Investigation of the Pathogenesis of Liver Fibrosis Associated with Type 2 Diabetes Mellitus via Bioinformatic Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Data
2.2. Identification of Differentially Expressed Genes (DEGs)
2.3. Functional Enrichment Analyses of DEGs
2.4. Construction of Protein–Protein Interaction (PPI) Network and Analysis of Gene Modules
2.5. Selection and Validation of Hub Genes
2.6. Prediction of Transcription Factors (TFs)
2.7. Prediction of Drugs
3. Results
3.1. Identification of DEGs
3.2. GO and KEGG Pathway Enrichment Analyses
3.3. Construction of PPI Network
3.4. Selection and Functional Enrichment Analyses of Hub Genes
3.5. Prediction of TFs
3.6. Prediction of Drugs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kisseleva, T.; Brenner, D. Brenner, Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 151–166. [Google Scholar] [CrossRef] [PubMed]
- Vetrano, E.; Rinaldi, L.; Mormone, A.; Giorgione, C.; Galiero, R.; Caturano, A.; Nevola, R.; Marfella, R.; Sasso, F.C. Non-alcoholic Fatty Liver Disease (NAFLD), Type 2 Diabetes, and Non-viral Hepatocarcinoma: Pathophysiological Mechanisms and New Therapeutic Strategies. Biomedicines 2023, 11, 468. [Google Scholar] [CrossRef] [PubMed]
- Khneizer, G.; Rizvi, S.; Gawrieh, S. Non-alcoholic Fatty Liver Disease and Diabetes Mellitus. Adv. Exp. Med. Biol. 2021, 1307, 417–440. [Google Scholar] [CrossRef]
- Grancini, V.; Trombetta, M.; Lunati, M.E.; Zimbalatti, D.; Boselli, M.L.; Gatti, S.; Donato, M.F.; Resi, V.; D’Ambrosio, R.; Aghemo, A.; et al. Contribution of β-cell dysfunction and insulin resistance to cirrhosis-associated diabetes: Role of severity of liver disease. J. Hepatol. 2015, 63, 1484–1490. [Google Scholar] [CrossRef] [PubMed]
- Colosimo, S.; Mitra, S.K.; Chaudhury, T.; Marchesini, G. Insulin resistance and metabolic flexibility as drivers of liver and cardiac disease in T2DM. Diabetes Res. Clin. Pract. 2023, 206, 111016. [Google Scholar] [CrossRef]
- Uehara, K.; Santoleri, D.; Whitlock, A.E.G.; Titchenell, P.M. Insulin Regulation of Hepatic Lipid Homeostasis. Compr. Physiol. 2023, 13, 4785–4809. [Google Scholar] [CrossRef]
- Dyal, H.K.; Aguilar, M.; Bhuket, T.; Liu, B.; Holt, E.W.; Torres, S.; Cheung, R.; Wong, R.J. Concurrent Obesity, Diabetes, and Steatosis Increase Risk of Advanced Fibrosis Among HCV Patients: A Systematic Review. Dig. Dis. Sci. 2015, 60, 2813–2824. [Google Scholar] [CrossRef]
- Nishida, T.; Tsuji, S.; Tsujii, M.; Arimitsu, S.; Haruna, Y.; Imano, E.; Suzuki, M.; Kanda, T.; Kawano, S.; Hiramatsu, N.; et al. Oral glucose tolerance test predicts prognosis of patients with liver cirrhosis. Am. J. Gastroenterol. 2006, 101, 70–75. [Google Scholar] [CrossRef]
- Marengo, A.; Rosso, C.; Bugianesi, E. Liver Cancer: Connections with Obesity, Fatty Liver, and Cirrhosis. Annu. Rev. Med. 2016, 67, 103–117. [Google Scholar] [CrossRef]
- Kumar, R.; García-Compeán, D.; Maji, T. Hepatogenous diabetes: Knowledge, evidence, and skepticism. World J. Hepatol. 2022, 14, 1291–1306. [Google Scholar] [CrossRef]
- Lambrecht, R.; Delgado, M.E.; Gloe, V.; Schuetz, K.; Plazzo, A.P.; Franke, B.; Phan, T.S.; Fleming, J.; Mayans, O.; Brunner, T. Liver receptor homolog-1 (NR5A2) orchestrates hepatic inflammation and TNF-induced cell death. Cell Rep. 2023, 42, 113513. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, X.; Chen, Y.; Yu, D.; Jiang, R.; Kou, X.; Sheng, L.; Liu, Y.; Song, Y. Berberine Improves TNF-α-Induced Hepatic Insulin Resistance by Targeting MEKK1/MEK Pathway. Inflammation 2022, 45, 2016–2026. [Google Scholar] [CrossRef]
- Yin, Y.; Chen, C.; Chen, J.; Zhan, R.; Zhang, Q.; Xu, X.; Li, D.; Li, M. Cell surface GRP78 facilitates hepatoma cells proliferation and migration by activating IGF-IR. Cell. Signal. 2017, 35, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Savage, T.M.; Fortson, K.T.; Santos-Alexis, K.d.L.; Oliveras-Alsina, A.; Rouanne, M.; Rae, S.S.; Gamarra, J.R.; Shayya, H.; Kornberg, A.; Cavero, R.; et al. Amphiregulin from regulatory T cells promotes liver fibrosis and insulin resistance in non-alcoholic steatohepatitis. Immunity 2024, 57, 303–318.e306. [Google Scholar] [CrossRef]
- Waghela, B.N.; Vaidya, F.U.; Ranjan, K.; Chhipa, A.S.; Tiwari, B.S.; Pathak, C. AGE-RAGE synergy influences programmed cell death signaling to promote cancer. Mol. Cell. Biochem. 2021, 476, 585–598. [Google Scholar] [CrossRef] [PubMed]
- Khalid, M.; Petroianu, G.; Adem, A. Advanced Glycation End Products and Diabetes Mellitus: Mechanisms and Perspectives. Biomolecules 2022, 12, 542. [Google Scholar] [CrossRef]
- Matsuoka, T.; Yashiro, M. Bioinformatics Analysis and Validation of Potential Markers Associated with Prediction and Prognosis of Gastric Cancer. Int. J. Mol. Sci. 2024, 25, 5880. [Google Scholar] [CrossRef]
- Zhang, J.-J.; Shen, Y.; Chen, X.-Y.; Jiang, M.-L.; Yuan, F.-H.; Xie, S.-L.; Xu, F. Integrative network-based analysis on multiple Gene Expression Omnibus datasets identifies novel immune molecular markers implicated in non-alcoholic steatohepatitis. Front. Endocrinol. 2023, 14, 1115890. [Google Scholar] [CrossRef]
- Li, Z.; Feng, J.; Zhong, J.; Lu, M.; Gao, X.; Zhang, Y. Screening of the Key Genes and Signalling Pathways for Diabetic Nephropathy Using Bioinformatics Analysis. Front. Endocrinol. 2022, 13, 864407. [Google Scholar] [CrossRef]
- Reijnders, M.J.M.F.; Waterhouse, R.M. Summary Visualizations of Gene Ontology Terms with GO-Figure! Front. Bioinform. 2021, 1, 638255. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Ishiguro-Watanabe, M.; Tanabe, M. KEGG: Integrating viruses and cellular organisms. Nucleic Acids Res. 2021, 49, D545–D551. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Aihaiti, Y.; Cai, Y.S.; Tuerhong, X.; Ni Yang, Y.; Ma, Y.; Zheng, H.S.; Xu, K.; Xu, P. Therapeutic Effects of Naringin in Rheumatoid Arthritis: Network Pharmacology and Experimental Validation. Front. Pharmacol. 2021, 12, 672054. [Google Scholar] [CrossRef]
- Tang, Y.; Li, M.; Wang, J.; Pan, Y.; Wu, F.-X. CytoNCA: A cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Biosystems 2015, 127, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yang, Y.; Xu, S.; Gui, Y.; Chen, J.; Xu, J. Screening biomarkers for spinal cord injury using weighted gene co-expression network analysis and machine learning. Neural Regen. Res. 2024, 19, 2723–2734. [Google Scholar] [CrossRef]
- Zhou, G.; Soufan, O.; Ewald, J.; Hancock, R.E.W.; Basu, N.; Xia, J. NetworkAnalyst 3.0: A visual analytics platform for comprehensive gene expression profiling and meta-analysis. Nucleic Acids Res. 2019, 47, W234–W241. [Google Scholar] [CrossRef]
- Li, Y.; Yu, J.; Li, R.; Zhou, H.; Chang, X. New insights into the role of mitochondrial metabolic dysregulation and immune infiltration in septic cardiomyopathy by integrated bioinformatics analysis and experimental validation. Cell. Mol. Biol. Lett. 2024, 29, 21. [Google Scholar] [CrossRef]
- Facciorusso, A. The influence of diabetes in the pathogenesis and the clinical course of hepatocellular carcinoma: Recent findings and new perspectives. Curr. Diabetes Rev. 2013, 9, 382–386. [Google Scholar] [CrossRef]
- Marušić, M.; Paić, M.; Knobloch, M.; Pršo, A.-M.L. NAFLD, Insulin Resistance, and Diabetes Mellitus Type 2. Can. J. Gastroenterol. Hepatol. 2021, 2021, 6613827. [Google Scholar] [CrossRef]
- Roehlen, N.; Crouchet, E.; Baumert, T.F. Liver Fibrosis: Mechanistic Concepts and Therapeutic Perspectives. Cells 2020, 9, 875. [Google Scholar] [CrossRef]
- Hammerich, L.; Tacke, F. Hepatic inflammatory responses in liver fibrosis. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 633–646. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Mi, N.; Wu, W.; Zhao, Y.; Fan, F.; Liao, W.; Ming, Y.; Guan, W.; Bai, C. Transfer of inflammatory mitochondria via extracellular vesicles from M1 macrophages induces ferroptosis of pancreatic beta cells in acute pancreatitis. J. Extracell. Vesicles 2024, 13, e12410. [Google Scholar] [CrossRef] [PubMed]
- Sastre, J.; Pérez, S.; Sabater, L.; Rius-Pérez, S. Redox signaling in the pancreas in health and disease. Physiol. Rev. 2025, 105, 593–650. [Google Scholar] [CrossRef]
- Camaya, I.; Donnelly, S.; O’Brien, B. Targeting the PI3K/Akt signaling pathway in pancreatic β-cells to enhance their survival and function: An emerging therapeutic strategy for type 1 diabetes. J. Diabetes 2022, 14, 247–260. [Google Scholar] [CrossRef]
- Hsieh, P.-L.; Chu, P.-M.; Cheng, H.-C.; Huang, Y.-T.; Chou, W.-C.; Tsai, K.-L.; Chan, S.-H. Dapagliflozin Mitigates Doxorubicin-Caused Myocardium Damage by Regulating AKT-Mediated Oxidative Stress, Cardiac Remodeling, and Inflammation. Int. J. Mol. Sci. 2022, 23, 10146. [Google Scholar] [CrossRef] [PubMed]
- Xiu, A.-Y.; Ding, Q.; Li, Z.; Zhang, C.-Q. Doxazosin Attenuates Liver Fibrosis by Inhibiting Autophagy in Hepatic Stellate Cells via Activation of the PI3K/Akt/mTOR Signaling Pathway. Drug Des. Dev. Ther. 2021, 15, 3643–3659. [Google Scholar] [CrossRef]
- Hassan, H.M.; Liang, X.; Xin, J.; Lu, Y.; Cai, Q.; Shi, D.; Ren, K.; Li, J.; Chen, Q.; Li, J.; et al. Thrombospondin 1 enhances systemic inflammation and disease severity in acute-on-chronic liver failure. BMC Med. 2024, 22, 95. [Google Scholar] [CrossRef]
- Imamori, M.; Hosooka, T.; Imi, Y.; Hosokawa, Y.; Yamaguchi, K.; Itoh, Y.; Ogawa, W. Thrombospondin-1 promotes liver fibrosis by enhancing TGF-β action in hepatic stellate cells. Biochem. Biophys. Res. Commun. 2024, 693, 149369. [Google Scholar] [CrossRef]
- Wang, C.; Ma, C.; Gong, L.; Guo, Y.; Fu, K.; Zhang, Y.; Zhou, H.; Li, Y. Macrophage Polarization and Its Role in Liver Disease. Front. Immunol. 2021, 12, 803037. [Google Scholar] [CrossRef]
- Cheng, S.; Zou, Y.; Zhang, M.; Bai, S.; Tao, K.; Wu, J.; Shi, Y.; Wu, Y.; Lu, Y.; He, K.; et al. Single-cell RNA sequencing reveals the heterogeneity and intercellular communication of hepatic stellate cells and macrophages during liver fibrosis. MedComm 2023, 4, e378. [Google Scholar] [CrossRef]
- Li, W.; Zeng, Q.; Wang, B.; Lv, C.; He, H.; Yang, X.; Cheng, B.; Tao, X. Oxidative stress promotes oral carcinogenesis via Thbs1-mediated M1-like tumor-associated macrophages polarization. Redox Biol. 2024, 76, 103335. [Google Scholar] [CrossRef]
- Zhu, M.-L.; Fan, J.-X.; Guo, Y.-Q.; Guo, L.-J.; Que, H.-D.; Cui, B.-Y.; Li, Y.-L.; Guo, S.; Zhang, M.-X.; Yin, Y.-L.; et al. Protective effect of alizarin on vascular endothelial dysfunction via inhibiting the type 2 diabetes-induced synthesis of THBS1 and activating the AMPK signaling pathway. Phytomedicine 2024, 128, 155557. [Google Scholar] [CrossRef]
- Raman, P.; Harry, C.; Weber, M.; Krukovets, I.; Stenina, O.I. A novel transcriptional mechanism of cell type-specific regulation of vascular gene expression by glucose. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 634–642. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, Y.; Tanaka, M.; Yamakage, H.; Sasaki, Y.; Muranaka, K.; Hata, H.; Ikai, I.; Shimatsu, A.; Inoue, M.; Chun, T.H.; et al. Thrombospondin 1 as a novel biological marker of obesity and metabolic syndrome. Metabolism 2015, 64, 1490–1499. [Google Scholar] [CrossRef]
- Kang, M.K.; Yoon, Y.E.; Yang, J.Y.; Kwon, K.B.; Park, J.W.; Jhee, E.C. Protective effect of retinoic acid on interleukin-1 beta-induced cytotoxicity of pancreatic beta-cells. Mech. Ageing Dev. 2004, 125, 483–490. [Google Scholar] [CrossRef]
- Kartasheva-Ebertz, D.M.; Pol, S.; Lagaye, S. Retinoic Acid: A New Old Friend of IL-17A in the Immune Pathogeny of Liver Fibrosis. Front. Immunol. 2021, 12, 691073. [Google Scholar] [CrossRef]
- Kaya, E.; Syn, W.K.; Manka, P. Glucagon like peptide-1 receptor agonists as a promising therapeutic option of metabolic dysfunction associated steatotic liver disease and obesity: Hitting two targets with one shot. Curr. Opin. Gastroenterol. 2025; online ahead of print. [Google Scholar] [CrossRef]
- Chavez, C.P.; Cusi, K.; Kadiyala, S. The Emerging Role of Glucagon-like Peptide-1 Receptor Agonists for the Management of NAFLD. J. Clin. Endocrinol. Metab. 2022, 107, 29–38. [Google Scholar] [CrossRef]
Betweenness | MCC | DMNC | EPC | Degree |
---|---|---|---|---|
CD44 | COL1A1 | FMOD | COL1A1 | COL1A1 |
CAV1 | COL1A2 | FBLN1 | COL1A2 | CD44 |
COL1A1 | BGN | DPT | COL3A1 | COL1A2 |
FYN | COL6A2 | COL14A1 | LUM | COL3A1 |
PECAM1 | LUM | MXRA5 | SPARC | SPARC |
TPM1 | COL3A1 | COL16A1 | BGN | BGN |
GSN | COL5A1 | MFAP4 | THBS1 | LUM |
SPARC | DCN | COL6A2 | COL4A2 | THBS1 |
ANXA2 | SPARC | PLOD2 | COL6A2 | DCN |
IGF1 | TIMP3 | THBS2 | DCN | COL5A1 |
COL4A2 | COL4A2 | AEBP1 | CD44 | CAV1 |
THBS1 | THBS1 | COL4A2 | COL5A2 | TIMP3 |
ANXA1 | THBS2 | CTSK | COL5A1 | COL4A2 |
LUM | FBLN1 | LUM | TIMP3 | COL6A2 |
TIMP3 | COL5A2 | BGN | FBLN1 | COL5A2 |
MYH10 | FMOD | COL5A2 | THBS2 | IGF1 |
ENPP1 | COL14A1 | MGP | FMOD | THBS2 |
PTPN13 | COL16A1 | FSTL1 | COL14A1 | PECAM1 |
COL1A2 | MFAP4 | PCOLCE2 | IGF1 | COL141 |
CALD1 | CD44 | DCN | COL16A1 | FBLN1 |
VIM | FSTL1 | IGFBP7 | FSTL1 | FMOD |
CCL5 | IGFBP7 | COL5A1 | MFAP4 | CALD1 |
PTCH1 | PLOD2 | TIMP3 | IGFBP3 | ANXA2 |
PKD2 | DPT | SPARC | CALD1 | VIM |
SGCE | IGF1 | S100A11 | CAV1 | FSTL1 |
COL3A1 | MXRA5 | MYH10 | IGFBP7 | IGFBP3 |
IGFBP7 | IGFBP3 | IGFBP3 | PECAM1 | IGFBP7 |
MXRA5 | MGP | VEGFC | VIM | ANXA1 |
FSTL1 | AEBP1 | THBS1 | ENG | COL16A1 |
CXCR4 | PECAM1 | COL3A1 | MGP | ENG |
Term | p-Value | Genes |
---|---|---|
Cytarabine CTD 00005743 | 1.19 × 10−6 | COL3A1; COL4A2; LUM; TIMP3; IGFBP7; THBS1; FSTL1 |
Dasatinib CTD 00004330 | 2.55 × 10−5 | COL3A1; COL4A2; LUM; IGFBP7 |
Testosterone enanthate CTD 00000155 | 3.23 × 10−5 | COL3A1; COL4A2; LUM; TIMP3 |
Methotrexate CTD 00006299 | 5.80 × 10−5 | COL3A1; IGFBP7; THBS1; FSTL1 |
Retinoic acid CTD 00006918 | 1.29 × 10−4 | COL3A1; COL4A2; LUM; TIMP3; IGFBP7; THBS1; FSTL1 |
Cyclosporin A CTD 00007121 | 3.00 × 10−4 | SPARC; COL4A2; LUM; TIMP3; IGFBP7; THBS1; FSTL1 |
Aspirin CTD 00005447 | 0.00111214 | COL3A1; SPARC; THBS1 |
Tert-butyl hydroperoxide CTD 00007349 | 0.00113484 | COL3A1; SPARC; COL4A2; TIMP3 |
Arachidonic acid CTD 00007139 | 0.00192214 | SPARC; IGFBP7 |
Coxistac CTD 00000539 | 0.00194463 | TIMP3; IGFBP7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiong, Z.; Shu, K.; Jiang, Y. Investigation of the Pathogenesis of Liver Fibrosis Associated with Type 2 Diabetes Mellitus via Bioinformatic Analysis. Biomedicines 2025, 13, 840. https://doi.org/10.3390/biomedicines13040840
Xiong Z, Shu K, Jiang Y. Investigation of the Pathogenesis of Liver Fibrosis Associated with Type 2 Diabetes Mellitus via Bioinformatic Analysis. Biomedicines. 2025; 13(4):840. https://doi.org/10.3390/biomedicines13040840
Chicago/Turabian StyleXiong, Zhiyu, Kan Shu, and Yingan Jiang. 2025. "Investigation of the Pathogenesis of Liver Fibrosis Associated with Type 2 Diabetes Mellitus via Bioinformatic Analysis" Biomedicines 13, no. 4: 840. https://doi.org/10.3390/biomedicines13040840
APA StyleXiong, Z., Shu, K., & Jiang, Y. (2025). Investigation of the Pathogenesis of Liver Fibrosis Associated with Type 2 Diabetes Mellitus via Bioinformatic Analysis. Biomedicines, 13(4), 840. https://doi.org/10.3390/biomedicines13040840