Donor-Derived Cell-Free DNA Versus Left Ventricular Longitudinal Strain and Strain-Derived Myocardial Work Indices for Identification of Heart Transplant Injury
Abstract
:1. Introduction
2. Materials and Methods
2.1. Recruitment of Patients
2.2. Collection of Data
2.3. Transthoracic Echocardiography
- global work index (GWI): total work performed by the LV during systole,
- global constructive work (GCW): LV work that contributes to LV ejection and quantifies the energy consumed by the myocardium, which effectively contributes to the cardiac output (shortening during systole and lengthening during isovolumetric relaxation),
- global wasted work (GWW): LV work that does not lead to LV ejection, and it quantifies the energy that is wasted (lengthening during systole and shortening during isovolumetric relaxation),
2.4. Donor-Derived Cell-Free DNA Analysis
2.5. Endomyocardial Biopsy
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Velleca, A.; Shullo, M.A.; Dhital, K.; Azeka, E.; Colvin, M.; DePasquale, E.; Farrero, M.; Garcia-Guereta, L.; Jamero, G.; Khush, K.; et al. The International Society for Heart and Lung Transplantation (ISHLT) guidelines for the care of heart transplant recipients. J. Heart Lung Transplant. 2023, 42, e1–e141. [Google Scholar] [CrossRef]
- Cusi, V.; Vaida, F.; Wettersten, N.; Rodgers, N.; Tada, Y.; Gerding, B.; Urey, M.A.; Greenberg, B.; Adler, E.D.; Kim, P.J. Incidence of Acute Rejection Compared With Endomyocardial Biopsy Complications for Heart Transplant Patients in the Contemporary Era. Transplantation 2024, 108, 1220–1227. [Google Scholar] [CrossRef]
- Khush, K.K.; Patel, J.; Pinney, S.; Kao, A.; Alharethi, R.; DePasquale, E.; Ewald, G.; Berman, P.; Kanwar, M.; Hiller, D.; et al. Noninvasive detection of graft injury after heart transplant using donor-derived cell-free DNA: A prospective multicenter study. Am. J. Transplant. 2019, 19, 2889–2899. [Google Scholar] [CrossRef]
- Oh, K.T.; Mustehsan, M.H.; Goldstein, D.J.; Saeed, O.; Jorde, U.P.; Patel, S.R. Protocol endomyocardial biopsy beyond 6 months-It is time to move on. Am. J. Transplant. 2021, 21, 825–829. [Google Scholar] [CrossRef]
- Isath, A.; Mehra, M.R. “Surveillance Without Scars”: The Quest for Non-Invasive Detection of Cardiac Allograft Rejection. J. Heart Lung Transplant. 2024, in press. [Google Scholar] [CrossRef]
- Agbor-Enoh, S.; Shah, P.; Tunc, I.; Hsu, S.; Russell, S.; Feller, E.; Shah, K.; Rodrigo, M.E.; Najjar, S.S.; Kong, H.; et al. Cell-Free DNA to Detect Heart Allograft Acute Rejection. Circulation 2021, 143, 1184–1197. [Google Scholar] [CrossRef]
- Kim, P.J.; Olymbios, M.; Siu, A.; Wever Pinzon, O.; Adler, E.; Liang, N.; Swenerton, R.; Sternberg, J.; Kaur, N.; Ahmed, E.; et al. A novel donor-derived cell-free DNA assay for the detection of acute rejection in heart transplantation. J. Heart Lung Transplant. 2022, 41, 919–927. [Google Scholar] [CrossRef]
- Teszak, T.; Bodor, C.; Hegyi, L.; Levay, L.; Nagy, B.; Fintha, A.; Merkely, B.; Sax, B. Local laboratory-run donor-derived cell-free DNA assay for rejection surveillance in heart transplantation-first six months of clinical experience. Clin. Transplant. 2023, 37, e15078. [Google Scholar] [CrossRef]
- Nikolova, A.; Agbor-Enoh, S.; Bos, S.; Crespo-Leiro, M.; Ensminger, S.; Jimenez-Blanco, M.; Minervini, A.; Perch, M.; Segovia, J.; Vos, R.; et al. European Society for Organ Transplantation (ESOT) Consensus Statement on the Use of Non-invasive Biomarkers for Cardiothoracic Transplant Rejection Surveillance. Transpl. Int. 2024, 37, 12445. [Google Scholar] [CrossRef]
- Kobashigawa, J.; Hall, S.; Shah, P.; Fine, B.; Halloran, P.; Jackson, A.M.; Khush, K.K.; Margulies, K.B.; Sani, M.M.; Patel, J.K.; et al. The evolving use of biomarkers in heart transplantation: Consensus of an expert panel. Am. J. Transplant. 2023, 23, 727–735. [Google Scholar] [CrossRef]
- Jimenez-Blanco, M.; Crespo-Leiro, M.G.; Garcia-Cosio Carmena, M.D.; Gomez Bueno, M.; Lopez-Vilella, R.; Ortiz-Bautista, C.; Farrero-Torres, M.; Zegri-Reiriz, I.; Diaz-Molina, B.; Garcia-Romero, E.; et al. Donor-derived cell-free DNA as a new biomarker for cardiac allograft rejection: A prospective study (FreeDNA-CAR). J. Heart Lung Transplant. 2024, in press. [Google Scholar] [CrossRef]
- Cruz, C.; Hajjar, L.A.; Bacal, F.; Lofrano-Alves, M.S.; Lima, M.S.M.; Abduch, M.C.; Vieira, M.L.C.; Chiang, H.P.; Salviano, J.B.C.; da Silva Costa, I.B.S.; et al. Usefulness of speckle tracking echocardiography and biomarkers for detecting acute cellular rejection after heart transplantation. Cardiovasc. Ultrasound 2021, 19, 6. [Google Scholar] [CrossRef]
- Chamberlain, R.; Edwards, N.F.A.; Doyle, S.N.; Wong, Y.W.; Scalia, G.M.; Sabapathy, S.; Chan, J. Prognostic Value of Left and right ventricular deformation strain analysis on Acute Cellular rejection in Heart Transplant recipients: A 6-year outcome study. Int. J. Cardiovasc. Imaging 2022, 38, 2271–2281. [Google Scholar] [CrossRef]
- Eleid, M.F.; Caracciolo, G.; Cho, E.J.; Scott, R.L.; Steidley, D.E.; Wilansky, S.; Arabia, F.A.; Khandheria, B.K.; Sengupta, P.P. Natural history of left ventricular mechanics in transplanted hearts: Relationships with clinical variables and genetic expression profiles of allograft rejection. JACC Cardiovasc. Imaging 2010, 3, 989–1000. [Google Scholar] [CrossRef]
- Syeda, B.; Hofer, P.; Pichler, P.; Vertesich, M.; Bergler-Klein, J.; Roedler, S.; Mahr, S.; Goliasch, G.; Zuckermann, A.; Binder, T. Two-dimensional speckle-tracking strain echocardiography in long-term heart transplant patients: A study comparing deformation parameters and ejection fraction derived from echocardiography and multislice computed tomography. Eur. J. Echocardiogr. 2011, 12, 490–496. [Google Scholar] [CrossRef]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef]
- Badano, L.P.; Miglioranza, M.H.; Edvardsen, T.; Colafranceschi, A.S.; Muraru, D.; Bacal, F.; Nieman, K.; Zoppellaro, G.; Marcondes Braga, F.G.; Binder, T.; et al. European Association of Cardiovascular Imaging/Cardiovascular Imaging Department of the Brazilian Society of Cardiology recommendations for the use of cardiac imaging to assess and follow patients after heart transplantation. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 919–948. [Google Scholar] [CrossRef]
- Kyrouac, D.; Schiffer, W.; Lennep, B.; Fergestrom, N.; Zhang, K.W.; Gorcsan, J., 3rd; Lenihan, D.J.; Mitchell, J.D. Echocardiographic and clinical predictors of cardiac amyloidosis: Limitations of apical sparing. ESC Heart Fail 2022, 9, 385–397. [Google Scholar] [CrossRef]
- Fisicaro, S.; Clement, A.; Tomaselli, M.; Penso, M.; Rota, A.; Menna, A.; Badano, L.P.; Muraru, D. Timing and Patient Position During Cuff Blood Pressure Measurement Affect Myocardial Work Parameters Measured by Echocardiography. J. Am. Soc. Echocardiogr. 2024, 37, 690–697. [Google Scholar] [CrossRef]
- Moya, A.; Buytaert, D.; Penicka, M.; Bartunek, J.; Vanderheyden, M. State-of-the-Art: Noninvasive Assessment of Left Ventricular Function Through Myocardial Work. J. Am. Soc. Echocardiogr. 2023, 36, 1027–1042. [Google Scholar] [CrossRef]
- Marzlin, N.; Hays, A.G.; Peters, M.; Kaminski, A.; Roemer, S.; O’Leary, P.; Kroboth, S.; Harland, D.R.; Khandheria, B.K.; Tajik, A.J.; et al. Myocardial Work in Echocardiography. Circ. Cardiovasc. Imaging 2023, 16, e014419. [Google Scholar] [CrossRef] [PubMed]
- Casas, S.; Tangprasertchai, N.S.; Oikonomaki, K.; Mathers, S.; Sollet, Z.C.; Samara, S.; Liu, J.; Burlinson, N.D.; Constantoulakis, P.; Villard, J.; et al. Multi-centre analytical performance verification of an IVD assay to quantify donor-derived cell-free DNA in solid organ transplant recipients. HLA 2024, 103, e15518. [Google Scholar] [CrossRef] [PubMed]
- Grskovic, M.; Hiller, D.J.; Eubank, L.A.; Sninsky, J.J.; Christopherson, C.; Collins, J.P.; Thompson, K.; Song, M.; Wang, Y.S.; Ross, D.; et al. Validation of a Clinical-Grade Assay to Measure Donor-Derived Cell-Free DNA in Solid Organ Transplant Recipients. J. Mol. Diagn. 2016, 18, 890–902. [Google Scholar] [CrossRef]
- Berry, G.J.; Burke, M.M.; Andersen, C.; Bruneval, P.; Fedrigo, M.; Fishbein, M.C.; Goddard, M.; Hammond, E.H.; Leone, O.; Marboe, C.; et al. The 2013 International Society for Heart and Lung Transplantation Working Formulation for the standardization of nomenclature in the pathologic diagnosis of antibody-mediated rejection in heart transplantation. J. Heart Lung Transplant. 2013, 32, 1147–1162. [Google Scholar] [CrossRef]
- Sugimoto, T.; Dulgheru, R.; Bernard, A.; Ilardi, F.; Contu, L.; Addetia, K.; Caballero, L.; Akhaladze, N.; Athanassopoulos, G.D.; Barone, D.; et al. Echocardiographic reference ranges for normal left ventricular 2D strain: Results from the EACVI NORRE study. Eur. Heart J. Cardiovasc. Imaging 2017, 18, 833–840. [Google Scholar] [CrossRef] [PubMed]
- Manganaro, R.; Marchetta, S.; Dulgheru, R.; Ilardi, F.; Sugimoto, T.; Robinet, S.; Cimino, S.; Go, Y.Y.; Bernard, A.; Kacharava, G.; et al. Echocardiographic reference ranges for normal non-invasive myocardial work indices: Results from the EACVI NORRE study. Eur. Heart J. Cardiovasc. Imaging 2019, 20, 582–590. [Google Scholar] [CrossRef]
- Rodriguez-Diego, S.; Ruiz-Ortiz, M.; Delgado-Ortega, M.; Kim, J.; Weinsaft, J.W.; Sanchez-Fernandez, J.J.; Ortega-Salas, R.; Carnero-Montoro, L.; Carrasco-Avalos, F.; Lopez-Aguilera, J.; et al. The Role of Left Atrial Longitudinal Strain in the Diagnosis of Acute Cellular Rejection in Heart Transplant Recipients. J. Clin. Med. 2022, 11, 4987. [Google Scholar] [CrossRef]
- Ciarka, A.; Cordeiro, F.; Droogne, W.; Van Cleemput, J.; Voigt, J.U. Speckle-tracking-based global longitudinal and circumferential strain detect early signs of antibody-mediated rejection in heart transplant patients. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 1520–1529. [Google Scholar] [CrossRef]
- Barakat, A.F.; Sperry, B.W.; Starling, R.C.; Mentias, A.; Popovic, Z.B.; Griffin, B.P.; Desai, M.Y. Prognostic Utility of Right Ventricular Free Wall Strain in Low Risk Patients After Orthotopic Heart Transplantation. Am. J. Cardiol. 2017, 119, 1890–1896. [Google Scholar] [CrossRef]
- Otto, M.E.B.; Martins, A.M.A.; Campos Dall’Orto, A.O.M.; Leite, S.F.; de Queiroz Mauricio Filho, M.A.F.; Martins, N.T.; de Araujo, S.R.; Almeida, S.V.; Paiva, M.U.B.; Atik, F.A. Acute Cellular Rejection in Heart Transplant Patients: Insights of Global Longitudinal Strain, Myocardial Work, and an Exclusive Group of Chagas Disease. Front. Cardiovasc. Med. 2022, 9, 841698. [Google Scholar] [CrossRef]
- Leitman, M.; Tyomkin, V. Apical Sparing in Routine Echocardiography: Occurrence and Clinical Significance. J. Cardiovasc. Dev. Dis. 2024, 11, 262. [Google Scholar] [CrossRef] [PubMed]
- Mandoli, G.E.; Landra, F.; Tanzi, L.; Martini, L.; Fusi, C.; Sciaccaluga, C.; Diviggiano, E.E.; Barilli, M.; Pastore, M.C.; Focardi, M.; et al. Reference Values of Strain-derived Myocardial Work Indices in Heart Transplant Patients. Eur. Heart J. Imaging Methods Pract. 2024, 2, qyae091. [Google Scholar] [CrossRef] [PubMed]
- De Vlaminck, I.; Valantine, H.A.; Snyder, T.M.; Strehl, C.; Cohen, G.; Luikart, H.; Neff, N.F.; Okamoto, J.; Bernstein, D.; Weisshaar, D.; et al. Circulating cell-free DNA enables noninvasive diagnosis of heart transplant rejection. Sci. Transl. Med. 2014, 6, ra277. [Google Scholar] [CrossRef]
- van der Bijl, P.; Kostyukevich, M.; El Mahdiui, M.; Hansen, G.; Samset, E.; Ajmone Marsan, N.; Bax, J.J.; Delgado, V. A Roadmap to Assess Myocardial Work: From Theory to Clinical Practice. JACC Cardiovasc. Imaging 2019, 12, 2549–2554. [Google Scholar] [CrossRef]
- Pradhan, S.; Mullikin, A.; Zang, H.; Ollberding, N.J.; Stark, S.; Hill, G.D.; Chin, C.; Tretter, J.T. Decreased Global Myocardial Work Efficiency Correlates with Coronary Vasculopathy in Pediatric Heart Transplant Patients. Pediatr. Cardiol. 2022, 43, 515–524. [Google Scholar] [CrossRef]
- Sade, L.E.; Colak, A.; Duzgun, S.A.; Hazirolan, T.; Sezgin, A.; Donal, E.; Butcher, S.C.; Ozdemir, H.; Pirat, B.; Eroglu, S.; et al. Approach to optimal assessment of right ventricular remodelling in heart transplant recipients: Insights from myocardial work index, T1 mapping, and endomyocardial biopsy. Eur. Heart J. Cardiovasc. Imaging 2023, 24, 354–363. [Google Scholar] [CrossRef]
Variable | Population |
---|---|
Number of patients | 71 |
Number of samples | 449 |
Pre-transplant diagnosis | |
Non-ischemic cardiomyopathy | 39 |
Ischemic cardiomyopathy | 24 |
Hypertrophic cardiomyopathy | 5 |
Arrhythmogenic right ventricular dysplasia | 1 |
Valvular heart disease | 1 |
Restrictive cardiomyopathy | 1 |
Female sex (%) | 18 (25%) |
Mechanical support at the time of heart transplantation | |
Durable circulatory support (%) | 4 (6%) |
Temporary circulatory support (%) | 3 (4%) |
Age at time of heart transplantation [median (min–max); years] | 54 (18–67) |
Days posttransplant at enrolment [median (min–max); days] | 62 (17–367) |
Enrolment without simultaneous endomyocardial biopsy (%) | 47 (66%) |
Immunosuppression | |
Tacrolimus/mycophenolate/methylprednisolone (%) | 68 (96%) |
Cyclosporine/mycophenolate/methylprednisolone (%) | 1 (1%) |
Tacrolimus/mycophenolate (%) | 2 (3%) |
Tacrolimus trough level at enrolment [median (min–max); (ng/mL)] | 13.5 (3.0–23.7) |
Patients presenting with donor-specific antibody at enrolment (%) | 14 (20%) |
Maximum MFI | 1492 (737–15,771) |
NT-proBNP level at enrolment [median (min–max); (pg/mL)] | 1271 (193–35,000) |
Creatinine level at enrolment [median (min–max); µmol/L] | 106 (57–709) |
Study Examinations Mean ± SD | EACVI NORRE Mean ± SD | |
---|---|---|
longitudinal strain, % | ||
apical 4-chamber | −16.0 ± 3.3 | −22.6 ± 3.0 |
apical 2-chamber | −14.8 ± 4.2 | −23.2 ± 3.3 |
apical 3-chamber | −15.4 ± 3.5 | −21.6 ± 3.2 |
LVGLS | −15.6 ± 2.8 | −22.5 ± 2.7 |
Study Examinations Mean ± SD | EACVI NORRE Mean ± SD | |
---|---|---|
GWI (mmHg%) | 1420.3 ± 361.8 | 1896 ± 308 |
GCW (mmHg%) | 1790.5 ± 425.6 | 2232 ± 331 |
GWW (mmHg%) | 142 (16–954) | 78.5 (53–122.2) |
GWE (%) | 93 (70–99) | 96 (94–97) |
dd-cfDNA < 0.25% Mean ± SD | dd-cfDNA 0.25–0.35% Mean ± SD | dd-cfDNA ≥ 0.35% Mean ± SD | p | |
---|---|---|---|---|
Longitudinal strain, % | ||||
apical 4-chamber | −16.0 ± 3.2 | −16.0 ± 3.4 | −17.6 ± 4.8 | NS |
apical 2-chamber | −14.8 ± 4.3 | −14.5 ± 4.2 | −14.8 ± 3.6 | NS |
apical 3-chamber | −15.4 ± 3.5 | −15.4 ± 4.3 | −17.3 ± 3.2 | NS |
LVGLS | −15.6 ± 2.7 | −15.3 ± 3.5 | −16.6 ± 3.7 | NS |
lateral strain | −17.2 ± 3.5 | −16.6 ± 3.5 | −19.4 ± 4.0 | NS |
septal strain | −12.6 ± 3.5 | −12.9 ± 3.7 | −15.0 ± 4.2 | NS |
basal strain | −16.2 ± 4.8 | −16.3 ± 5.3 | −16.3 ± 4.6 | NS |
mid strain | −12.6 ± 3.5 | −13.1 ± 4.1 | −13.3 ± 3.6 | NS |
apical strain | −14.7 ± 5.9 | −14.1 ± 5.7 | −19.4 ± 8.1 | NS |
LVEF, % | 57.1 ± 7.0 | 56.1 ± 5.2 | 63.2 ± 6.2 | NS |
NT-proBNP, pg/mL | 1451 ± 4212 | 952 ± 971 | 1855 ± 1667 | 0.044 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Teszak, T.; Barcziova, T.; Bödör, C.; Hegyi, L.; Levay, L.; Nagy, B.; Fintha, A.; Szijarto, A.; Kovacs, A.; Merkely, B.; et al. Donor-Derived Cell-Free DNA Versus Left Ventricular Longitudinal Strain and Strain-Derived Myocardial Work Indices for Identification of Heart Transplant Injury. Biomedicines 2025, 13, 841. https://doi.org/10.3390/biomedicines13040841
Teszak T, Barcziova T, Bödör C, Hegyi L, Levay L, Nagy B, Fintha A, Szijarto A, Kovacs A, Merkely B, et al. Donor-Derived Cell-Free DNA Versus Left Ventricular Longitudinal Strain and Strain-Derived Myocardial Work Indices for Identification of Heart Transplant Injury. Biomedicines. 2025; 13(4):841. https://doi.org/10.3390/biomedicines13040841
Chicago/Turabian StyleTeszak, Timea, Timea Barcziova, Csaba Bödör, Lajos Hegyi, Luca Levay, Beata Nagy, Attila Fintha, Adam Szijarto, Attila Kovacs, Bela Merkely, and et al. 2025. "Donor-Derived Cell-Free DNA Versus Left Ventricular Longitudinal Strain and Strain-Derived Myocardial Work Indices for Identification of Heart Transplant Injury" Biomedicines 13, no. 4: 841. https://doi.org/10.3390/biomedicines13040841
APA StyleTeszak, T., Barcziova, T., Bödör, C., Hegyi, L., Levay, L., Nagy, B., Fintha, A., Szijarto, A., Kovacs, A., Merkely, B., & Sax, B. (2025). Donor-Derived Cell-Free DNA Versus Left Ventricular Longitudinal Strain and Strain-Derived Myocardial Work Indices for Identification of Heart Transplant Injury. Biomedicines, 13(4), 841. https://doi.org/10.3390/biomedicines13040841