Immobilized Fluorescent Probes for Simultaneous Multiple Protease Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis and Evaluation of Immobilized Peptides
2.2. Loading, Yield Determination, and Storage (Rink Amide PEGA Resin)
2.3. Characterization of the Probes
2.4. Biological Testing
2.4.1. Reconstitution of Enzymes
2.4.2. In-Solution Enzyme Assays
2.4.3. On-Resin Enzyme Assays
2.5. Stability Testing of Resin-Anchored Probes
3. Results and Discussion
3.1. Synthesis and Evaluation of Target Probes
3.2. Fluorescence Spectra of TP and CP Probes
3.3. Solid Supports for On-Resin Enzymatic Cleavage
3.4. The Lowest Detectable Concentration of Trypsin and Chymotrypsin
3.5. Simultaneous Detection of Both Proteases
3.6. Stability of the Immobilized Probes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mótyán, J.; Tóth, F.; Tőzsér, J. Research Applications of Proteolytic Enzymes in Molecular Biology. Biomolecules 2013, 3, 923–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paulus, J.K.; Kourelis, J.; Ramasubramanian, S.; Homma, F.; Godson, A.; Hörger, A.C.; Hong, T.N.; Krahn, D.; Ossorio Carballo, L.; Wang, S.; et al. Extracellular proteolytic cascade in tomato activates immune protease Rcr3. Proc. Natl. Acad. Sci. USA 2020, 117, 17409–17417. [Google Scholar] [CrossRef] [PubMed]
- Mason, S.D.; Joyce, J.A. Proteolytic networks in cancer. Trends Cell Biol. 2011, 21, 228–237. [Google Scholar] [CrossRef] [Green Version]
- Paulus, J.K.; Van Der Hoorn, R.A.L. Do proteolytic cascades exist in plants? J. Exp. Bot. 2019, 70, 1997–2002. [Google Scholar] [CrossRef]
- Ong, I.L.H.; Yang, K.L. Recent developments in protease activity assays and sensors. Analyst 2017, 142, 1867–1881. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Wu, G.; Tian, X.; Liu, Z. Smart fluorescent probes for in situ imaging of enzyme activity: Design strategies and applications. Future Med. Chem. 2018, 10, 2729–2744. [Google Scholar] [CrossRef]
- Brown, A.S.; Ackerley, D.F.; Calcott, M.J. High-Throughput Screening for Inhibitors of the SARS-CoV-2 Protease Using a FRET-Biosensor. Molecules 2020, 25, 4666. [Google Scholar] [CrossRef]
- Ripp, S.; Turunen, P.; Minot, E.D.; Rowan, A.E.; Blank, K.G. Deciphering Design Principles of Förster Resonance Energy Transfer-Based Protease Substrates: Thermolysin-Like Protease from Geobacillus stearothermophilus as a Test Case. ACS Omega 2018, 3, 4148–4156. [Google Scholar] [CrossRef] [Green Version]
- Lossi, L.; Cocito, C.; Alasia, S.; Merighi, A. Ex vivo imaging of active caspase 3 by a FRET-based molecular probe demonstrates the cellular dynamics and localization of the protease in cerebellar granule cells and its regulation by the apoptosis-inhibiting protein survivin. Mol. Neurodegener. 2016, 11, 1–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Simone, J.; Hewgill, D.; Siegel, R.; Lipsky, P.E.; He, L. Measurement of two caspase activities simultaneously in living cells by a novel dual FRET fluorescent indicator probe. Cytom. Part A 2006, 69, 477–486. [Google Scholar] [CrossRef]
- Kominami, K.; Nagai, T.; Sawasaki, T.; Tsujimura, Y.; Yashima, K.; Sunaga, Y.; Tsuchimochi, M.; Nishimura, J.; Chiba, K.; Nakabayashi, J.; et al. In Vivo Imaging of Hierarchical Spatiotemporal Activation of Caspase-8 during Apoptosis. PLoS ONE 2012, 7, e50218. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Y.; Liu, L.H.; Cheng, H.; Li, B.; Qiu, W.X.; Zhang, X.Z. A dual-FRET-based fluorescence probe for the sequential detection of MMP-2 and caspase-3. Chem. Commun. 2015, 51, 14520–14523. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Li, S.Y.; Zheng, H.R.; Li, C.X.; Xie, B.R.; Chen, K.W.; Li, B.; Zhang, X.Z. Multi-Förster Resonance Energy Transfer-Based Fluorescent Probe for Spatiotemporal Matrix Metalloproteinase-2 and Caspase-3 Imaging. Anal. Chem. 2017, 89, 4349–4354. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Fang, L.; Shi, M.; Huang, Y.; Yao, L.; Zhao, S.; Zhang, L.; Liang, H. A peptide-based four-color fluorescent polydopamine nanoprobe for multiplexed sensing and imaging of proteases in living cells. Chem. Commun. 2019, 55, 1651–1654. [Google Scholar] [CrossRef]
- Trzcinska, R.; Suder, P.; Bodzon-Kulakowska, A.; Skalska, M.; Marcinkowski, A.; Kubacki, J.; Pedrys, R.; Silberring, J.; Dworak, A.; Trzebicka, B. Synthesis and characterisation of PEG-peptide surfaces for proteolytic enzyme detection. Anal. Bioanal. Chem. 2013, 405, 9049–9059. [Google Scholar] [CrossRef] [Green Version]
- Trzcinska, R.; Balin, K.; Kubacki, J.; Marzec, M.E.; Pedrys, R.; Szade, J.; Silberring, J.; Dworak, A.; Trzebicka, B. Relevance of the poly (ethylene glycol) linkers in peptide surfaces for proteases assays. Langmuir 2014, 30, 5015–5025. [Google Scholar] [CrossRef] [PubMed]
- Goddard, J.M.; Hotchkiss, J.H. Polymer surface modification for the attachment of bioactive compounds. Prog. Polym. Sci. 2007, 32, 698–725. [Google Scholar] [CrossRef]
- Wang, X.; Geng, J.; Miyoshi, D.; Ren, J.; Sugimoto, N.; Qu, X. A rapid and sensitive add-mix-measure assay for multiple proteinases based on one gold nanoparticle-peptide-fluorophore conjugate. Biosens. Bioelectron. 2010, 26, 743–747. [Google Scholar] [CrossRef]
- Liang, R.P.; Tian, X.C.; Qiu, P.; Qiu, J.D. Multiplexed electrochemical detection of trypsin and chymotrypsin based on distinguishable signal nanoprobes. Anal. Chem. 2014, 86, 9256–9263. [Google Scholar] [CrossRef]
- Chen, C.H.; Yang, K.L. Oligopeptide immobilization strategy for improving stability and sensitivity of liquid-crystal protease assays. Sens. Actuators B Chem. 2014, 204, 734–740. [Google Scholar] [CrossRef]
- He, G.; Guo, D.; He, C.; Zhang, X.; Zhao, X.; Duan, C. A color-tunable europium complex emitting three primary colors and white light. Angew. Chem.—Int. Ed. 2009, 48, 6132–6135. [Google Scholar] [CrossRef] [PubMed]
- Okorochenkova, Y.; Porubský, M.; Benická, S.; Hlaváč, J. A novel three-fluorophore system as a ratiometric sensor for multiple protease detection. Chem. Commun. 2018, 54, 7589–7592. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milićević, D.; Hlaváč, J. Immobilized Fluorescent Probes for Simultaneous Multiple Protease Detection. Chemosensors 2021, 9, 119. https://doi.org/10.3390/chemosensors9060119
Milićević D, Hlaváč J. Immobilized Fluorescent Probes for Simultaneous Multiple Protease Detection. Chemosensors. 2021; 9(6):119. https://doi.org/10.3390/chemosensors9060119
Chicago/Turabian StyleMilićević, David, and Jan Hlaváč. 2021. "Immobilized Fluorescent Probes for Simultaneous Multiple Protease Detection" Chemosensors 9, no. 6: 119. https://doi.org/10.3390/chemosensors9060119
APA StyleMilićević, D., & Hlaváč, J. (2021). Immobilized Fluorescent Probes for Simultaneous Multiple Protease Detection. Chemosensors, 9(6), 119. https://doi.org/10.3390/chemosensors9060119