Altered IgG N-Glycosylation at Onset of Type 1 Diabetes in Children Is Predominantly Driven by Changes in the Fab N-Glycans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples
2.2. IgG Isolation from Plasma
2.3. On-Bead Digestion of IgG Using IdeS
2.4. N-Glycan Release and Procainamide Labelling
2.5. UPLC Analysis of Labelled N-Glycans
2.6. LC-MS Determination of Glycan Composition
2.7. Statistical Analysis
3. Results
3.1. Greater Structural Complexity of Fab N-Glycans Compared to Fc
3.2. IgG N-Glycosylation Changes at T1D Onset Mainly Originate from the Fab Region
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gillespie, K.M. Type 1 diabetes: Pathogenesis and prevention. CMAJ Can. Med. Assoc. J. 2006, 175, 165–170. [Google Scholar] [CrossRef] [PubMed]
- Taplin, C.E.; Barker, J.M. Autoantibodies in type 1 diabetes. Autoimmunity 2008, 41, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Primavera, M.; Giannini, C.; Chiarelli, F. Prediction and Prevention of Type 1 Diabetes. Front. Endocrinol. 2020, 11, 248. [Google Scholar] [CrossRef]
- Hoppu, S.; Ronkainen, M.S.; Kulmala, P.; Akerblom, H.K.; Knip, M.; Childhood Diabetes in Finland Study Group. GAD65 antibody isotypes and epitope recognition during the prediabetic process in siblings of children with type I diabetes. Clin. Exp. Immunol. 2004, 136, 120–128. [Google Scholar]
- Toft-Hansen, H.; Aniol-Nielsen, C.; Elias, D.; Dahlbäck, M.; Rossing, P.; Sivalingam, S.; Hagopian, W.A.; Schneider, D.A.; Nielsen, C.H.; Solberg, H. Characterization of Anti-Insulin Antibodies in Type 1 and Type 2 Diabetes Mellitus: Clinical Relevance. Int. J. Mol. Sci. 2025, 26, 1730. [Google Scholar] [CrossRef]
- Napodano, C.; Marino, M.; Stefanile, A.; Pocino, K.; Scatena, R.; Gulli, F.; Rapaccini, G.L.; Delli Noci, S.; Capozio, G.; Rigante, D.; et al. Immunological Role of IgG Subclasses. Immunol. Investig. 2021, 50, 427–444. [Google Scholar] [CrossRef]
- Nose, M.; Wigzell, H. Biological significance of carbohydrate chains on monoclonal antibodies. Proc. Natl. Acad. Sci. USA 1983, 80, 6632–6636. [Google Scholar] [CrossRef]
- Anthony, R.M.; Nimmerjahn, F. The role of differential IgG glycosylation in the interaction of antibodies with FcγRs in vivo. Curr. Opin. Organ. Transplant. 2011, 16, 7–14. [Google Scholar] [CrossRef]
- Malhotra, R.; Wormald, M.R.; Rudd, P.M.; Fischer, P.B.; Dwek, R.A.; Sim, R.B. Glycosylation changes of IgG associated with rheumatooid arthritis can activate complement via the mannose-binding protein. Nat. Med. 1995, 1, 237–243. [Google Scholar] [CrossRef]
- Anumula, K.R. Quantitative glycan profiling of normal human plasma derived immunoglobulin and its fragments Fab and Fc. J. Immunol. Methods 2012, 382, 167–176. [Google Scholar] [CrossRef]
- van de Bovenkamp, F.S.; Hafkenscheid, L.; Rispens, T.; Rombouts, Y. The Emerging Importance of IgG Fab Glycosylation in Immunity. J. Immunol. 2016, 196, 1435–1441. [Google Scholar] [CrossRef] [PubMed]
- Dunn-Walters, D.; Boursier, L.; Spencer, J. Effect of somatic hypermutation on potential N-glycosylation sites in human immunoglobulin heavy chain variable regions. Mol. Immunol. 2000, 37, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Koers, J.; Derksen, N.I.L.; Ooijevaar-de Heer, P.; Nota, B.; van de Bovenkamp, F.S.; Vidarsson, G.; Rispens, T. Biased N-Glycosylation Site Distribution and Acquisition across the Antibody V Region during B Cell Maturation. J. Immunol. 2019, 202, 2220–2228. [Google Scholar] [CrossRef]
- van de Bovenkamp, F.S.; Derksen, N.I.L.; Ooijevaar-de Heer, P.; van Schie, K.A.; Kruithof, S.; Berkowska, M.A.; van der Schoot, C.E.; IJspeert, H.; van der Burg, M.; Gils, A.; et al. Adaptive antibody diversification through N-linked glycosylation of the immunoglobulin variable region. Proc. Natl. Acad. Sci. USA 2018, 115, 1901–1906. [Google Scholar] [CrossRef]
- Schwab, I.; Nimmerjahn, F. Role of sialylation in the anti-inflammatory activity of intravenous immunoglobulin–F(ab′)2 versus Fc sialylation. Clin. Exp. Immunol. 2014, 178 (Suppl. 1), 97–99. [Google Scholar] [CrossRef]
- Koers, J.; Sciarrillo, R.; Derksen, N.I.L.; Vletter, E.M.; Fillié-Grijpma, Y.E.; Raveling-Eelsing, E.; Graça, N.A.G.; Leijser, T.; Pas, H.H.; Laura van Nijen-Vos, L.; et al. Differences in IgG autoantibody Fab glycosylation across autoimmune diseases. J. Allergy Clin. Immunol. 2023, 151, 1646–1654. [Google Scholar] [CrossRef]
- Bondt, A.; Rombouts, Y.; Selman, M.H.J.; Hensbergen, P.J.; Reiding, K.R.; Hazes, J.M.W.; Dolhain, R.J.E.M.; Wuhrer, M. Immunoglobulin G (IgG) Fab Glycosylation Analysis Using a New Mass Spectrometric High-throughput Profiling Method Reveals Pregnancy-associated Changes. Mol. Cell. Proteom. MCP 2014, 13, 3029–3039. [Google Scholar] [CrossRef]
- Bondt, A.; Wuhrer, M.; Kuijper, T.M.; Hazes, J.M.W.; Dolhain, R.J.E.M. Fab glycosylation of immunoglobulin G does not associate with improvement of rheumatoid arthritis during pregnancy. Arthritis Res. Ther. 2016, 18, 274. [Google Scholar] [CrossRef]
- Holland, M.; Yagi, H.; Takahashi, N.; Kato, K.; Savage, C.O.S.; Goodall, D.M.; Jefferis, R. Differential glycosylation of polyclonal IgG, IgG-Fc and IgG-Fab isolated from the sera of patients with ANCA-associated systemic vasculitis. Biochim. Biophys. Acta BBA Gen. Subj. 2006, 1760, 669–677. [Google Scholar] [CrossRef]
- Haslam, S.M.; Freedberg, D.I.; Mulloy, B.; Dell, A.; Stanley, P.; Prestegard, J.H. Structural Analysis of Glycans. In Essentials of Glycobiology [Internet], 4th ed.; Varki, A., Cummings, R.D., Esko, J.D., Stanley, P., Hart, G.W., Aebi, M., Mohnen, D., Kinoshita, T., Packer, N.H., Prestegard, J.H., et al., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2022. Available online: http://www.ncbi.nlm.nih.gov/books/NBK579945/ (accessed on 14 April 2025).
- Rudman, N.; Kifer, D.; Kaur, S.; Simunović, V.; Cvetko, A.; Pociot, F.; Morahan, G.; Gornik, O. Children at onset of type 1 diabetes show altered N-glycosylation of plasma proteins and IgG. Diabetologia 2022, 65, 1315–1327. [Google Scholar] [CrossRef]
- Nemčić, M.; Tijardović, M.; Rudman, N.; Bulum, T.; Tomić, M.; Plavša, B.; Vučković Rebrina, S.; Vučić Lovrenčić, M.; Duvnjak, L.; Morahan, G.; et al. N-glycosylation of serum proteins in adult type 1 diabetes mellitus exposes further changes compared to children at the disease onset. Clin. Chim. Acta Int. J. Clin. Chem. 2023, 543, 117298. [Google Scholar] [CrossRef] [PubMed]
- Svensson, J.; Cerqueira, C.; Kjærsgaard, P.; Lyngsøe, L.; Hertel, N.T.; Madsen, M.; Mortensen, H.B.; Johannesen, J. Danish Registry of Childhood and Adolescent Diabetes. Clin. Epidemiol. 2016, 8, 679–683. [Google Scholar] [CrossRef] [PubMed]
- Pučić, M.; Knežević, A.; Vidič, J.; Adamczyk, B.; Novokmet, M.; Polašek, O.; Gornik, O.; Šupraha-Goreta, S.; Wormald, M.R.; Redžić, I.; et al. High Throughput Isolation and Glycosylation Analysis of IgG–Variability and Heritability of the IgG Glycome in Three Isolated Human Populations. Mol. Cell. Proteom. MCP 2011, 10, M111.010090. [Google Scholar] [CrossRef] [PubMed]
- Jensen, P.H.; Karlsson, N.G.; Kolarich, D.; Packer, N.H. Structural analysis of N- and O-glycans released from glycoproteins. Nat. Protoc. 2012, 7, 1299–1310. [Google Scholar] [CrossRef]
- Manz, C.; Mancera-Arteu, M.; Zappe, A.; Hanozin, E.; Polewski, L.; Giménez, E.; Sanz-Nebot, V.; Pagel, K. Determination of Sialic Acid Isomers from Released N-Glycans Using Ion Mobility Spectrometry. Anal. Chem. 2022, 94, 13323–13331. [Google Scholar] [CrossRef]
- Mancera-Arteu, M.; Giménez, E.; Barbosa, J.; Peracaula, R.; Sanz-Nebot, V. Zwitterionic-hydrophilic interaction capillary liquid chromatography coupled to tandem mass spectrometry for the characterization of human alpha-acid-glycoprotein N-glycan isomers. Anal. Chim. Acta 2017, 991, 76–88. [Google Scholar] [CrossRef]
- Kissel, T.; Ge, C.; Hafkenscheid, L.; Kwekkeboom, J.C.; Slot, L.M.; Cavallari, M.; He, Y.; van Schie, K.A.; Vergroesen, R.D.; Kampstra, A.S.B.; et al. Surface Ig variable domain glycosylation affects autoantigen binding and acts as threshold for human autoreactive B cell activation. Sci. Adv. 2022, 8, eabm1759. [Google Scholar] [CrossRef]
- Rewers, M.; Ludvigsson, J. Environmental risk factors for type 1 diabetes. Lancet 2016, 387, 2340–2348. [Google Scholar] [CrossRef]
- Mattu, T.S.; Pleass, R.J.; Willis, A.C.; Kilian, M.; Wormald, M.R.; Lellouch, A.C.; Rudd, P.M.; Woof, J.M.; Dwek, R.A. The glycosylation and structure of human serum IgA1, Fab, and Fc regions and the role of N-glycosylation on Fcα receptor interactions. J. Biol. Chem. 1998, 273, 2260–2272. [Google Scholar] [CrossRef]
- Clerc, F.; Reiding, K.R.; Jansen, B.C.; Kammeijer, G.S.M.; Bondt, A.; Wuhrer, M. Human plasma protein N-glycosylation. Glycoconj. J. 2016, 33, 309–343. [Google Scholar] [CrossRef]
- Aich, U.; Hurum, D.C.; Basumallick, L.; Rao, S.; Pohl, C.; Rohrer, J.S.; Kandzia, S. Evaluation of desialylation during 2-amino benzamide labeling of asparagine-linked oligosaccharides. Anal. Biochem. 2014, 458, 27–36. [Google Scholar] [CrossRef]
Characteristic | T1D (n = 118) | Control (n = 98) | p-Value 1 | |
---|---|---|---|---|
Age (years) 2 | 11.0 (8.0, 15.0) | 11.0 (8.0, 14.0) | 0.8 | |
Sex 3 | F | 67 (57%) | 50 (51%) | 0.4 |
M | 51 (43%) | 48 (49%) |
Structural Trait | Fc 1 | Fab 1 | p-Value 2 |
---|---|---|---|
G0 | 26.71 (6.26) | 2.75 (1.34) | <0.001 |
G1 | 40.56 (2.63) | 9.71 (1.99) | <0.001 |
G2 | 32.74 (6.07) | 86.46 (3.27) | <0.001 |
S0 | 86 (2.81) | 17.75 (3.28) | <0.001 |
S1 | 13.57 (2.7) | 42.92 (1.78) | <0.001 |
S2 | 0.43 (0.15) | 38.32 (3.87) | <0.001 |
B | 10.79 (2.09) | 49.86 (5.91) | <0.001 |
HM | 0 (0) | 1.01 (0.29) | <0.001 |
CF | 98.02 (0.72) | 90.04 (1.29) | <0.001 |
Glycan | Description 1 | Beta Coefficient 2 | 95% CI | p-Value | Adjusted p-Value 3 |
---|---|---|---|---|---|
Fab N-glycans | |||||
GP02 | Man5 | 1.119 | 1.032, 1.214 | 0.0068 | 0.033 |
GP12 | Man7 | 1.127 | 1.035, 1.226 | 0.0058 | 0.033 |
GP14 | FA2BG1S1, A2G2S1 | 1.070 | 1.033, 1.109 | 0.0002 | 0.005 |
GP19 | A2G2S2, FA2BG2S1 | 1.132 | 1.04, 1.231 | 0.0043 | 0.033 |
GP22 | A2G2S2 | 1.090 | 1.041, 1.141 | 0.0003 | 0.005 |
HM | Oligomannose | 1.122 | 1.043, 1.208 | 0.0023 | 0.026 |
CF | Core fucose | 0.995 | 0.991, 0.998 | 0.0057 | 0.033 |
Fc N-glycans | |||||
GP09 | FA2[3]BG1 | 0.885 | 0.838, 0.935 | 0.00002 | 0.0005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plavša, B.; Rudman, N.; Pociot, F.; Gornik, O. Altered IgG N-Glycosylation at Onset of Type 1 Diabetes in Children Is Predominantly Driven by Changes in the Fab N-Glycans. Biomedicines 2025, 13, 1206. https://doi.org/10.3390/biomedicines13051206
Plavša B, Rudman N, Pociot F, Gornik O. Altered IgG N-Glycosylation at Onset of Type 1 Diabetes in Children Is Predominantly Driven by Changes in the Fab N-Glycans. Biomedicines. 2025; 13(5):1206. https://doi.org/10.3390/biomedicines13051206
Chicago/Turabian StylePlavša, Branimir, Najda Rudman, Flemming Pociot, and Olga Gornik. 2025. "Altered IgG N-Glycosylation at Onset of Type 1 Diabetes in Children Is Predominantly Driven by Changes in the Fab N-Glycans" Biomedicines 13, no. 5: 1206. https://doi.org/10.3390/biomedicines13051206
APA StylePlavša, B., Rudman, N., Pociot, F., & Gornik, O. (2025). Altered IgG N-Glycosylation at Onset of Type 1 Diabetes in Children Is Predominantly Driven by Changes in the Fab N-Glycans. Biomedicines, 13(5), 1206. https://doi.org/10.3390/biomedicines13051206