.; Chen, M.; Nakase, H.; et al. Upadacitinib Induction and Maintenance Therapy for Crohn’s Disease. N. Engl. J. Med. 2023, 388, 1966–1980. [Google Scholar] [CrossRef]
- Chandrashekara, S. Pharmacokinetic review of janus kinase inhibitors and its clinical implications for the management of rheumatoid arthritis. Expert. Opin. Drug Metab. Toxicol. 2024, 20, 741–748. [Google Scholar] [CrossRef]
- Sandborn, W.J.; Feagan, B.G.; Loftus, E.V.; Peyrin-Biroulet, L.; Van Assche, G.; D’Haens, G.; Schreiber, S.; Colombel, J.-F.; Lewis, J.D.; Ghosh, S.; et al. Efficacy and Safety of Upadacitinib in a Randomized Trial of Patients With Crohn’s Disease. Gastroenterology 2020, 158, 2123–2138.e8. [Google Scholar] [CrossRef]
- Fenster, M.; Alayo, Q.A.; Khatiwada, A.; Wang, W.; Dimopoulos, C.; Gutierrez, A.; Ciorba, M.A.; Christophi, G.P.; Hirten, R.P.; Ha, C.; et al. Real-World Effectiveness and Safety of Tofacitinib in Crohn’s Disease and IBD-U: A Multicenter Study From the TROPIC Consortium. Clin. Gastroenterol. Hepatol. 2021, 19, 2207–2209.e3. [Google Scholar] [CrossRef]
- Chugh, R.; Braga-Neto, M.B.; Fredrick, T.W.; Ramos, G.P.; Terdiman, J.; El-Nachef, N.; Loftus, E.V.; Mahadevan, U.; Kane, S.V. Multicentre Real-world Experience of Upadacitinib in the Treatment of Crohn’s Disease. J. Crohns Colitis 2023, 17, 504–512. [Google Scholar] [CrossRef]
- Traboulsi, C.; Ayoub, F.; Silfen, A.; Rodriguez, T.G.; Rubin, D.T. Upadacitinib Is Safe and Effective for Crohn’s Disease: Real-World Data from a Tertiary Center. Dig. Dis. Sci. 2023, 68, 385–388. [Google Scholar] [CrossRef]
- Friedberg, S.; Choi, D.; Hunold, T.; Choi, N.K.; Garcia, N.M.; Picker, E.A.; Cohen, N.A.; Cohen, R.D.; Dalal, S.R.; Pekow, J.; et al. Upadacitinib is Effective and Safe in Both Ulcerative Colitis and Crohn’s Disease: Prospective Real-World Experience. Clin. Gastroenterol. Hepatol. 2023, 21, 1913–1923.e2. [Google Scholar] [CrossRef] [PubMed]
- Papathanasiou, E.; Leonidakis, G.; Michalopoulos, G.; Manolakopoulos, S.; Siakavellas, S.; Theodoropoulou, A.; Tasovasili, A.; Giouleme, O.; Tzouvala, M.; Tsironi, E.; et al. P723 Upadacitinib in Crohn’s disease: Real world experience from an early access program in Greece. J. Crohn’s Colitis 2024, 18, i1360–i1361. [Google Scholar] [CrossRef]
- Farkas, B.; Bessissow, T.; Limdi, J.K.; Sethi-Arora, K.; Kagramanova, A.; Knyazev, O.; Bezzio, C.; Armuzzi, A.; Lukas, M.; Michalopoulos, G.; et al. Real-World Effectiveness and Safety of Selective JAK Inhibitors in Ulcerative Colitis and Crohn’s Disease: A Retrospective, Multicentre Study. J. Clin. Med. 2024, 13, 7804. [Google Scholar] [CrossRef] [PubMed]
- Elford, A.T.; Bishara, M.; Plevris, N.; Gros, B.; Constantine-Cooke, N.; Goodhand, J.; Kennedy, N.A.; Ahmad, T.; Lees, C.W. Real-world effectiveness of upadacitinib in Crohn’s disease: A UK multicentre retrospective cohort study. Frontline Gastroenterol. 2024, 15, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Xie, T.; Yu, Q.; Su, T.; Zhang, M.; Wu, L.; Wang, X.; Peng, X.; Zhi, M.; Yao, J. An Analysis of the Effectiveness and Safety of Upadacitinib in the Treatment of Inflammatory Bowel Disease: A Multicenter Real-World Study. Biomedicines 2025, 13, 190. [Google Scholar] [CrossRef]
- Xu, H.; Jesson, M.I.; Seneviratne, U.I.; Lin, T.H.; Sharif, M.N.; Xue, L.; Nguyen, C.; Everley, R.A.; Trujillo, J.I.; Johnson, D.S.; et al. PF-06651600, a Dual JAK3/TEC Family Kinase Inhibitor. ACS Chem. Biol. 2019, 14, 1235–1242. [Google Scholar] [CrossRef]
- Miyatani, Y.; Choi, D.; Choi, N.K.; Rubin, D.T. Dual-Targeted Therapy with Upadacitinib and Ustekinumab in Medically Complex Crohn’s Disease. Dig. Dis. Sci. 2024, 69, 355–359. [Google Scholar] [CrossRef]
- Robinson, M.F.; Damjanov, N.; Stamenkovic, B.; Radunovic, G.; Kivitz, A.; Cox, L.; Manukyan, Z.; Banfield, C.; Saunders, M.; Chandra, D.; et al. Efficacy and Safety of PF-06651600 (Ritlecitinib), a Novel JAK3/TEC Inhibitor, in Patients With Moderate-to-Severe Rheumatoid Arthritis and an Inadequate Response to Methotrexate. Arthritis Rheumatol. 2020, 72, 1621–1631. [Google Scholar] [CrossRef]
- King, B.; Guttman-Yassky, E.; Peeva, E.; Banerjee, A.; Sinclair, R.; Pavel, A.B.; Zhu, L.; Cox, L.A.; Craiglow, B.; Chen, L.; et al. A phase 2a randomized, placebo-controlled study to evaluate the efficacy and safety of the oral Janus kinase inhibitors ritlecitinib and brepocitinib in alopecia areata: 24-week results. J. Am. Acad. Dermatol. 2021, 85, 379–387. [Google Scholar] [CrossRef]
- Chen, B.; Zhong, J.; Li, X.; Pan, F.; Ding, Y.; Zhang, Y.; Chen, H.; Liu, F.; Zhang, Z.; Zhang, L.; et al. Efficacy and Safety of Ivarmacitinib in Patients With Moderate-to-Severe, Active, Ulcerative Colitis: A Phase II Study. Gastroenterology 2022, 163, 1555–1568. [Google Scholar] [CrossRef] [PubMed]
- Hindmarch, D.C.; Malashanka, S.; Shows, D.M.; Clarke, A.S.; Lord, J.D. Janus Kinase Inhibitors Differentially Inhibit Specific Cytokine Signals in the Mesenteric Lymph Node Cells of Inflammatory Bowel Disease Patients. J. Crohn’s Colitis 2024, 18, 628–637. [Google Scholar] [CrossRef] [PubMed]
- Hoy, S.M. Deucravacitinib: First Approval. Drugs 2022, 82, 1671–1679. [Google Scholar] [CrossRef] [PubMed]
- Sandborn, W.J.; Su, C.; Sands, B.E.; D’Haens, G.R.; Vermeire, S.; Schreiber, S.; Danese, S.; Feagan, B.G.; Reinisch, W.; Niezychowski, W.; et al. Tofacitinib as Induction and Maintenance Therapy for Ulcerative Colitis. N. Engl. J. Med. 2017, 376, 1723–1736. [Google Scholar] [CrossRef]
- Rubin, D.T.; Modesto, I.; Vermeire, S.; Danese, S.; Ng, S.C.; Kwok, K.K.; Koram, N.; Jones, T.V. Worldwide post-marketing safety surveillance experience with tofacitinib in ulcerative colitis. Aliment. Pharmacol. Ther. 2022, 55, 302–310. [Google Scholar] [CrossRef]
- Winthrop, K.L.; Tanaka, Y.; Takeuchi, T.; Kivitz, A.; Matzkies, F.; Genovese, M.C.; Jiang, D.; Chen, K.; Bartok, B.; Jahreis, A.; et al. Integrated safety analysis of filgotinib in patients with moderately to severely active rheumatoid arthritis receiving treatment over a median of 1.6 years. Ann. Rheum. Dis. 2022, 81, 184–192. [Google Scholar] [CrossRef]
- Danese, S.; Vermeire, S.; Zhou, W.; Pangan, A.L.; Siffledeen, J.; Greenbloom, S.; Hébuterne, X.; D’Haens, G.; Nakase, H.; Panés, J.; et al. Upadacitinib as induction and maintenance therapy for moderately to severely active ulcerative colitis: Results from three phase 3, multicentre, double-blind, randomised trials. Lancet 2022, 399, 2113–2128. [Google Scholar] [CrossRef]
- Genovese, M.C.; Smolen, J.S.; Takeuchi, T.; Burmester, G.; Brinker, D.; Rooney, T.P.; Zhong, J.; Daojun, M.; Saifan, C.; Cardoso, A.; et al. Safety profile of baricitinib for the treatment of rheumatoid arthritis over a median of 3 years of treatment: An updated integrated safety analysis. Lancet Rheumatol. 2020, 2, e347–e357. [Google Scholar] [CrossRef]
- Kristensen, L.E.; Danese, S.; Yndestad, A.; Wang, C.; Nagy, E.; Modesto, I.; Rivas, J.; Benda, B. Identification of two tofacitinib subpopulations with different relative risk versus TNF inhibitors: An analysis of the open label, randomised controlled study ORAL Surveillance. Ann. Rheum. Dis. 2023, 82, 901–910. [Google Scholar] [CrossRef]
- Sandborn, W.J.; D’Haens, G.R.; Sands, B.E.; Panaccione, R.; Ng, S.C.; Lawendy, N.; Kulisek, N.; Modesto, I.; Guo, X.; Mundayat, R.; et al. Tofacitinib for the Treatment of Ulcerative Colitis: An Integrated Summary of up to 7.8 Years of Safety Data from the Global Clinical Programme. J. Crohns Colitis 2022, 17, 338–351. [Google Scholar] [CrossRef]
- Hoisnard, L.; Pina Vegas, L.; Dray-Spira, R.; Weill, A.; Zureik, M.; Sbidian, E. Risk of major adverse cardiovascular and venous thromboembolism events in patients with rheumatoid arthritis exposed to JAK inhibitors versus adalimumab: A nationwide cohort study. Ann. Rheum. Dis. 2023, 82, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, R.; Curtis, J.R.; Charles-Schoeman, C.; Mysler, E.; Yamaoka, K.; Richez, C.; Palac, H.; Dilley, D.; Liu, J.; Strengholt, S.; et al. Safety profile of upadacitinib in patients at risk of cardiovascular disease: Integrated post hoc analysis of the SELECT phase III rheumatoid arthritis clinical programme. Ann. Rheum. Dis. 2023, 82, 1130–1141. [Google Scholar] [CrossRef] [PubMed]
- Vermeire, S.; Danese, S.; Zhou, W.; Ilo, D.; Klaff, J.; Levy, G.; Yao, X.; Chen, S.; Sanchez Gonzalez, Y.; Hébuterne, X.; et al. Efficacy and safety of upadacitinib maintenance therapy for moderately to severely active ulcerative colitis in patients responding to 8 week induction therapy (U-ACHIEVE Maintenance): Overall results from the randomised, placebo-controlled, double-blind, phase 3 maintenance study. Lancet Gastroenterol. Hepatol. 2023, 8, 976–989. [Google Scholar] [CrossRef] [PubMed]
- Desai, R.J.; Pawar, A.; Khosrow-Khavar, F.; Weinblatt, M.E.; Kim, S.C. Risk of venous thromboembolism associated with tofacitinib in patients with rheumatoid arthritis: A population-based cohort study. Rheumatology 2021, 61, 121–130. [Google Scholar] [CrossRef]
- Mease, P.; Charles-Schoeman, C.; Cohen, S.; Fallon, L.; Woolcott, J.; Yun, H.; Kremer, J.; Greenberg, J.; Malley, W.; Onofrei, A.; et al. Incidence of venous and arterial thromboembolic events reported in the tofacitinib rheumatoid arthritis, psoriasis and psoriatic arthritis development programmes and from real-world data. Ann. Rheum. Dis. 2020, 79, 1400–1413. [Google Scholar] [CrossRef]
- Neri, B.; Mancone, R.; Fiorillo, M.; Schiavone, S.C.; Migliozzi, S.; Biancone, L. Efficacy and Safety of Janus Kinase-Inhibitors in Ulcerative Colitis. J. Clin. Med. 2024, 13, 7186. [Google Scholar] [CrossRef]
- Winthrop, K.L.; Cohen, S.B. Oral surveillance and JAK inhibitor safety: The theory of relativity. Nat. Rev. Rheumatol. 2022, 18, 301–304. [Google Scholar] [CrossRef]
- Pugliesi, A.; Oliveira, D.G.C.; Filho, V.A.d.S.; Machado, J.d.O.; Pereira, A.G.; Bichuette, J.d.C.S.; Sachetto, Z.; de Carvalho, L.S.F.; Bertolo, M.B. Cardiovascular safety of the class of JAK inhibitors or tocilizumab compared with TNF inhibitors in patients with rheumatoid arthritis: Systematic review and a traditional and Bayesian network meta-analysis of randomized clinical trials. Semin. Arthritis Rheum. 2024, 69, 152563. [Google Scholar] [CrossRef]
- Russell, M.D.; Stovin, C.; Alveyn, E.; Adeyemi, O.; Chan, C.K.D.; Patel, V.; Adas, M.A.; Atzeni, F.; Ng, K.K.H.; Rutherford, A.I.; et al. JAK inhibitors and the risk of malignancy: A meta-analysis across disease indications. Ann. Rheum. Dis. 2023, 82, 1059–1067. [Google Scholar] [CrossRef]
- Núñez, P.; Quera, R.; Yarur, A.J. Safety of Janus Kinase Inhibitors in Inflammatory Bowel Diseases. Drugs 2023, 83, 299–314. [Google Scholar] [CrossRef]
- Liu, L.; Jin, R.; Hao, J.; Zeng, J.; Yin, D.; Yi, Y.; Zhu, M.; Mandal, A.; Hua, Y.; Ng, C.K.; et al. Consumption of the fish oil high-fat diet uncouples obesity and mammary tumor growth through induction of reactive oxygen species in pro-tumor macrophages. Cancer Res. 2020, 80, 2564–2574. [Google Scholar] [CrossRef] [PubMed]
- Bossuyt, P.; Louis, E.; Mary, J.-Y.; Vermeire, S.; Bouhnik, Y. Defining Endoscopic Remission in Ileocolonic Crohn’s Disease: Let’s Start from Scratch. J. Crohns Colitis 2018, 12, 1245–1248. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Zhu, Y.; Liu, K.; Zhu, H.; Ouyang, M. Adverse events of biologic or small molecule therapies in clinical trials for inflammatory bowel disease: A systematic review and meta-analysis. Heliyon 2024, 10, e25357. [Google Scholar] [CrossRef] [PubMed]
Drug | Trial | Dose | Patients (n=) | Clinical Release | Mucosal Healing | Adverse Events | Serious Adverse Events |
---|---|---|---|---|---|---|---|
Tofacitinib | Phase 2, RCT | Induction therapy for 8 weeks: Tofacitinib 5 mg BID, 10 mg BID vs. Placebo | 280 | Tofacitinib (5 mg, 10 mg vs. Placebo) 43.5%, 43.0% vs. 36.7% (p = 0.325 vs. p = 0.392) | - | Tofacitinib (5 mg) 58.1% (10 mg) 60.5% Placebo 60.4% | Tofacitinib (5 mg) 3.5% (10 mg) 11.6% Placebo 3.3% |
Filgotinib | Phase 2, RCT | Induction therapy for 10 weeks: Filgotinib 200 mg QD vs. Placebo | 174 | Filgotinib vs. Placebo 47% vs. 23% (p = 0.0077) | Filgotinib vs. Placebo 25% vs. 14% (p = 0.31) | Filgotinib 75% Placebo 67% | Filgotinib 14% Placebo 4% |
Filgotinib | Phase 3, RCT, DIVERSITY | Induction therapy A for 10 weeks: Filgotinib 200 mg QD, 100 mg QD vs. Placebo | 707 | Filgotinib (100 mg, 200 mg vs. Placebo) 29.8%, 32.9% vs. 25.7% (p = 0.3050 vs. p = 0.0963) | Filgotinib (100 mg, 200 mg vs. Placebo) 18.4%, 23.9% vs. 18.1% (p = 0.5103 vs. p = 0.1365) | Filgotinib (100 mg) 56% (200 mg) 51% Placebo 58% | Filgotinib (100 mg) 7% (200 mg) 8% Placebo 6% |
Induction therapy B for 10 weeks: Filgotinib 200 mg QD, 100 mg QD vs. Placebo | 665 | Filgotinib (100 mg, 200 mg vs. Placebo) 18.9%, 29.7% vs. 17.9% (p = 0.7556 vs. p = 0.0039) | Filgotinib (100 mg, 200 mg vs. Placebo) 13.6%, 11.9% vs. 11.4% (p = 0.4264 vs. p = 0.9797) | Filgotinib (100 mg) 68% (200 mg) 70% Placebo 68% | Filgotinib (100 mg) 16% (200 mg) 9% Placebo 11% | ||
Maintenance therapy for 46 weeks: Filgotinib 100 mg to 00 mg, 100 mg to Placebo, 200 mg to 200 mg, 200 mg to Placebo, Placebo to Placebo | 481 | Filgotinib (200 mg to 200 mg vs. 200 mg to Placebo) 43.8% vs. 8.9% (p = 0.0382) * | Filgotinib (200 mg to 200 mg vs. 200 mg to Placebo) 30.4% vs. 8.9% (p = 0.0038) * | Filgotinib (100 mg to Placebo) 65% (100 mg to 100 mg) 72% (200 mg to Placebo) 63% (200 mg to 200 mg) 68% Placebo to Placebo 66% | Filgotinib (100 mg to Placebo 5% (100 mg to 100 mg) 13% (200 mg to Placebo) 9% (200 mg to 200 mg) 11% Placebo to Placebo 10% | ||
Upadacitinib | Phase 2, RCT | Induction therapy for 16 weeks: Upadacitinib 3mg BID, 6 mg BID, 12 mg BID, 24 mg BID, 24 mg QD vs. Placebo | 220 | Upadacitinib (6 mg BID vs. Placebo) 27% vs. 11% (p < 0.01) * | Upadacitinib (24 mg BID vs. Placebo) 22% vs. 0 (p < 0.01) (24 mg QD vs. Placebo) 14% vs. 0 (p < 0.05) * | Upadacitinib (3mg bid) 87.2% (6 mg bid) 78.4% (12 mg bid) 80.6% (24 mg bid) 83.8% (24 mg qd) 82.9% Placebo 73% | Upadacitinib (3mg bid) 12.8% (6 mg bid) 5.4% (12 mg bid) 27.8% (24 mg bid) 8.3% (24 mg qd) 20.0% Placebo: 5.4% |
Upadacitinib | Phase 3, RCT, U-EXCEL | Induction therapy for 12 weeks: Upadacitinib 45 mg QD vs. Placebo | 526 | Upadacitinib vs. Placebo 49.5% vs. 29.1% (p < 0.001) | Upadacitinib vs. Placebo 45.5% vs. 13.1 (p < 0.001) | Upadacitinib 62.6% Placebo 58.5% | Upadacitinib 8.9% Placebo 8.5% |
U-EXCEED | Induction therapy for 12 weeks: Upadacitinib 45 mg QD vs. Placebo | 495 | Upadacitinib vs. Placebo 38.9% vs. 21.1% (p < 0.001) | Upadacitinib vs. Placebo 34.6% vs. 3.5% (p < 0.001) | Upadacitinib 68.2% Placebo 65.5% | Upadacitinib 8.6% Placebo 11.7% | |
U-ENDURE | Maintenance therapy for 40 weeks: Upadacitinib 15 mg QD, 30 mg QD vs. Placebo | 502 | Upadacitinib (15 mg QD, 30 mg QD vs. Placebo) 37.3%, 47.6% vs. 15.1% (p < 0.001 vs. p < 0.001) | Upadacitinib (15 mg QD, 30 mg QD vs. Placebo) 27.6%, 40.1% vs. 7.3% (p < 0.001 vs. p < 0.001) | Upadacitinib (15 mg) 83.3% (30 mg) 78.7% Placebo 74.6% | Upadacitinib (15 mg) 10.1% (30 mg) 13.1% Placebo 12.1% |
Drug | Dose | Patients (n=) | Clinical Release | Mucosal Healing | Adverse Events | Serious Adverse Events |
---|---|---|---|---|---|---|
Tofacitinib | Induction therapy for 8 weeks: 10 mg BID | 76 | 46.6% (35/76) | 44.8% (34/76) | 17.1% (13/76) | 7.9% (6/76) |
Upadacitinib | Induction therapy for 12 weeks and maintenance therapy for 12 weeks: 15 mg QD, 30 mg QD, 45 mg QD | 45 (efficacy cohort: 33) | CR at week 12 27.3% (9/33) | MH at week 24 28.6% (4/14) | 27% (12/45) | 4.4% (2/45) |
Upadacitinib | Induction therapy for 20 weeks: 15 mg QD | 12 | 25% (3/12) | 41.67% (5/12) | 58.3% (7/12) | 0 (0/12) |
Upadacitinib | Induction therapy for 8 weeks: 45 mg QD | 105 (efficacy cohort: 88) | 70.6% (12/17) | - | 32.4% (34/105) | 0.9% (1/105) |
Upadacitinib | Induction therapy for 12 weeks: 45 mg | 22 | 90% (18/20) | 30% (6/20) | 15.7% (3/22) | 0 (0/22) |
Upadacitinib | Induction therapy for 12 weeks: 45 mg QD Maintenance therapy for 40 weeks: 15 mg QD, 30 mg QD | 246 | CR at week 52 79.2% (19/24) | MH at week 52 54.5% (6/11) | 46.8% (101/215) | 0 (0/215) |
Upadacitinib | Induction therapy for 12 weeks: 45 mg QD Maintenance therapy for 40 weeks: 15 mg qd, 30 mg QD, 45 mg QD | 135 (efficacy cohort: 93) | CR at week 24 48% (22/46) | - | 40% (37/93) | 12% (11/93) |
Upadacitinib | Induction therapy for 12 weeks: 45 mg QD | 156 | 77.8% (121/156) | 19.4% (30/156) | 11.5% (18/156) | 0.6% (1/156) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Wang, S.; Xu, S.; Gong, R. JAK Inhibitor and Crohn’s Disease. Biomedicines 2025, 13, 1325. https://doi.org/10.3390/biomedicines13061325
Xu M, Wang S, Xu S, Gong R. JAK Inhibitor and Crohn’s Disease. Biomedicines. 2025; 13(6):1325. https://doi.org/10.3390/biomedicines13061325
Chicago/Turabian StyleXu, Mengyan, Shi Wang, Sanping Xu, and Rui Gong. 2025. "JAK Inhibitor and Crohn’s Disease" Biomedicines 13, no. 6: 1325. https://doi.org/10.3390/biomedicines13061325
APA StyleXu, M., Wang, S., Xu, S., & Gong, R. (2025). JAK Inhibitor and Crohn’s Disease. Biomedicines, 13(6), 1325. https://doi.org/10.3390/biomedicines13061325