New Insights in the Diagnostic Potential of Sex Hormone-Binding Globulin (SHBG)—Clinical Approach
Abstract
:1. Introduction
2. SHBG Synthesis
2.1. SHBG Gene
2.2. Transcriptional Factors
3. Clinical Usefulness of SHBG
3.1. SHBG and Metabolic Syndrome
3.2. SHBG and Cardiovascular Risk
3.3. SHBG and Insulin Resistance, Diabetes Mellitus, and Gestational Diabetes Mellitus
3.4. SHBG and PCOS, Hypogonadism and Infertility
3.4.1. PCOS and SHBG
3.4.2. Infertility and SHBG
3.4.3. Hypogonadism and SHBG
3.4.4. Correlations Between Oral Contraception and SHBG
3.5. SHBG and Thyroid Dysfunction
3.5.1. Thyroid Hormones and SHBG
3.5.2. SHBG and Hypothyroidism
3.5.3. SHBG and Hyperthyroidism
3.5.4. SHBG—Thyroid Nodules and Cancer
3.5.5. Resistance to Thyroid Hormone and SHBG
3.6. SHBG and Cancers
3.6.1. Breast Cancer
3.6.2. Ovarian Cancer
3.6.3. Endometrial Cancer
3.6.4. Lung Cancer
3.6.5. Esophageal Cancer
3.6.6. Hepatocellular Carcinoma
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Klock, E.; Kane, M.P.; Musteata, F.M. Measurement of free fraction, total concentration and protein binding for testosterone, triiodothyronine and thyroxine. Bioanalysis 2023, 15, 1355–1368. [Google Scholar] [CrossRef]
- Simó, R.; Sáez-López, C.; Barbosa-Desongles, A.; Hernández, C.; Selva, D.M. Novel insights in SHBG regulation and clinical implications. Trends Endocrinol. Metab. 2015, 26, 376–383. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zheng, L.; Chan, K.H.K.; Zou, X.; Zhang, J.; Liu, J.; Zhong, Q.; Madsen, T.E.; Wu, W.; Manson, J.E.; et al. Sex Hormone-Binding Globulin and Risk of Coronary Heart Disease in Men and Women. Clin. Chem. 2023, 69, 374–385. [Google Scholar] [CrossRef] [PubMed]
- Basualto-Alarcón, C.; Llanos, P.; García-Rivas, G.; Troncoso, M.F.; Lagos, D.; Barrientos, G.; Estrada, M. Classic and Novel Sex Hormone Binding Globulin Effects on the Cardiovascular System in Men. Int. J. Endocrinol. 2021, 2021, 5527973. [Google Scholar] [CrossRef] [PubMed]
- El Tarhouny, S.A.; Zakaria, S.S.; Abdu-Allah, A.M.; Hadhoud, K.M.; Mahmoud, M.I.; Al Nozha, O.M. Study of Sex Hormone-binding Globulin Gene Polymorphism and Risk of Type 2 Diabetes Mellitus in Egyptian Men. West Indian Med. J. 2015, 64, 338–343. [Google Scholar] [CrossRef]
- Niskanen, L.; Laaksonen, D.E.; Punnonen, K.; Mustajoki, P.; Kaukua, J.; Rissanen, A. Changes in sex hormone-binding globulin and testosterone during weight loss and weight maintenance in abdominally obese men with the metabolic syndrome. Diabetes Obes. Metab. 2004, 6, 208–215. [Google Scholar] [CrossRef]
- Brianso-Llort, L.; Saéz-Lopez, C.; Alvarez-Guaita, A.; Ramos-Perez, L.; Hernandez, C.; Simó, R.; Selva, D.M. Recent Advances on Sex Hormone-Binding Globulin Regulation by Nutritional Factors: Clinical Implications. Mol. Nutr. Food Res. 2024, 68, e2400020. [Google Scholar] [CrossRef]
- Skałba, P.; Zieba, M.; Olejek, A. Testosterone and SHBG levels in blood serum in women with anorexia nervosa. Wiad. Lek. 2001, 54, 532–536. [Google Scholar]
- Simó, R.; Barbosa-Desongles, A.; Hernandez, C.; Selva, D.M. IL1β down-regulation of sex hormone-binding globulin production by decreasing HNF-4α via MEK-1/2 and JNK MAPK pathways. Mol. Endocrinol. 2012, 26, 1917–1927. [Google Scholar] [CrossRef]
- Simó, R.; Barbosa-Desongles, A.; Lecube, A.; Hernandez, C.; Selva, D.M. Potential role of tumor necrosis factor-α in downregulating sex hormone-binding globulin. Diabetes 2012, 61, 372–382. [Google Scholar] [CrossRef]
- Li, Y.; Fang, L.; Yan, Y.; Wang, Z.; Wu, Z.; Jia, Q.; Cheng, J.C.; Sun, Y.P. Association between human SHBG gene polymorphisms and risk of PCOS: A meta-analysis. Reprod. Biomed. Online 2021, 42, 227–236. [Google Scholar] [CrossRef] [PubMed]
- Fortunati, N.; Catalano, M.G.; Boccuzzi, G.; Frairia, R. Sex Hormone-Binding Globulin (SHBG), estradiol and breast cancer. Mol. Cell. Endocrinol. 2010, 316, 86–92. [Google Scholar] [CrossRef] [PubMed]
- Ma, H.; Chen, Y. Examining the causal relationship between sex hormone-binding globulin (SHBG) and infertility: A Mendelian randomization study. PLoS ONE 2024, 19, e0304216. [Google Scholar] [CrossRef]
- Liu, X.; Wang, N.; Gao, Z. β-Carotene regulates glucose transport and insulin resistance in gestational diabetes mellitus by increasing the expression of SHBG. Clin. Exp. Pharmacol. Physiol. 2022, 49, 1307–1318. [Google Scholar] [CrossRef] [PubMed]
- Xargay-Torrent, S.; Carreras-Badosa, G.; Borrat-Padrosa, S.; Prats-Puig, A.; Soriano, P.; Álvarez-Castaño, E.; Ferri, M.J.; De Zegher, F.; Ibáñez, L.; López-Bermejo, A.; et al. Circulating sex hormone binding globulin: An integrating biomarker for an adverse cardiometabolic profile in obese pregnant women. PLoS ONE 2018, 13, e0205592. [Google Scholar] [CrossRef]
- Jarecki, P.; Herman, W.A.; Losy, J.; Lacka, K. The Comparison of Predictive Value Among Chemerin, IL-18 and Hormonal Parameters in Assessing the Risk of Metabolic Syndrome in Men. Am. J. Men's Health 2021, 15, 15579883211034984. [Google Scholar] [CrossRef]
- Hedderson, M.M.; Xu, F.; Darbinian, J.A.; Quesenberry, C.P.; Sridhar, S.; Kim, C.; Gunderson, E.P.; Ferrara, A. Prepregnancy SHBG concentrations and risk for subsequently developing gestational diabetes mellitus. Diabetes Care 2014, 37, 1296–1303. [Google Scholar] [CrossRef]
- Aribas, E.; Kavousi, M.; Laven, J.S.E.; Ikram, M.A.; Roeters van Lennep, J.E. Aging, Cardiovascular Risk, and SHBG Levels in Men and Women from the General Population. J. Clin. Endocrinol. Metab. 2021, 106, 2890–2900. [Google Scholar] [CrossRef]
- Que, B.G.; Petra, P.H. Characterization of a cDNA coding for sex steroid-binding protein of human plasma. FEBS Lett. 1987, 219, 405–409. [Google Scholar] [CrossRef]
- Bérubé, D.; Séralini, G.E.; Gagné, R.; Hammond, G.L. Localization of the human sex hormone-binding globulin gene (SHBG) to the short arm of chromosome 17 (17p12----p13). Cytogenet. Cell Genet. 1990, 54, 65–67. [Google Scholar] [CrossRef]
- Joseph, D.R. Structure, function, and regulation of androgenbinding protein/sex hormone-binding globulin. Vitam. Horm. 1994, 49, 197–280. [Google Scholar] [PubMed]
- Jänne, M.; Deol, H.K.; Power, S.G.; Yee, S.P.; Hammond, G.L. Human sex hormone-binding globulin gene expression in transgenic mice. Mol. Endocrinol. 1998, 12, 123–136. [Google Scholar] [CrossRef]
- Nakhla, A.M.; Hryb, D.J.; Rosner, W.; Romas, N.A.; Xiang, Z.; Kahn, S.M. Human sex hormone-binding globulin gene expression- multiple promoters and complex alternative splicing. BMC Mol. Biol. 2009, 10, 37. [Google Scholar] [CrossRef] [PubMed]
- Hammond, G.L. Diverse roles for sex hormone-binding globulin in reproduction. Biol. Reprod. 2011, 85, 431–441. [Google Scholar] [CrossRef]
- Jänne, M.; Hammond, G.L. Hepatocyte nuclear factor-4 controls transcription from a TATA-less human sex hormone-binding globulin gene promoter. J. Biol. Chem. 1998, 273, 34105–34114. [Google Scholar] [CrossRef] [PubMed]
- Saez-Lopez, C.; Brianso-Llort, L.; Torres-Torronteras, J.; Simó, R.; Hammond, G.L.; Selva, D.M. Resveratrol increases hepatic SHBG expression through human constitutive androstane receptor: A new contribution to the French paradox. Sci. Rep. 2017, 7, 12284. [Google Scholar] [CrossRef]
- Selva, D.M.; Hammond, G.L. Peroxisome-proliferator receptor gamma represses hepatic sex hormone-binding globulin expression. Endocrinology 2009, 150, 2183–2189. [Google Scholar] [CrossRef]
- Selva, D.M.; Hammond, G.L. Thyroid hormones act indirectly to increase sex hormone-binding globulin production by liver via hepatocyte nuclear factor-4alpha. J. Mol. Endocrinol. 2009, 43, 19–27. [Google Scholar] [CrossRef]
- Gómez-Chávez, F.; Correa, D.; Navarrete-Meneses, P.; Cancino-Diaz, J.C.; Cancino-Diaz, M.E.; Rodríguez-Martínez, S. NF-κB and Its Regulators During Pregnancy. Front. Immunol. 2021, 12, 679106. [Google Scholar] [CrossRef]
- Ruth, K.S.; Day, F.R.; Tyrrell, J.; Thompson, D.J.; Wood, A.R.; Mahajan, A.; Beaumont, R.N.; Wittemans, L.; Martin, S.; Busch, A.S.; et al. Using human genetics to understand the disease impacts of testosterone in men and women. Nat. Med. 2020, 26, 252–258. [Google Scholar] [CrossRef]
- Simons, P.I.H.G.; Valkenburg, O.; Stehouwer, C.D.A.; Brouwers, M.C.G.J. Sex hormone-binding globulin: Biomarker and hepatokine? Trends Endocrinol. Metab. 2021, 32, 544–553. [Google Scholar] [CrossRef]
- Arzumanian, V.A.; Kiseleva, O.I.; Poverennaya, E.V. The Curious Case of the HepG2 Cell Line: 40 Years of Expertise. Int. J. Mol. Sci. 2021, 22, 13135. [Google Scholar] [CrossRef]
- Dobrowolski, P.; Prejbisz, A.; Kuryłowicz, A.; Baska, A.; Burchardt, P.; Chlebus, K.; Dzida, G.; Jankowski, P.; Jaroszewicz, J.; Jaworski, P.; et al. Metabolic syndrome—A new definition and management guidelines: A joint position paper by the Polish Society of Hypertension, Polish Society for the Treatment of Obesity, Polish Lipid Association, Polish Association for Study of Liver, Polish Society of Family Medicine, Polish Society of Lifestyle Medicine, Division of Prevention and Epidemiology Polish Cardiac Society, “Club 30” Polish Cardiac Society, and Division of Metabolic and Bariatric Surgery Society of Polish Surgeons. Arch. Med. Sci. 2022, 18, 1133–1156. [Google Scholar] [CrossRef] [PubMed]
- Brand, J.S.; van der Tweel, I.; Grobbee, D.E.; Emmelot-Vonk, M.H.; van der Schouw, Y.T. Testosterone, sex hormone-binding globulin and the metabolic syndrome: A systematic review and meta-analysis of observational studies. Int. J. Epidemiol. 2011, 40, 189–207. [Google Scholar] [CrossRef] [PubMed]
- Gallardo-Alfaro, L.; Bibiloni, M.D.M.; Mascaró, C.M.; Montemayor, S.; Ruiz-Canela, M.; Salas-Salvadó, J.; Corella, D.; Fitó, M.; Romaguera, D.; Vioque, J.; et al. Leisure-Time Physical Activity, Sedentary Behaviour and Diet Quality are Associated with Metabolic Syndrome Severity: The PREDIMED-Plus Study. Nutrients 2020, 12, 1013. [Google Scholar] [CrossRef] [PubMed]
- Simó, R.; Saez-Lopez, C.; Lecube, A.; Hernandez, C.; Fort, J.M.; Selva, D.M. Adiponectin upregulates SHBG production: Molecular mechanisms and potential implications. Endocrinology 2014, 155, 2820–2830. [Google Scholar] [CrossRef]
- Geidl-Flueck, B.; Hochuli, M.; Németh, Á.; Eberl, A.; Derron, N.; Köfeler, H.C.; Tappy, L.; Berneis, K.; Spinas, G.A.; Gerber, P.A. Fructose- and sucrose- but not glucose-sweetened beverages promote hepatic de novo lipogenesis: A randomized controlled trial. J. Hepatol. 2021, 75, 46–54. [Google Scholar] [CrossRef]
- Selva, D.M.; Hogeveen, K.N.; Innis, S.M.; Hammond, G.L. Monosaccharide-induced lipogenesis regulates the human hepatic sex hormone-binding globulin gene. J. Clin. Investig. 2007, 117, 3979–3987. [Google Scholar] [CrossRef]
- Simons, P.I.H.G.; Valkenburg, O.; Telgenkamp, I.; van der Waaij, K.M.; de Groot, D.M.; Veeraiah, P.; Bons, J.A.P.; Taskinen, M.R.; Borén, J.; Schrauwen, P.; et al. Relationship between de novo lipogenesis and serum sex hormone binding globulin in humans. Clin. Endocrinol. 2021, 95, 101–106. [Google Scholar] [CrossRef]
- Duggan, C.; Tapsoba, J.D.; Stanczyk, F.; Wang, C.Y.; Schubert, K.F.; McTiernan, A. Long-term weight loss maintenance, sex steroid hormones, and sex hormone-binding globulin. Menopause 2019, 26, 417–422. [Google Scholar] [CrossRef]
- Pascal, N.; Amouzou, E.K.; Sanni, A.; Namour, F.; Abdelmouttaleb, I.; Vidailhet, M.; Guéant, J.L. Serum concentrations of sex hormone binding globulin are elevated in kwashiorkor and anorexia nervosa but not in marasmus. Am. J. Clin. Nutr. 2002, 76, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Nambi, G.; Alghadier, M.; Elnegamy, T.E.; Basuodan, R.M.; Alwhaibi, R.M.; Vellaiyan, A.; Nwihadh, N.A.; Aldhafian, O.R.; Verma, A.; Mohamed, S.H.P.; et al. Clinical (BMI and MRI) and Biochemical (Adiponectin, Leptin, TNF-α, and IL-6) Effects of High-Intensity Aerobic Training with High-Protein Diet in Children with Obesity Following COVID-19 Infection. Int. J. Environ. Res. Public Health 2022, 19, 7194. [Google Scholar] [CrossRef] [PubMed]
- Siitonen, N.; Pulkkinen, L.; Lindström, J.; Kolehmainen, M.; Schwab, U.; Eriksson, J.G.; Ilanne-Parikka, P.; Keinänen-Kiukaanniemi, S.; Tuomilehto, J.; Uusitupa, M. Association of ADIPOR2 gene variants with cardiovascular disease and type 2 diabetes risk in individuals with impaired glucose tolerance: The Finnish Diabetes Prevention Study. Cardiovasc. Diabetol. 2011, 10, 83. [Google Scholar] [CrossRef]
- Liu, Q.; Yuan, B.; Lo, K.A.; Patterson, H.C.; Sun, Y.; Lodish, H.F. Adiponectin regulates expression of hepatic genes critical for glucose and lipid metabolism. Proc. Natl. Acad. Sci. USA 2012, 109, 14568–14573. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.C.; Huang, S.P.; Cheng, K.H.; Hsieh, T.J.; Huang, C.N.; Wang, C.J.; Yeh, H.C.; Tsai, C.C.; Bao, B.Y.; Wu, W.J.; et al. Lower SHBG level is associated with higher leptin and lower adiponectin levels as well as metabolic syndrome, independent of testosterone. Sci. Rep. 2017, 7, 2727. [Google Scholar] [CrossRef] [PubMed]
- Ramon-Krauel, M.; Leal-Witt, M.J.; Osorio-Conles, Ó.; Amat-Bou, M.; Lerin, C.; Selva, D.M. Relationship between adiponectin, TNFα, and SHBG in prepubertal children with obesity. Mol. Cell. Pediatr. 2021, 8, 3. [Google Scholar] [CrossRef]
- Neumeier, M.; Sigruener, A.; Eggenhofer, E.; Weigert, J.; Weiss, T.S.; Schaeffler, A.; Schlitt, H.J.; Aslanidis, C.; Piso, P.; Langmann, T.; et al. High molecular weight adiponectin reduces apolipoprotein B and E release in human hepatocytes. Biochem. Biophys. Res. Commun. 2007, 352, 543–548. [Google Scholar] [CrossRef]
- Hotamisligil, G.S. Inflammation, metaflammation and immunometabolic disorders. Nature 2017, 542, 177–185. [Google Scholar] [CrossRef]
- Gu, Y.; Han, F.; Xue, M.; Wang, M.; Huang, Y. The benefits and risks of menopause hormone therapy for the cardiovascular system in postmenopausal women: A systematic review and meta-analysis. BMC Women's Health 2024, 24, 60. [Google Scholar] [CrossRef]
- Elagizi, A.; Köhler, T.S.; Lavie, C.J. Testosterone and cardiovascular health. Mayo Clin. Proc. 2018, 93, 83–100. [Google Scholar] [CrossRef] [PubMed]
- Hong, E.-J.; Sahu, B.; Jänne, O.A.; Hammond, G.L. Cytoplasmic accumulation of incompletely glycosylated SHBG enhances androgen action in proximal tubule epithelial cells. Mol. Endocrinol. 2011, 25, 269–281. [Google Scholar] [CrossRef] [PubMed]
- Schock, H.W.; Herbert, Z.; Sigusch, H.; Figulla, H.R.; Jirikowski, G.F.; Lotze, U. Expression of androgen-binding protein (ABP) in human cardiac myocytes. Horm. Metab. Res. 2006, 38, 225–229. [Google Scholar] [CrossRef]
- Rosner, W.; Hryb, D.J.; Kahn, S.M.; Nakhla, A.M.; Romas, N.A. Interactions of sex hormone-binding globulin with target cells. Mol. Cell. Endocrinol. 2010, 316, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Meng, R.; Pei, Z.; Zhang, A.; Cai, X.; Chen, B.; Liu, G.; Mai, W.; Wei, J.; Dong, Y. AMPK activation enhances PPARα activity to inhibit cardiac hypertrophy via ERK1/2 MAPK signaling pathway. Arch. Biochem. Biophys. 2011, 511, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Fields, L.A.; Koschinski, A.; Zaccolo, M. Sustained exposure to catecholamines affects cAMP/PKA compartmentalised signalling in adult rat ventricular myocytes. Cell. Signal. 2016, 28, 725–732. [Google Scholar] [CrossRef]
- Hammes, A.; Andreassen, T.K.; Spoelgen, R.; Raila, J.; Hubner, N.; Schulz, H.; Metzger, J.; Schweigert, F.J.; Luppa, P.B.; Nykjaer, A. Role of endocytosis in cellular uptake of sex steroids. Cell 2005, 122, 751–762. [Google Scholar] [CrossRef]
- Re, R.N.; Cook, J.L. The mitochondrial component of intracrine action. Am. J. Physiol. Heart Circ. Physiol. 2010, 299, H577–H583. [Google Scholar] [CrossRef]
- Sultana, F.; Davis, S.R.; Murray, A.M.; Woods, R.L.; McNeil, J.J.; Islam, R.M. Sex hormones, SHBG and cognitive performance among older Australian women: An observational study. Climacteric 2023, 26, 121–128. [Google Scholar] [CrossRef]
- Akdis, D.; Saguner, A.M.; Shah, K.; Wei, C.; Medeiros-Domingo, A.; von Eckardstein, A.; Lüscher, T.F.; Brunckhorst, C.; Chen, H.S.V.; Duru, F. Sex hormones affect outcome in arrhythmogenic right ventricular cardiomyopathy/dysplasia: From a stem cell derived cardiomyocyte-based model to clinical biomarkers of disease outcome. Eur. Heart J. 2017, 38, 1498–1508. [Google Scholar] [CrossRef]
- Chung, C.C.; Hsu, R.C.; Kao, Y.H.; Liou, J.P.; Lu, Y.Y.; Chen, Y.J. Androgen attenuates cardiac fibroblasts activations through modulations of transforming growth factor-β and angiotensin II signaling. Int. J. Cardiol. 2014, 176, 386–393. [Google Scholar] [CrossRef]
- Yeap, B.B.; Marriott, R.J.; Antonio, L.; Raj, S.; Dwivedi, G.; Reid, C.M.; Anawalt, B.D.; Bhasin, S.; Dobs, A.S.; Handelsman, D.J.; et al. Associations of Serum Testosterone and Sex Hormone-Binding Globulin with Incident Cardiovascular Events in Middle-Aged to Older Men. Ann. Intern. Med. 2022, 175, 159–170. [Google Scholar] [CrossRef] [PubMed]
- Saltiki, K.; Stamatelopoulos, K.; Voidonikola, P.; Lazaros, L.; Mantzou, E.; Georgiou, I.; Anastasiou, E.; Papamichael, C.; Alevizaki, M. Association of the SHBG gene promoter polymorphism with early markers of atherosclerosis in apparently healthy women. Atherosclerosis 2011, 219, 205–210. [Google Scholar] [CrossRef] [PubMed]
- Soriguer, F.; Rubio-Martín, E.; Fernández, D.; Valdés, S.; García-Escobar, E.; Martín-Núñez, G.M.; Esteva, I.; Almaraz, M.C.; Rojo-Martínez, G. Testosterone, SHBG and risk of type 2 diabetes in the second evaluation of the Pizarra cohort study. Eur. J. Clin. Investig. 2011, 42, 79–85. [Google Scholar] [CrossRef]
- Hedderson, M.M.; Capra, A.; Lee, C.; Habel, L.A.; Lee, J.; Gold, E.B.; Badon, S.E.; Mitro, S.D.; El Khoudary, S.R. Longitudinal Changes in Sex Hormone Binding Globulin (SHBG) and Risk of Incident Diabetes: The Study of Women’s Health Across the Nation (SWAN). Diabetes Care 2024, 47, 676–682. [Google Scholar] [CrossRef]
- Ding, E.L.; Song, Y.; Malik, V.S.; Liu, S. Sex differences of endogenous sex hormones and risk of type 2 diabetes: A systematic review and meta-analysis. JAMA 2006, 295, 1288–1299. [Google Scholar] [CrossRef] [PubMed]
- Gruszczyńska, M.; Sadowska-Przytocka, A.; Szybiak, W.; Więckowska, B.; Lacka, K. Insulin Resistance in Patients with Acne Vulgaris. Biomedicines 2023, 11, 2294. [Google Scholar] [CrossRef]
- Marycz, K.; Wiatrak, B.; Irwin-Houston, J.M.; Marcinkowska, K.; Mularczyk, M.; Bourebaba, L. Sex hormone binding globulin (SHBG) modulates mitochondrial dynamics in PPARγ-depleted equine adipose derived stromal cells. J. Mol. Med. 2024, 102, 1015–1036. [Google Scholar] [CrossRef]
- Szefler, L.; Szybiak-Skora, W.; Sadowska-Przytocka, A.; Zaba, R.; Wieckowska, B.; Lacka, K. Metformin Therapy for Acne Vulgaris: A Meta-Analysis. Pharmaceuticals 2024, 17, 728. [Google Scholar] [CrossRef]
- Stangl, T.A.; Wiepjes, C.M.; Smit, R.A.J.; van Hylckama Vlieg, A.; Lamb, H.J.; van der Velde, J.H.P.M.; Winters-van Eekelen, E.; Boone, S.C.; Brouwers, M.C.G.J.; Rosendaal, F.R.; et al. Association Between Low Sex Hormone–Binding Globulin and Increased Risk of Type 2 Diabetes Is Mediated by Increased Visceral and Liver Fat: Results From Observational and Mendelian Randomization Analyses. Diabetes 2024, 73, 1793–1804. [Google Scholar] [CrossRef]
- Wang, X.; Xie, J.; Pang, J.; Zhang, H.; Chen, X.; Lin, J.; Li, Q.; Chen, Q.; Ma, J.; Xu, X.; et al. Serum SHBG is associated with the development and regression of nonalcoholic fatty liver disease: A prospective study. J. Clin. Endocrinol. Metab. 2020, 105, e791–e804. [Google Scholar] [CrossRef]
- Emami, M.R.; Safabakhsh, M.; Khorshidi, M.; Moradi Moghaddam, O.; Mohammed, S.H.; Zarezadeh, M.; Alizadeh, S. Effect of bariatric surgery on endogenous sex hormones and sex hormone-binding globulin levels: A systematic review and meta-analysis. Surg. Obes. Relat. Dis. 2021, 17, 1621–1636. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.R.; Weedon, M.N.; Langenberg, C.; Jackson, A.U.; Lyssenko, V.; Sparsø, T.; Thorleifsson, G.; Grallert, H.; Ferrucci, L.; Maggio, M.; et al. Genetic evidence that raised sex hormone binding globulin (SHBG) levels reduce the risk of type 2 diabetes. Hum. Mol. Genet. 2010, 19, 535–544. [Google Scholar] [CrossRef]
- Ding, E.L.; Song, Y.; Manson, J.E.; Hunter, D.J.; Lee, C.C.; Rifai, N.; Buring, J.E.; Gaziano, J.M.; Liu, S. Sex hormone-binding globulin and risk of type 2 diabetes in women and men. N. Engl. J. Med. 2009, 361, 1152–1163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Sun, L.; Jin, Z. Effect of placental sex hormone-binding globulin single nucleotide polymorphism rs6259 on protein and function in gestational diabetes mellitus. Int. J. Mol. Med. 2018, 41, 2927–2934. [Google Scholar] [CrossRef]
- Filardi, T.; Panimolle, F.; Crescioli, C.; Lenzi, A.; Morano, S. Gestational Diabetes Mellitus: The Impact of Carbohydrate Quality in Diet. Nutrients 2019, 11, 1549. [Google Scholar] [CrossRef] [PubMed]
- Nanda, S.; Savvidou, M.; Syngelaki, A.; Akolekar, R.; Nicolaides, K.H. Prediction of gestational diabetes mellitus by maternal factors and biomarkers at 11 to 13 weeks. Prenat. Diagn. 2011, 31, 135–141. [Google Scholar] [CrossRef]
- Yang, M.N.; Zhang, L.; Wang, W.J.; Huang, R.; He, H.; Zheng, T.; Zhang, G.H.; Fang, F.; Cheng, J.; Li, F.; et al. Prediction of gestational diabetes mellitus by multiple biomarkers at early gestation. BMC Pregnancy Childbirth 2024, 24, 601. [Google Scholar] [CrossRef]
- Christ, J.P.; Cedars, M.I. Current Guidelines for Diagnosing PCOS. Diagnostics 2023, 13, 1113. [Google Scholar] [CrossRef]
- Teede, H.J.; Misso, M.L.; Costello, M.F.; Dokras, A.; Laven, J.; Moran, L.; Piltonen, T.; Norman, R.J. International PCOS Network. Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome. Hum. Reprod. 2018, 33, 1602–1618. [Google Scholar] [CrossRef]
- Martínez-García, M.Á.; Gambineri, A.; Alpanes, M.; Sanchon, R.; Pasquali, R.; Escobar-Morreale, H.F. Common variants in the sex hormone-binding globulin gene (SHBG) and polycystic ovary syndrome (PCOS) in Mediterranean women. Hum. Reprod. 2012, 27, 3569–3576. [Google Scholar] [CrossRef]
- Liu, Y.; Zhao, X.X.; Hu, X.J.; Yang, F.; Lin, P.; Cui, S.C.; Zhao, W.; Cao, X.Y.; Wang, Y.S. Effect of sex hormone-binding globulin polymorphisms on the outcome of in vitro fertilization-embry transfer for polycystic ovary syndrome patients: A case-control study. J. Cell. Biochem. 2019, 120, 4675–4686. [Google Scholar] [CrossRef]
- Deswal, R.; Yadav, A.; Dang, A.S. Sex hormone binding globulin—An important biomarker for predicting PCOS risk: A systematic review and meta-analysis. Syst. Biol. Reprod. Med. 2018, 64, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Ott, J.; Robin, G.; Hager, M.; Dewailly, D. Functional hypothalamic amenorrhoea and polycystic ovarian morphology: A narrative review about an intriguing association. Hum. Reprod. Update 2025, 31, 64–79. [Google Scholar] [CrossRef]
- Zhang, H.; Qiu, W.; Zhou, P.; Shi, L.; Chen, Z.; Yang, Y.; Lu, Y.; Zhou, L.; Zhang, H.; Cheng, M.; et al. Obesity is associated with SHBG levels rather than blood lipid profiles in PCOS patients with insulin resistance. BMC Endocr. Disord. 2024, 24, 254. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.S.; Norman, R.J.; Davies, M.J.; Moran, L.J. The effect of obesity on polycystic ovary syndrome: A systematic review and meta-analysis. Obes. Rev. 2013, 14, 95–109. [Google Scholar] [CrossRef] [PubMed]
- Ciura, D.; Owczarek, A.J.; Franik, G.; Kocełak, P.; Markuszewski, L.; Madej, P.; Chudek, J.; Olszanecka-Glinianowicz, M. A cross-sectional study of the association between circulating sex hormone-binding globulin levels and selected adipokines in women with polycystic ovary syndrome. Front. Med. 2023, 10, 1183961. [Google Scholar] [CrossRef]
- Vander Borght, M.; Wyns, C. Fertility and infertility: Definition and epidemiology. Clin. Biochem. 2018, 62, 2–10. [Google Scholar] [CrossRef]
- Carson, S.A.; Kallen, A.N. Diagnosis and Management of Infertility: A Review. JAMA 2021, 326, 65–76. [Google Scholar] [CrossRef]
- Chang, H.; Ge, H.; Wu, Q.; Li, J.; Zhang, Y.; Zhu, M.; Luo, X.; Han, Y.; Wang, Y.; Wang, C.C.; et al. Is elevated baseline SHBG associated with increased ovulation? Gynecol. Endocrinol. 2023, 39, 2263085. [Google Scholar] [CrossRef]
- Hatzi, E.; Bouba, I.; Galidi, A.; Lazaros, L.; Xita, N.; Sakaloglou, P.; Kolios, G.; Bairaktari, E.; Kaponis, A.; Zikopoulos, K.; et al. Association of serum and follicular fluid SHBG levels and SHBG (TAAAA) n polymorphism with follicle size in women undergoing ovarian stimulation. Gynecol. Endocrinol. 2011, 27, 27–32. [Google Scholar] [CrossRef]
- Boeri, L.; Capogrosso, P.; Cazzaniga, W.; Pozzi, E.; Candela, L.; Belladelli, F.; Oreggia, D.; Ventimiglia, E.; Schifano, N.; Fallara, G.; et al. SHBG levels in primary infertile men: A critical interpretation in clinical practice. Endocr. Connect. 2020, 9, 658–666. [Google Scholar] [CrossRef] [PubMed]
- Ring, J.; Welliver, C.; Parenteau, M.; Markwell, S.; Brannigan, R.E.; Köhler, T.S. The Utility of Sex Hormone-Binding Globulin in Hypogonadism and Infertile Males. J. Urol. 2017, 197, 1326–1331. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.R.; Guo, Y.H.; Qiao, S.D.; Leng, L.F.; Xie, Z.H.; Chen, H.; Wang, X.L. Correlation between SHBG gene polymorphism and male infertility in Han population of Henan province of China: A STROBE-compliant article. Medicine 2017, 96, e7753. [Google Scholar] [CrossRef]
- Safarinejad, M.R.; Shafiei, N.; Safarinejad, S. Association of the (TAAAA)n repeat and Asp327Asn polymorphisms in the sex hormone-binding globulin (SHBG) gene with idiopathicmale infertility and relation to serum SHBG concentrations. J. Steroid. Biochem. Mol. Biol. 2011, 123, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Richard-Eaglin, A. Male and Female Hypogonadism. Nurs. Clin. N. Am. 2018, 53, 395–405. [Google Scholar] [CrossRef]
- Corona, G.; Goulis, D.G.; Huhtaniemi, I.; Zitzmann, M.; Toppari, J.; Forti, G.; Vanderschueren, D.; Wu, F.C. European Academy of Andrology (EAA) guidelines on investigation, treatment and monitoring of functional hypogonadism in males: Endorsing organization: European Society of Endocrinology. Andrology 2020, 8, 970–987. [Google Scholar] [CrossRef]
- Decaroli, M.C.; De Vincentis, S.; Rochira, V. Aging and sex hormones in males. Vitam. Horm. 2021, 115, 333–366. [Google Scholar] [CrossRef]
- Antonio, L.; Wu, F.C.; O‘Neill, T.W.; Pye, S.R.; Ahern, T.B.; Laurent, M.R.; Huhtaniemi, I.T.; Lean, M.E.; Keevil, B.G.; Rastrelli, G.; et al. Low Free Testosterone Is Associated with Hypogonadal Signs and Symptoms in Men with Normal Total Testosterone. J. Clin. Endocrinol. Metab. 2016, 101, 2647–2657. [Google Scholar] [CrossRef]
- Winters, S.J. SHBG and total testosterone levels in men with adult onset hypogonadism: What are we overlooking? Clin. Diabetes Endocrinol. 2020, 6, 17. [Google Scholar] [CrossRef]
- De Vincentis, S.; Rochira, V. Update on acquired hypogonadism in men living with HIV: Pathogenesis, clinic, and treatment. Front. Endocrinol. 2023, 14, 1201696. [Google Scholar] [CrossRef]
- De Vincentis, S.; Decaroli, M.C.; Fanelli, F.; Diazzi, C.; Mezzullo, M.; Tartaro, G.; Tagliavini, S.; DeSantis, M.C.; Roli, L.; Milic, J.; et al. Primary, secondary and compensated male biochemical hypogonadism in people living with HIV (PLWH): Relevance of sex hormone-binding globulin (SHBG) measurement and comparison between liquid chromatography-tandem mass spectrometry (LC-MS/MS) and chemiluminescent immunoassay for sex steroids assay. Aging Male 2022, 25, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Pezzaioli, L.C.; Quiros-Roldan, E.; Paghera, S.; Porcelli, T.; Maffezzoni, F.; Delbarba, A.; Degli Antoni, M.; Cappelli, C.; Castelli, F.; Ferlin, A. The importance of SHBG and calculated free testosterone for the diagnosis of symptomatic hypogonadism in HIV-infected men: A single-centre real-life experience. Infection 2021, 49, 295–303. [Google Scholar] [CrossRef] [PubMed]
- Jarecki, P.; Herman, W.A.; Pawliczak, E.; Lacka, K. Can Low SHBG Serum Concentration Be A Good Early Marker of Male Hypogonadism In Metabolic Syndrome? Diabetes Metab. Syndr. Obes. 2019, 12, 2181–2191. [Google Scholar] [CrossRef]
- Castellano-Castillo, D.; Royo, J.L.; Martínez-Escribano, A.; Sánchez-Alcoholado, L.; Molina-Vega, M.; Queipo-Ortuño, M.I.; Ruiz-Galdon, M.; Álvarez-Millán, J.J.; Cabezas-Sanchez, P.; Reyes-Engel, A.; et al. Effects of SHBG rs1799941Polymorphism on Free Testosterone Levels and Hypogonadism Risk in Young Non-Diabetic Obese Males. J. Clin. Med. 2019, 8, 1136. [Google Scholar] [CrossRef] [PubMed]
- Hylander, B.; Lehtihet, M. Testosterone and gonadotropins but not SHBG vary with CKD stages in young and middle aged men. Basic Clin. Androl. 2015, 25, 9. [Google Scholar] [CrossRef]
- Nilsson, E.; Stenvinkel, P.; Liu, S.; Stedman, M.R.; Chertow, G.M.; Floege, J. Serum testosterone concentrations and outcomes in hemodialysis patients enrolled in the EVOLVE trial. Nephrol. Dial. Transplant. 2023, 38, 1519–1527. [Google Scholar] [CrossRef]
- Viuff, M.H.; Just, J.; Brun, S.; Dam, T.V.; Hansen, M.; Melgaard, L.; Hougaard, D.M.; Lappe, M.; Gravholt, C.H. Women With Turner Syndrome Are Both Estrogen and Androgen Deficient: The Impact of Hormone Replacement Therapy. J. Clin. Endocrinol. Metab. 2022, 107, 1983–1993. [Google Scholar] [CrossRef]
- Nguyen, A.T.; Curtis, K.M.; Tepper, N.K.; Kortsmit, K.; Brittain, A.W.; Snyder, E.M.; Cohen, M.A.; Zapata, L.B.; Whiteman, M.K. U.S. Medical Eligibility Criteria for Contraceptive Use, 2024. MMWR Recomm. Rep. 2024, 73, 1–126. [Google Scholar] [CrossRef]
- Daniels, K.; Abma, J.C. Current Contraceptive Status Among Women Aged 15–49: United States, 2017–2019; NCHS Data Brief, No. 388; National Center for Health Statistics: Hyattsville, MD, USA, 2020.
- Panzer, C.; Wise, S.; Fantini, G.; Kang, D.; Munarriz, R.; Guay, A.; Goldstein, I. Impact of oralcontraceptives on sex hormone-binding globulin and androgen levels: A retrospective study in women with sexual dysfunction. J. Sex. Med. 2006, 3, 104–113. [Google Scholar] [CrossRef]
- Powell, A. Choosing the Right Oral Contraceptive Pill for Teens. Pediatr. Clin. N. Am. 2017, 64, 343–358. [Google Scholar] [CrossRef]
- Zimmerman, Y.; Eijkemans, M.J.; Coelingh Bennink, H.J.; Blankenstein, M.A.; Fauser, B.C. The effect of combined oral contraception on testosterone levels in healthy women: A systematic review and meta-analysis. Hum. Reprod. Update 2014, 20, 76–105. [Google Scholar] [CrossRef]
- Zimmerman, Y.; Foidart, J.M.; Pintiaux, A.; Minon, J.M.; Fauser, B.C.; Cobey, K.; Coelingh Bennink, H.J. Restoring testosterone levels by adding dehydroepiandrosterone to a drospirenone containing combined oral contraceptive: I. Endocrine effects. Contraception 2015, 91, 127–133. [Google Scholar] [CrossRef] [PubMed]
- Ågren, U.M.; Anttila, M.; Mäenpää-Liukko, K.; Rantala, M.L.; Rautiainen, H.; Sommer, W.F.; Mommers, E. Effects of a monophasic combined oral contraceptive containing nomegestrol acetate and 17β-oestradiol compared with one containing levonorgestrel and ethinylestradiol on haemostasis, lipids and carbohydrate metabolism. Eur. J. Contracept. Reprod. Health Care 2011, 16, 444–457. [Google Scholar] [CrossRef] [PubMed]
- Klipping, C.; Duijkers, I.; Mawet, M.; Maillard, C.; Bastidas, A.; Jost, M.; Foidart, J.M. Endocrine and metabolic effects of an oral contraceptive containing estetrol and drospirenone. Contraception 2021, 103, 213–221. [Google Scholar] [CrossRef] [PubMed]
- De Leo, V.; Di Sabatino, A.; Musacchio, M.C.; Morgante, G.; Scolaro, V.; Cianci, A.; Petraglia, F. Effect of oral contraceptives on markers of hyperandrogenism and SHBG in women with polycystic ovary syndrome. Contraception 2010, 82, 276–280. [Google Scholar] [CrossRef]
- Sánchez, L.A.; Pérez, M.; Centeno, I.; David, M.; Kahi, D.; Gutierrez, E. Determining the time androgens and sex hormone-binding globulin take to return to baseline after discontinuation of oral contraceptives in women with polycystic ovary syndrome: A prospective study. Fertil. Steril. 2007, 87, 712–714. [Google Scholar] [CrossRef]
- Forslund, M.; Melin, J.; Alesi, S.; Piltonen, T.; Romualdi, D.; Tay, C.T.; Witchel, S.; Pena, A.; Mousa, A.; Teede, H. Different kinds of oral contraceptive pills in polycystic ovary syndrome: A systematic review and meta-analysis. Eur. J. Endocrinol. 2023, 189, S1–S16. [Google Scholar] [CrossRef]
- Raps, M.; Helmerhorst, F.; Fleischer, K.; Thomassen, S.; Rosendaal, F.; Rosing, J.; Ballieux, B.; VAN Vliet, H. Sex hormone-binding globulin as a marker for the thrombotic risk of hormonal contraceptives. J. Thromb. Haemost. 2012, 10, 992–997. [Google Scholar] [CrossRef]
- Khan, F.; Tritschler, T.; Kahn, S.R.; Rodger, M.A. Venous thromboembolism. Lancet 2021, 398, 64–77. [Google Scholar] [CrossRef]
- Tian, H.; Xie, C.; Teng, B.; Zeng, Q.; Zhao, Y.; Li, F.; Jiang, C.; Chen, Z. The genetic effects of hormones modulated by the Pituitary-Thyroid/Adrenal/Gonadal axis on the risk of developing venous thromboembolism: A mendelian randomization study. BMC Cardiovasc. Disord. 2024, 24, 383. [Google Scholar] [CrossRef]
- Yosha, S.; Fay, M.; Longcope, C.; Braverman, L.E. Effect of D-thyroxine on serum sex hormone binding globulin (SHBG), testosterone, and pituitary-thyroid function in euthyroid subjects. J. Endocrinol. Investig. 1984, 7, 489–494. [Google Scholar] [CrossRef] [PubMed]
- van der Spoel, E.; Cornet, S.; Zutinic, A.; Ballieux, B.; Slagboom, P.E.; Pijl, H.; van Heemst, D. Effect of thyroid status modulation on pituitary and peripheral hormone concentrations in healthy older subjects. Neuroendocrinology 2025, 115, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Hampl, R.; Hill, M.; Bílek, R.; Stárka, L. Relationship of dehydroepiandrosterone and its 7- hydroxylated metabolites to thyroid parameters and sex hormone-binding globulin (SHBG) in healthy subjects. Clin. Chem. Lab. Med. 2003, 41, 1081–1086. [Google Scholar] [CrossRef] [PubMed]
- Bornikowska, K.; Gietka-Czernel, M.; Raczkiewicz, D.; Glinicki, P.; Zgliczyński, W. Improvements in Quality of Life and Thyroid Parameters in Hypothyroid Patients on Ethanol-Free Formula of Liquid Levothyroxine Therapy in Comparison to Tablet LT4 Form: An Observational Study. J. Clin. Med. 2021, 10, 5233. [Google Scholar] [CrossRef]
- Brigante, G.; Santi, D.; Boselli, G.; Margiotta, G.; Corleto, R.; Monzani, M.L.; Craparo, A.; Locaso, M.; Sperduti, S.; Roy, N.; et al. Randomized double-blind placebo-controlled trial on levothyroxine and liothyronine combination therapy in totally thyroidectomized subjects: The LEVOLIO study. Eur. J. Endocrinol. 2024, 190, 12–22. [Google Scholar] [CrossRef]
- Kjaergaard, A.D.; Marouli, E.; Papadopoulou, A.; Deloukas, P.; Kuś, A.; Sterenborg, R.; Teumer, A.; Burgess, S.; Åsvold, B.O.; Chasman, D.I.; et al. Thyroid function, sex hormones and sexual function: A Mendelian randomization study. Eur. J. Epidemiol. 2021, 36, 335–344. [Google Scholar] [CrossRef]
- Bicíková, M.; Hampl, R.; Hill, M.; Stanická, S.; Tallová, J.; Vondra, K. Steroids, sex hormone- binding globulin, homocysteine, selected hormones and markers of lipid and carbohydratemetabolism in patients with severe hypothyroidism and their changes following thyroid hormone supplementation. Clin. Chem. Lab. Med. 2003, 41, 284–292. [Google Scholar] [CrossRef]
- Studen, K.B.; Biček, A.; Oblak, A.; Zaletel, K.; Gaberšček, S. Hypothyroidism is associated with higher testosterone levels in postmenopausal women with Hashimoto’s thyroiditis. Endokrynol. Pol. 2020, 71, 73–75. [Google Scholar] [CrossRef]
- Agrawal, S.S.; Sinha, A.; Maiti, A.; Chakraborty, P.P.; Basu, A.K.; Agrawal, C.; Bankura, B. Correlation between estradiol-to-testosterone ratio and thyroid peroxidase antibody positivity in men with treatment-naïve primary hypothyroidism or euthyroidism. Arch. Endocrinol. Metab. 2024, 68, e230256. [Google Scholar] [CrossRef]
- Drbalová, K.; Matucha, P.; Matějková-Běhanová, M.; Bílek, R.; Kříž, L.; Kazihnitková, H.; Hampl, R. Immunoprotective steroids and SHBG in non-treated hypothyroidism and their relationship to autoimmune thyroid disorders. Physiol. Res. 2008, 57 (Suppl. S1), S119–S125. [Google Scholar] [CrossRef]
- Sowers, M.; Luborsky, J.; Perdue, C.; Araujo, K.L.; Goldman, M.B.; Harlow, S.D. Thyroid stimulating hormone (TSH) concentrations and menopausal status in women at the mid-life: SWAN. Clin. Endocrinol. 2003, 58, 340–347. [Google Scholar] [CrossRef]
- Ueshiba, H.; Takeda, S.; Matoba, H.; Tanaka, Y.; Yuasa, R.; Tsuboi, K.; Miyachi, Y. Serum androgen levels in hyperthyroid women. Exp. Clin. Endocrinol. Diabetes 1997, 105, 359–362. [Google Scholar] [CrossRef]
- Skjöldebrand Sparre, L.; Kollind, M.; Carlström, K. Ovarian ultrasound and ovarian and adrenal hormones before and after treatment for hyperthyroidism. Gynecol. Obstet. Investig. 2002, 54, 50–55. [Google Scholar] [CrossRef]
- Grani, G.; Sponziello, M.; Filetti, S.; Durante, C. Thyroid nodules: Diagnosis and management. Nat. Rev. Endocrinol. 2024, 20, 715–728. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Wang, N.; Chen, C.; Nie, X.; Li, Q.; Han, B.; Xia, F.; Zhai, H.; Jiang, B.; et al. Are thyroid nodules associated with sex-related hormones? A cross-sectional SPECT-China study. BMJ Open 2017, 7, e015812. [Google Scholar] [CrossRef]
- Regalbuto, C.; Alagona, C.; Maiorana, R.; Di Paola, R.; Cianci, M.; Alagona, G.; Sapienza, S.; Vigneri, R.; Pezzino, V. Acute changes in clinical parameters and thyroid function peripheral markers following L-T4 withdrawal in patients totally thyroidectomized for thyroid cancer. J. Endocrinol. Investig. 2006, 29, 32–40. [Google Scholar] [CrossRef]
- Angervo, M.; Toivonen, J.; Leinonen, P.; Välimäki, M.; Seppälä, M. Thyroxine withdrawal is accompanied by decreased circulating levels of insulin-like growth factor-binding protein-1 in thyroidectomized patients. J. Clin. Endocrinol. Metab. 1993, 76, 1199–1201. [Google Scholar] [CrossRef]
- Rinaldi, S.; Dossus, L.; Keski-Rahkonen, P.; Kiss, A.; Navionis, A.S.; Biessy, C.; Travis, R.; Weiderpass, E.; Romieu, I.; Eriksen, A.K.; et al. Circulating endogenous sex steroids and risk of differentiated thyroid carcinoma in men and women. Int. J. Cancer 2024, 154, 2064–2074. [Google Scholar] [CrossRef]
- Liu, X.; Lin, L.; Cai, Q.; Li, C.; Xu, H.; Zeng, R.; Zhang, M.; Qiu, X.; Chen, S.; Zhang, X.; et al. Do testosterone and sex hormone-binding globulin affect cancer risk? A Mendelian randomization and bioinformatics study. Aging Male 2023, 26, 2261524. [Google Scholar] [CrossRef]
- Polak, M.; Luton, D. Fetal thyroïdology. Best Pract. Res. Clin. Endocrinol. Metab. 2014, 28, 161–173. [Google Scholar] [CrossRef]
- McDermott, M.T.; Ridgway, E.C. Thyroid hormone resistance syndromes. Am. J. Med. 1993, 94, 424–432. [Google Scholar] [CrossRef]
- Pappa, T.; Refetoff, S. Resistance to Thyroid Hormone Beta: A Focused Review. Front. Endocrinol. 2021, 12, 656551. [Google Scholar] [CrossRef]
- Singh, B.K.; Yen, P.M. A clinician’s guide to understanding resistance to thyroid hormone due to receptor mutations in the TRα and TRβ isoforms. Clin. Diabetes Endocrinol. 2017, 3, 8. [Google Scholar] [CrossRef]
- Refetoff, S.; Dumitrescu, A.M. Syndromes of reduced sensitivity to thyroid hormone: Genetic defects in hormone receptors, cell transporters and deiodination. Best Pract. Res. Clin. Endocrinol. Metab. 2007, 21, 277–305. [Google Scholar] [CrossRef]
- Moran, C.; Chatterjee, K. Resistance to thyroid hormone due to defective thyroid receptor alpha. Best. Pract. Res. Clin. Endocrinol. Metab. 2015, 29, 647–657. [Google Scholar] [CrossRef]
- de Nayer, P.; Lambot, M.P.; Desmons, M.C.; Rennotte, B.; Malvaux, P.; Beckers, C. Sex hormone-binding protein in hyperthyroxinemic patients: A discriminator for thyroid status in thyroid hormone resistance and familial dysalbuminemic hyperthyroxinemia. J. Clin. Endocrinol. Metab. 1986, 62, 1309–1312. [Google Scholar] [CrossRef]
- Chiesa, A.; Olcese, M.C.; Papendieck, P.; Martinez, A.; Vieites, A.; Bengolea, S.; Targovnik, H.M.; Rivolta, C.M.; Gruñeiro-Papendieck, L. Variable clinical presentation and outcome in pediatric patients with resistance to thyroid hormone (RTH). Endocrine 2012, 41, 130–137. [Google Scholar] [CrossRef]
- Arnold, M.; Morgan, E.; Rumgay, H.; Mafra, A.; Singh, D.; Laversanne, M.; Vignat, J.; Gralow, J.R.; Cardoso, F.; Siesling, S.; et al. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022, 66, 15–23. [Google Scholar] [CrossRef]
- Dimou, N.L.; Papadimitriou, N.; Gill, D.; Christakoudi, S.; Murphy, N.; Gunter, M.J.; Travis, R.C.; Key, T.J.; Fortner, R.T.; Haycock, P.C.; et al. Sex hormone binding globulin andrisk of breast cancer: A Mendelian randomization study. Int. J. Epidemiol. 2019, 48, 807–816. [Google Scholar] [CrossRef]
- Ponomarenko, I.; Pasenov, K.; Churnosova, M.; Sorokina, I.; Aristova, I.; Churnosov, V.; Ponomarenko, M.; Reshetnikov, E.; Churnosov, M. Sex-Hormone-Binding Globulin Gene Polymorphisms and Breast Cancer Risk in Caucasian Women of Russia. Int. J. Mol. Sci. 2024, 25, 2182. [Google Scholar] [CrossRef]
- Ponomarenko, I.; Pasenov, K.; Churnosova, M.; Sorokina, I.; Aristova, I.; Churnosov, V.; Ponomarenko, M.; Reshetnikova, Y.; Reshetnikov, E.; Churnosov, M. Obesity-Dependent Association of the rs10454142 PPP1R21 with Breast Cancer. Biomedicines 2024, 12, 818. [Google Scholar] [CrossRef]
- Thompson, D.J.; Healey, C.S.; Baynes, C.; Kalmyrzaev, B.; Ahmed, S.; Dowsett, M.; Folkerd, E.; Luben, R.N.; Cox, D.; Ballinger, D.; et al. Studies in Epidemiology and Risks of Cancer Heredity Team. Identification of common variants in the SHBG gene affecting sex hormone-binding globulin levels and breast cancer risk in postmenopausal women. Cancer Epidemiol. Biomark. Prev. 2008, 17, 3490–3498. [Google Scholar] [CrossRef]
- Zhou, J.Y.; Shi, R.; Yu, H.L.; Zheng, W.L.; Ma, W.L. Association between SHBG Asp327Asn (rs6259) polymorphism and breast cancer risk: A meta-analysis of 10,454 cases and 13,111 controls. Mol. Biol. Rep. 2012, 39, 8307–8314. [Google Scholar] [CrossRef]
- Costantino, L.; Catalano, M.G.; Frairia, R.; Carmazzi, C.M.; Barbero, M.; Coluccia, C.; Donadio, M.; Genta, F.; Drogo, M.; Boccuzzi, G.; et al. Molecular mechanisms of the D327N SHBG protective role on breast cancer development after estrogen exposure. Breast Cancer Res. Treat. 2009, 114, 449–456. [Google Scholar] [CrossRef]
- Huang, R.; Ma, Y.; Holm, R.; Trope, C.G.; Nesland, J.M.; Suo, Z. Sex hormone-binding globulin (SHBG) expression in ovarian carcinomas and its clinicopathological associations. PLoS ONE 2013, 8, e83238. [Google Scholar] [CrossRef]
- Zidi, S.; Stayoussef, M.; Sontini, F.K.; Mezlini, A.; Yacoubi-Loueslati, B.; Almawi, W.Y. Decreased risk of ovarian cancer associated with rs9898876 sex hormone-binding globulin gene variant. Mol. Biol. Rep. 2022, 49, 4537–4544. [Google Scholar] [CrossRef]
- Garcia-Closas, M.; Brinton, L.A.; Lissowska, J.; Richesson, D.; Sherman, M.E.; Szeszenia-Dabrowska, N.; Peplonska, B.; Welch, R.; Yeager, M.; Zatonski, W.; et al. Ovarian cancer risk and common variation in the sex hormone-binding globulin gene: A population-based case-control study. BMC Cancer 2007, 7, 60. [Google Scholar] [CrossRef]
- Mullee, A.; Dimou, N.; Allen, N.; O’Mara, T.; Gunter, M.J.; Murphy, N. Testosterone, sex hormone-binding globulin, insulin-like growth factor-1 and endometrial cancer risk: Observational and Mendelian randomization analyses. Br. J. Cancer 2021, 125, 1308–1317. [Google Scholar] [CrossRef]
- Kataoka, N.; Cai, Q.; Xu, W.H.; Xiang, Y.B.; Cai, H.; Zheng, W.; Shu, X.O. Association of endometrial cancer risk with a functional polymorphism (Asp(327)Asn) in the sex hormone- binding globulin gene. Cancer 2007, 109, 1296–1302. [Google Scholar] [CrossRef]
- Xu, W.H.; Zheng, W.; Cai, Q.; Cheng, J.R.; Cai, H.; Xiang, Y.B.; Shu, X.O. The Asp(327)Asn polymorphism in the sex hormone-binding globulin gene modifies the association of soy food and tea intake with endometrial cancer risk. Nutr. Cancer 2008, 60, 736–743. [Google Scholar] [CrossRef]
- Huang, H.; Zheng, H. Mendelian randomization study of the relationship between blood and urine biomarkers and lung cancer. Front. Oncol. 2024, 14, 1453246. [Google Scholar] [CrossRef] [PubMed]
- Qian, Y.; Xie, L.; Li, L.; Feng, T.; Zhu, T.; Wang, R.; Yang, Y.; Zhou, B.; Yu, H.; Qian, B. Association between sex hormones regulation-related SNP rs12233719 and lung cancer risk among never-smoking Chinese women. Cancer Med. 2021, 10, 1880–1888. [Google Scholar] [CrossRef] [PubMed]
- Hyland, P.L.; Freedman, N.D.; Hu, N.; Tang, Z.Z.; Wang, L.; Wang, C.; Ding, T.; Fan, J.H.; Qiao, Y.L.; Golozar, A.; et al. Genetic variants in sex hormone metabolic pathway genes and risk of esophageal squamous cell carcinoma. Carcinogenesis 2013, 34, 1062–1068. [Google Scholar] [CrossRef] [PubMed]
- Watling, C.Z.; Kelly, R.K.; Watts, E.L.; Graubard, B.I.; Petrick, J.L.; Matthews, C.E.; McGlynn, K.A. Total testosterone, sex hormone-binding globulin, and free testosterone concentrations and risk of primary liver cancer: A prospective analysis of 200,000 men and 180,000 postmenopausal women. Int. J. Cancer 2025, 156, 1518–1528. [Google Scholar] [CrossRef]
- Liu, S.; Qiu, X.Q.; Zeng, X.Y.; Bai, H.; Xu, Y.; Zhang, Y.Y.; Pan, D.X.; Mao, L.Q.; Huang, Q.L. Correlation between polymorphism of sex hormone binding globulin and occurrence of hepatocellular carcinoma. Chin. J. Prev. Med. 2012, 46, 538–542. [Google Scholar]
- Zhang, L.S.; Yuan, F.; Guan, X.; Li, J.; Liu, X.L.; Sun, J.; Liu, B.; Ma, W.; Deng, F.M. Association of genetic polymorphisms in HSD17B1, HSD17B2 and SHBG genes with hepatocellular carcinoma risk. Pathol. Oncol. Res. 2014, 20, 661–666. [Google Scholar] [CrossRef]
SHBG Increase | SHBG Decrease |
---|---|
Weight loss | Overweight |
Fasting | Obese |
Growth hormone (pulsatility) | Lipogenesis |
Thyroid hormones | Hepatic steatosis |
Contraceptive pills | Cirrhosis |
Hypothyroidism |
Conditions Correlating with SHBG |
---|
Metabolic Syndrome |
Cardiovascular Diseases |
Diabetes Mellitus type 2 |
Polycystic Ovary Syndrome |
Infertility |
Hypogonadism |
Oral Contraceptives |
Hypothyroidism |
Hyperthyroidism |
Thyroid hormone resistance syndrome |
Cancers |
Cancer | Genetic Alteration |
---|---|
Breast cancer | PPP1R21 rs10454142; SHBG rs6257; SHBG Asp327Asn polymorphism (rs6259); JMJD1C rs7910927; GCKR rs780093; ZBTB10 rs440837; PRMT6 rs17496332. |
Ovarian cancer | SHBG rs9898876; SHBG rs6259. |
Endometrial cancer | SHBG Asp327Asn polymorphism (rs6259); |
Lung cancer | UGT2B7 rs12233719. |
Esophageal cancer | SHBG rs727428. |
Hepatocellular carcinoma | SHBG Asp327Asn polymorphism (rs6259). |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szybiak-Skora, W.; Cyna, W.; Lacka, K. New Insights in the Diagnostic Potential of Sex Hormone-Binding Globulin (SHBG)—Clinical Approach. Biomedicines 2025, 13, 1207. https://doi.org/10.3390/biomedicines13051207
Szybiak-Skora W, Cyna W, Lacka K. New Insights in the Diagnostic Potential of Sex Hormone-Binding Globulin (SHBG)—Clinical Approach. Biomedicines. 2025; 13(5):1207. https://doi.org/10.3390/biomedicines13051207
Chicago/Turabian StyleSzybiak-Skora, Weronika, Wojciech Cyna, and Katarzyna Lacka. 2025. "New Insights in the Diagnostic Potential of Sex Hormone-Binding Globulin (SHBG)—Clinical Approach" Biomedicines 13, no. 5: 1207. https://doi.org/10.3390/biomedicines13051207
APA StyleSzybiak-Skora, W., Cyna, W., & Lacka, K. (2025). New Insights in the Diagnostic Potential of Sex Hormone-Binding Globulin (SHBG)—Clinical Approach. Biomedicines, 13(5), 1207. https://doi.org/10.3390/biomedicines13051207