Review of Fiber Optical Sensors and Its Importance in Sewer Corrosion Factor Analysis
Abstract
:1. Introduction
2. Sewage Treatment Plant
3. Corrosion and Biofouling
4. Microbiologically Induced Corrosion (MIC)
- Generation of (aq) in the sewer: Sulfates in the sewer water are transformed to (aq) with the metabolic process of anaerobic SRB in biofilms under the waterline (or in the slime in Section 4 the highlighted ayer).
- Distribution of the (g): The gas-phase is liberated to the space above the sewage line with or without the assist of turbulence in the stream.
- Formation of : Aerobic sulfur-oxidizing bacteria converts (g) into sulfuric acid with the influence of RH temperature.
- Degradation of the concrete materials: Produced interacts with the concrete composition, results in a gradual deterioration of the concrete matrix.
Major Factors Influencing Corrosion
5. Sensors for Structural Health Monitoring (SHM)
- Electromechanical(Piezoelectric) Sensors
- Electrochemical Sensors
- Fiber Optic Sensors
5.1. Electromechanical Sensors
5.2. Electrochemical Sensors
6. Fiber Optic Sensor for Corrosion Factor Analysis
6.1. Fiber Optic Gas Sensors
6.2. Fiber Optic pH Sensors
6.3. Fiber Optic Temperature Sensors
6.4. Fiber Optic Humidity Sensors
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Abbreviations
FOS | Fiber Optic Sensors |
MIC | Microbiologically Induced Corrosion |
RH | Relative Humidity |
BOD | Biological Oxygen Demand |
COD | Chemical Oxygen Demand |
SRB | Sulfur Reducing Bacteria |
SOB | Sulfur Oxidizing Bacteria |
DO | Dissolved Oxygen |
MEMS | Micro-Electro-Mechanical Systems |
SHM | Structural Health Monitoring |
FBG | Fiber Bragg Grating |
SPR | Surface Plasmon Resonance |
LMR | Lossy Mode Resonance |
PCF | Photonic Cyrstal Fiber |
MZI | Mach Zender Interferometer |
EMI | Electromagnetic Interferences |
GPR | Ground-Penetrating-Radar |
References
- Zia, S.; Graham, D.; Dolfing, J. Wastewater Treatment: Biological; CRC Press: Boca Raton, FL, USA, 2013; pp. 2645–2655. [Google Scholar] [CrossRef]
- Bahadori, A. Sewage Treatment, Waste Management in the Chemical and Petroleum Industries; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2019; pp. 237–255. [Google Scholar] [CrossRef]
- Bhunia, P. Fundamentals of Biological Treatment. Compr. Water Qual. Purif. 2013, 3, 47–73. [Google Scholar] [CrossRef]
- Wu, M.; Wang, T.; Wu, K.; Kan, L. Microbiologically induced corrosion of concrete in sewer structures: A review of the mechanisms and phenomena. Constr. Build. Mater. 2020, 239, 117813. [Google Scholar] [CrossRef]
- Jiang, G.; Keller, J.; Bond, P.; Yuan, Z. Predicting concrete corrosion of sewers using artificial neural network. Water Res. 2016, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.; De Schryver, P.; De Gusseme, B.; Muynck, W.; Boon, N.; Verstraete, W. Chemical and Biological Technologies for Hydrogen Sulfide Emission Control in Sewer Systems: A Review. Water Res. 2008, 42, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Alwis, L.; Bustamante, H.; Bremer, K.; Roth, B.; Sun, T.; Grattan, K. Evaluation of the Durability and Performance of FBG-Based Sensors for Monitoring Moisture in an Aggressive Gaseous Waste Sewer Environment. J. Light. Technol. 2016, 35, 1. [Google Scholar] [CrossRef]
- Hobbs, D. Concrete Deterioration: Causes, Diagnosis, and Minimising Risk. Int. Mater. Rev. 2001, 46, 117–144. [Google Scholar] [CrossRef]
- Samer, M. Biological and Chemical Wastewater Treatment Processes; BoD–Books on Demand: Norderstedt, Germany, 2015; pp. 1–50. [Google Scholar] [CrossRef] [Green Version]
- Al-Dasoqi, N.; Mason, A.; Alkhaddar, R.; Al-Shamma, A. Use of Sensors in Wastewater Quality Monitoring—A Review of Available Technologies. In Proceedings of the World Environmental and Water Resources Congress 2011: Bearing Knowledge for Sustainability ASCE, Reston, VA, USA, 22–26 May 2011; pp. 3379–3388. [Google Scholar] [CrossRef]
- Asadnia, M.; Chua, L.; Qin, X.; Talei, A. Improved Particle Swarm Optimization-Based Artificial Neural Network for Rainfall-Runoff Modeling. J. Hydrol. Eng. 2014, 19. [Google Scholar] [CrossRef]
- Fisher, A.; Bullen, F.; Beal, D. The durability of cellulose fibre reinforced concrete pipes in sewage applications. Cem. Concr. Res. 2001, 31, 543–553. [Google Scholar] [CrossRef]
- Li, K.; Ma, X.; Zhang, Z.; Song, J.; Xu, Y.; Song, G. Sensitive refractive index sensing with tunable sensing range and good operation angle-polarization-tolerance using graphene concentric ring arrays. J. Phys. D Appl. Phys. 2014, 47, 405101. [Google Scholar] [CrossRef] [Green Version]
- Khadom, A.; Hassan, A.; Abod, B. Evaluation of environmentally friendly inhibitor for galvanic corrosion of steel–copper couple in petroleum waste water. Process. Saf. Environ. Prot. 2015, 98, 93–101. [Google Scholar] [CrossRef]
- Stanaszek-Tomal, E.; Fiertak, M. Biological Corrosion in the Sewage System and the Sewage Treatment Plant. Procedia Eng. 2016, 161, 116–120. [Google Scholar] [CrossRef] [Green Version]
- Cosham, A.; Hopkins, P.; Macdonald, K. Best practice for the assessment of defects in pipelines—Corrosion. Eng. Fail. Anal. 2007, 14, 1245–1265. [Google Scholar] [CrossRef]
- Ahmad, Z. Chapter 2—Basic Concepts in Corrosion. In Principles of Corrosion Engineering and Corrosion Control; Ahmad, Z., Ed.; Butterworth-Heinemann: Oxford, UK, 2006; pp. 9–56. [Google Scholar] [CrossRef]
- Kumari, U.; Samiappan, D.; Kumar, R.; Sudhakar, T. Fiber Optic Sensors in Ocean Observation: A Comprehensive Review. Optik 2018, 179. [Google Scholar] [CrossRef]
- Cheyne, I. Regulation of Marine Antifouling in International and EC Law; Wiley Online Library: Hoboken, NJ, USA, 2010; pp. 306–318. [Google Scholar] [CrossRef]
- Amy, G. Fundamental understanding of organic matter fouling of membranes. Desalination 2008, 231, 44–51. [Google Scholar] [CrossRef]
- Srivastava, P.; Abbassi, R.; Yadav, A.; Garaniya, V.; Jahromi, M. A review on the contribution of an electron flow in electroactive wetlands: Electricity generation and enhanced wastewater treatment. Chemosphere 2020, 126926. [Google Scholar] [CrossRef] [PubMed]
- Moskvicheva, E.; Sidyakin, P.; Shitov, D. Method of Corrosion Prevention in Steel Pressure Pipelines in Sewerage Systems. Procedia Eng. 2016, 150, 2381–2386. [Google Scholar] [CrossRef] [Green Version]
- Giovanangeli, N.; Piyathilaka, L.; Kodagoda, S.; Thiyagarajan, K.; Barclay, S.; Vitanage, D. Design and Development of Drill-Resistance Sensor Technology for Accurately Measuring Microbiologically Corroded Concrete Depths. In Proceedings of the 36th International Symposium on Automation and Robotics in Construction (ISARC), Banff, AL, Canada, 21–24 May 2019; Al-Hussein, M., Ed.; International Association for Automation and Robotics in Construction (IAARC): Banff, AL, Canada, 2019; pp. 735–742. [Google Scholar] [CrossRef] [Green Version]
- Joseph, A.; Keller, J.; Bustamante, H.; Bond, P. Surface neutralization and H2S oxidation at early stages of sewer corrosion: Influence of temperature, relative humidity and H2S concentration. Water Res. 2012, 46, 4235–4245. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, A.; Vollertsen, J.; Hvitved-Jacobsen, T. Kinetics and Stoichiometry of Aerobic Sulfide Oxidation in Wastewater from Sewers—Effects of pH and Temperature. Water Environ. Res. Res. Publ. Water Environ. Fed. 2006, 78, 275–283. [Google Scholar] [CrossRef]
- Sharma, K.; Ganigue, R.; Yuan, Z. PH dynamics in sewers and its modeling. Water Res. 2013, 47. [Google Scholar] [CrossRef]
- Kanagawa, T.; Kamagata, Y.; Aruga, S.; Kohno, T.; Horn, M.; Wagner, M. Phylogenetic Analysis of and Oligonucleotide Probe Development for Eikelboom Type 021N Filamentous Bacteria Isolated from Bulking Activated Sludge. Appl. Environ. Microbiol. 2000, 66, 5043–5052. [Google Scholar] [CrossRef] [Green Version]
- Monteny, J.; Vincke, E.; Beeldens, A.; De Belie, N.; Taerwe, L.; Van Gemert, D.; Verstraete, W. Chemical, microbiological, and in situ test methods for biogenic sulfuric acid corrosion of concrete. Cem. Concr. Res. 2000, 30, 623–634. [Google Scholar] [CrossRef]
- O’Connell, M.; McNally, C.; Richardson, M. Biochemical attack on concrete in wastewater applications: A state of the art review. Cem. Concr. Compos. 2010, 32, 479–485. [Google Scholar] [CrossRef]
- Jensen, H. Hydrogen Sulfide Induced Concrete Corrosion of Sewer Networks. Ph.D. Dissertation, Section of Environmental Engineering Institut for Kemi, Miljøog Bioteknologi, Aalborg Universitet, Aalborg, Denmark, 2009. [Google Scholar]
- Parker, C. The Corrosion of Concrete. Aust. J. Exp. Biol. Med Sci. 1945, 23, 91–98. [Google Scholar] [CrossRef]
- Valix, M.; Zamri, D.; Mineyama, H.; Cheung, W.H.; Shi, J.; Bustamante, H. Microbiologically Induced Corrosion of Concrete and Protective Coatings in Gravity Sewers. Chin. J. Chem. Eng. 2012, 20, 433–438. [Google Scholar] [CrossRef]
- House, M.; Weiss, W. Review of Microbially Induced Corrosion and Comments on Needs Related to Testing Procedures. In Proceedings of the International Conference on the Durability of Concrete Structures, West Lafayette, IN, USA, 24–26 July 2014; pp. 94–103. [Google Scholar] [CrossRef] [Green Version]
- Yuan, H.; Dangla, P.; Chatellier, P.; Chaussadent, T. Degradation modeling of concrete submitted to biogenic acid attack. Cem. Concr. Res. 2015, 70, 29–38. [Google Scholar] [CrossRef] [Green Version]
- Alexander, M.; Fourie, C. Performance of sewer pipe concrete mixtures with portland and calcium aluminate cements subject to mineral and biogenic acid attack. Mater. Struct. 2011, 44, 313–330. [Google Scholar] [CrossRef]
- Wu, L.; Hu, C.; Liu, W. The Sustainability of Concrete in Sewer Tunnel—A Narrative Review of Acid Corrosion in the City of Edmonton, Canada. Sustainability 2018, 10, 517. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Vollertsen, J.; Hvitved-Jacobsen, T. Anoxic sulfide oxidation in wastewater of sewer networks. Water Sci. Technol. 2005, 52, 191–199. [Google Scholar] [CrossRef]
- Islander, R.L.; Devinny, J.S.; Mansfeld, F.; Postyn, A.; Shih, H. Microbial Ecology of Crown Corrosion in Sewers. J. Environ. Eng. 1991, 117, 751–770. [Google Scholar] [CrossRef]
- Yuan, H.; Dangla, P.; Chatellier, P.; Chaussadent, T. Design Manual: Sulfide Control in Sanitary Sewerage Systems; Environmental Protection Agency: Washington, DC, USA, 2015.
- Scrivener, K.; Belie, N. Bacteriogenic Sulfuric Acid Attack of Cementitious Materials in Sewage Systems; Springer: Dordrecht, The Netherlands, 2013; Volume 10, pp. 305–318. [Google Scholar] [CrossRef]
- Grengg, C.; Mittermayr, F.; Ukrainczyk, N.; Koraimann, G.; Kienesberger, S.; Dietzel, M. Advances in concrete materials for sewer systems affected by microbial induced concrete corrosion: A review. Water Res. 2018, 134, 341–352. [Google Scholar] [CrossRef]
- Mori, T.; Nonaka, T.; Tazaki, K.; Koga, M.; Hikosaka, Y.; Noda, S. Interactions of nutrients, moisture and pH on microbial corrosion of concrete sewer pipes. Water Res. 1992, 26, 29–37. [Google Scholar] [CrossRef]
- Pomeroy, R.D. Process Design Manual for Sulfide Control in Sanitary Sewerage Systems; US Environmental Protection Agency, Technology Transfer: Washington, DC, USA, 1974.
- House, M.; Cheng, L.; Banks, K.; Weiss, W. Concrete Resistance to Sulfuric Acid Immersion: The Influence of Testing Details and Mixture Design on Performance as It Relates to Microbially Induced Corrosion. Adv. Civ. Eng. Mater. 2019, 8, 20170134. [Google Scholar] [CrossRef]
- Wells, P.; Melchers, R.E. Microbial corrosion of sewer pipe in Australia-initial field results. In Proceedings of the 18th International Corrosion Congress Proceedings, Perth, Australia, 20–24 November 2011; Citeseer: University Park, PA, USA, 2011. [Google Scholar]
- Wells, T.; Melchers, R.E.; Bond, P. Factors involved in the long term corrosion of concrete sewers. In Proceedings of the Corrosion & Prevention—2009, Coffs Harbour, Australia, 15–18 November 2009; Volume 11, pp. 345–356. [Google Scholar]
- Wells, T.; Melchers, R. Modelling concrete deterioration in sewers using theory and field observations. Cem. Concr. Res. 2015, 77, 82–96. [Google Scholar] [CrossRef]
- Lee, W.; Lee, J.H.; Bishop, P.; Papautsky, I. Biological Application of Micro-Electro Mechanical Systems Microelectrode Array Sensors for Direct Measurement of Phosphate in the Enhanced Biological Phosphorous Removal Process. Water Environ. Res. Res. Publ. Water Environ. Fed. 2009, 81, 748–754. [Google Scholar] [CrossRef]
- Lvova, L. Multisensor Systems for Chemical Analysis Materials and Sensors; Jenny Stanford: Singapore, 2014. [Google Scholar] [CrossRef]
- Lvova, L.; Nadporozhskaya, M. 17-Chemical sensors for soil analysis: Principles and applications. In New Pesticides and Soil Sensors; Grumezescu, A.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 637–678. [Google Scholar]
- Lvova, L.; Natale, C.; Paolesse, R. Chemical Sensors for Water Potability Assessment In Bottled Packaged Water; Grumezescu, A., Holban, A.M., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2019; pp. 177–208. [Google Scholar] [CrossRef]
- Gupta, S.; Gonzalez, J.G.; Loh, K.J. Self-sensing concrete enabled by nano-engineered cement-aggregate interfaces. Struct. Health Monit. 2017, 16, 309–323. [Google Scholar] [CrossRef]
- Ubertini, F.; D’Alessandro, A.; Downey, A.; García-Macías, E.; Laflamme, S.; Castro-Triguero, R. Recent advances on SHM of reinforced concrete and masonry structures enabled by self-sensing structural materials. Proceedings 2017, 2, 119. [Google Scholar] [CrossRef] [Green Version]
- Chung, D.; Wang, Y. Capacitance-based stress self-sensing in cement paste without requiring any admixture. Cem. Concr. Compos. 2018, 94, 255–263. [Google Scholar] [CrossRef]
- Wang, X.; Wang, W.; Li, H.; Fu, C.; ke, Y.; He, S. Development of a SnO2/CuO-coated surface acoustic wave-based H2S sensor with switch-like response and recovery. Sens. Actuators Chem. 2012, 169, 10–16. [Google Scholar] [CrossRef]
- Li, Z.; Shi, Q.; Hu, W.; Li, Y. A sewer sensor monitoring system based on embedded system. In Proceedings of the 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, China, 31 May–2 June 2018; pp. 2817–2820. [Google Scholar]
- Abolpour Moshizi, S.; Azadi, S.; Belford, A.; Razmjou, A.; Wu, S.; Han, Z.J.; Asadnia, M. Development of an ultra-sensitive and flexible piezoresistive flow sensor using vertical graphene nanosheets. Nano-Micro Lett. 2020, 12, 1–18. [Google Scholar] [CrossRef]
- McMurray, H.; Douglas, P.; Abbot, D. Novel thick-film pH sensors based on ruthenium dioxide-glass composites. Sens. Actuators Chem. 1995, 28, 9–15. [Google Scholar] [CrossRef]
- Fog, A.; Buck, R.P. Electronic semiconducting oxides as pH sensors. Sens. Actuators 1984, 5, 137–146. [Google Scholar] [CrossRef]
- Du, R.G.; Hu, R.G.; Huang, R.S.; Lin, C. In Situ Measurement of Cl-Concentrations and pH at the Reinforcing Steel/Concrete Interface by Combination Sensors. Anal. Chem. 2006, 78, 3179–3185. [Google Scholar] [CrossRef] [PubMed]
- Daoudi, J.; Betelu, S.; Tzedakis, T.; Bertrand, J.; Ignatiadis, I. A Multi-Parametric Device with Innovative Solid Electrodes for Long-Term Monitoring of pH, Redox-Potential and Conductivity in a Nuclear Waste Repository. Sensors 2017, 17, 1372. [Google Scholar] [CrossRef] [Green Version]
- Gutiérrez-Capitán, M.; Baldi, A.; Gómez, R.; García, V.; Jiménez-Jorquera, C.; Fernández-Sánchez, C. Electrochemical nanocomposite-derived sensor for the analysis of chemical oxygen demand in urban wastewaters. Anal. Chem. 2015, 87, 2152–2160. [Google Scholar] [CrossRef]
- Manjakkal, L.; Szwagierczak, D.; Dahiya, R. Metal oxides based electrochemical pH sensors: Current progress and future perspectives. Prog. Mater. Sci. 2019, 109, 100635. [Google Scholar] [CrossRef]
- Marques, R.; Oehmen, A.; Pijuan, M. Novel Microelectrode-Based Online System for Monitoring N2O Gas Emissions during Wastewater Treatment. Environ. Sci. Technol. 2014, 48. [Google Scholar] [CrossRef]
- Lim, J.; Kim, J.; Friedman, J.; Lee, U.; Vieira, L.; Rosso, D.; Gerla, M.; Srivastava, M. SewerSnort: A Drifting Sensor for In-situ Wastewater Collection System Gas Monitoring. Ad Hoc Netw. 2011, 11. [Google Scholar] [CrossRef]
- Qu, W.; Meyer, J.U. Thick-film humidity sensor based on porous material. Meas. Sci. Technol. 1997, 8, 593–600. [Google Scholar] [CrossRef]
- Thiyagarajan, K.; Kodagoda, S.; Ranasinghe, R.; Vitanage, D.; Iori, G. Robust sensor suite combined with predictive analytics enabled anomaly detection model for smart monitoring of concrete sewer pipe surface moisture conditions. IEEE Sens. J. 2020, 20, 8232–8243. [Google Scholar] [CrossRef]
- Ali, F.I.; Mahmoud, S.T.; Awwad, F.; Greish, Y.E.; Abu-Hani, A.F. Low power consumption and fast response H2S gas sensor based on a chitosan-CuO hybrid nanocomposite thin film. Carbohydr. Polym. 2020, 236, 116064. [Google Scholar] [CrossRef]
- Ali, F.I.; Awwad, F.; Greish, Y.E.; Mahmoud, S.T. Hydrogen sulfide (H2S) gas sensor: A review. IEEE Sens. J. 2018, 19, 2394–2407. [Google Scholar] [CrossRef]
- Ali, F.I.; Awwad, F.; Greish, Y.E.; Abu-Hani, A.F.; Mahmoud, S.T. Fabrication of low temperature and fast response H2S gas sensor based on organic-metal oxide hybrid nanocomposite membrane. Org. Electron. 2020, 76, 105486. [Google Scholar] [CrossRef]
- Thiyagarajan, K.; Kodagoda, S.; Alvarez, J.K. An instrumentation system for smart monitoring of surface temperature. In Proceedings of the 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), Phuket, Thailand, 13–15 November 2016; pp. 1–6. [Google Scholar]
- Thiyagarajan, K.; Kodagoda, S.; Ranasinghe, R.; Vitanage, D.; Iori, G. Robust sensing suite for measuring temporal dynamics of surface temperature in sewers. Sci. Rep. 2018, 8, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Raj, M.A.; John, S.A. Graphene-modified electrochemical sensors. In Graphene-Based Electrochemical Sensors for Biomolecules; Elsevier: Amsterdam, The Netherlands, 2019; pp. 1–41. [Google Scholar]
- Merzbacher, C.I.; Kersey, A.D.; Friebele, E.J. Fiber optic sensors in concrete structures: A review. Smart Mater. Struct. 1996, 5, 196–208. [Google Scholar] [CrossRef]
- Glisic, B. Sensing Solutions for Assessing and Monitoring Pipeline Systems; Woodhead Publishing: Cambridge, UK, 2014; Volume 1, pp. 422–460. [Google Scholar] [CrossRef]
- Leung, C. Fiber optic sensors in concrete: The future? NDT E Int. 2001, 34, 85–94. [Google Scholar] [CrossRef]
- Maaskant, R.; Alavie, T.; Measures, R.; Tadros, G.; Rizkalla, S.; Guha-Thakurta, A. Fiber-optic Bragg grating sensors for bridge monitoring. Cem. Concr. Compos. 1997, 19, 21–33. [Google Scholar] [CrossRef]
- Lee, B. Review of the Present Status of Optical Fiber Sensors. Opt. Fiber Technol. 2003, 9, 57–79. [Google Scholar] [CrossRef]
- Nanni, A.; Yang, C.; Pan, K.; Wang, J.; Michael, R. Fiber-optic sensors for concrete strain/stress measurement. ACI Mater. J. 1991, 88, 257–264. [Google Scholar]
- Hill, K.; Fujii, Y.; Johnson, D.C.; Kawasaki, B. Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication. Appl. Phys. Lett. 1978, 32, 647–649. [Google Scholar] [CrossRef]
- Morey, W.W.; Ball, G.A.; Meltz, G. Photoinduced Bragg gratings in optical fibers. Opt. Photonics News 1994, 5, 8–14. [Google Scholar] [CrossRef]
- Chakravartula, V.; Dhanalakshmi Samiappan, R. Sensitivity enhancement analysis due to diferent coating materials of Fibre Bragg Grating based depth sensor for underwater applications. Opt. Quantum Electron. 2019, 52, 1–15. [Google Scholar]
- Kumari, C.U.; Samiappan, D.; Kumar, R.; Sudhakar, T. Development of a highly accurate and fast responsive salinity sensor based on Nuttall apodized Fiber Bragg Grating coated with hygroscopic polymer for ocean observation. Opt. Fiber Technol. 2019, 53, 102036. [Google Scholar] [CrossRef]
- Wang, H.; Guo, H.; Xiao, G.; Mrad, N.; Kazemi, A.; Ban, D. Phase-Shifted Fiber-Bragg-Grating-Based Humidity Sensor; International Society for Optics and Photonics: Bellingham, WA, USA, 2013; p. 872019. [Google Scholar] [CrossRef] [Green Version]
- Mishra, D.S.; Zou, B.; Chiang, K. Wide-Range pH Sensor Based on a Smart-Hydrogel-Coated Long-Period Fiber Grating. IEEE J. Sel. Top. Quantum Electron. 2016, 23. [Google Scholar] [CrossRef]
- Aldaba, A.L.; González-Vila, Á.; Debliquy, M.; Lopez-Amo, M.; Caucheteur, C.; Lahem, D. Polyaniline-coated tilted fiber Bragg gratings for pH sensing. Sens. Actuators B Chem. 2018, 254, 1087–1093. [Google Scholar] [CrossRef]
- Partridge, M.; Wong, R.; James, S.W.; Davis, F.; Higson, S.P.; Tatam, R.P. Long period grating based toluene sensor for use with water contamination. Sens. Actuators B Chem. 2014, 203, 621–625. [Google Scholar] [CrossRef] [Green Version]
- Jain, V.; Kumbhaj, S.; Sen, P. Long-period fiber grating sensor to determine fluoride contamination in water. RRJoPHY 2018, 7, 36–43. [Google Scholar]
- Liu, H.Y.; Liang, D.K.; Zeng, J.; Jin, J.; Wu, J.; Geng, J. Design of a long-period fiber grating sensor for reinforcing bar corrosion in concrete. J. Intell. Mater. Syst. Struct. 2012, 23, 45–51. [Google Scholar] [CrossRef]
- Manuylovich, E.; Tomyshev, K.; Butov, O. Method for Determining the Plasmon Resonance Wavelength in Fiber Sensors Based on Tilted Fiber Bragg Gratings. Sensors 2019, 19, 4245. [Google Scholar] [CrossRef] [Green Version]
- Ramakrishnan, M.; Rajan, G.; Semenova, Y.; Farrell, G. Overview of Fiber Optic Sensor Technologies for Strain/Temperature Sensing Applications in Composite Materials. Sensors 2016, 16, 99. [Google Scholar] [CrossRef] [Green Version]
- Ansari, F. State-of-the-art in the applications of fiber-optic sensors to cementitious composites. Cem. Concr. Compos. 1997, 19, 3–19. [Google Scholar] [CrossRef]
- Domingues, F.; Radwan, A. Optical Fiber Sensors for loT and Smart Devices; Springer: Berlin, Germany, 2017. [Google Scholar] [CrossRef]
- Sabri, N.; Aljunid, S.; Salim, M.; Fouad, S. Fiber Optic Sensors: Short Review and Applications; Springer: Singapore, 2015; Volume 204, pp. 299–311. [Google Scholar] [CrossRef]
- Werner, J.; Belz, M.; Klein, K.F.; Sun, T.; Grattan, K.T.V. Fast response time fiber optical pH and oxygen sensors. In Optical Fibers and Sensors for Medical Diagnostics and Treatment Applications XX; Gannot, I., Ed.; International Society for Optics and Photonics, SPIE: Bellingham, WA, USA, 2020; Volume 11233, pp. 188–195. [Google Scholar] [CrossRef]
- Yeo, T.; Sun, T.; Grattan, K. Fibre-optic sensor technologies for humidity and moisture measurement. Sens. Actuators A Phys. 2008, 144, 280–295. [Google Scholar] [CrossRef]
- Zhang, J.X.; Hoshino, K. Mechanical transducers: Cantilevers, acoustic wave sensors, and thermal sensors. Mol. Sens. Nanodevices 2014, 321–414. [Google Scholar]
- Ramos, S.; Yamanaka, H.; Zanoni, M. Electrochemical Sensors: A Powerful Tool in Analytical Chemistry. J. Braz. Chem. Soc. 2003, 14. [Google Scholar] [CrossRef] [Green Version]
- Swallow, J.G.; Kim, J.J.; Malone, J.M.; Chen, D.; Smith, J.F.; Bishop, S.R.; Tuller, H.L.; Van Vliet, K.J. Dynamic Chemical Expansion of Thin Film Non-Stoichiometric Oxides at Extreme Temperatures. ECS Meet. Abstr. 2016. [Google Scholar] [CrossRef]
- Kim, K.H.; Hong, Y.J.; Pal, R.; Jeon, E.C.; Koo, Y.S.; Sunwoo, Y. Investigation of carbonyl compounds in air from various industrial emission sources. Chemosphere 2008, 70, 807–820. [Google Scholar] [CrossRef]
- Guidotti, T. Hydrogen Sulfide. Int. J. Toxicol. 2010, 29, 569–581. [Google Scholar] [CrossRef]
- Kilburn, K.; Warshaw, R. Hydrogen Sulfide and Reduced-Sulfur Gases Adversely Affect Neurophysiological Functions. Toxicol. Ind. Health 1995, 11, 185–197. [Google Scholar] [CrossRef]
- Liang, X.; He, Y.; Liu, F.; Wang, B.; Zhong, T.; Quan, B.; Lu, G. Solid-state potentiometric H2S sensor combining NASICON with Pr6O11-doped SnO2 electrode. Sens. Actuators B Chem. 2007, 125, 544–549. [Google Scholar] [CrossRef]
- Vaishampayan, M.V.; Deshmukh, R.G.; Walke, P.; Mulla, I. Fe-doped SnO2 nanomaterial: A low temperature hydrogen sulfide gas sensor. Mater. Chem. Phys. 2008, 109, 230–234. [Google Scholar] [CrossRef]
- Nikolaev, I.; Galiev, R.; Litvinov, A.; Utochkin, Y.A. Sensor selective gas analyzer for small concentrations of hydrogen sulfide. Meas. Tech. 2004, 47, 633–636. [Google Scholar] [CrossRef]
- He, F.; Cui, X.; Ren, J. A novel QCM-based biosensor for detection of microorganisms producing hydrogen sulfide. Anal. Lett. 2008, 41, 2697–2709. [Google Scholar] [CrossRef]
- Qin, X.; Feng, W.; Yang, X.; Wei, J.; Huang, G. Molybdenum sulfide/citric acid composite membrane-coated long period fiber grating sensor for measuring trace hydrogen sulfide gas. Sens. Actuators B Chem. 2018, 272, 60–68. [Google Scholar] [CrossRef]
- Tanaka, Y.; Nakamoto, T.; Moriizumi, T. Study of highly sensitive smell sensing system using gas detector tube combined with optical sensor. Sens. Actuators B Chem. 2006, 119, 84–88. [Google Scholar] [CrossRef]
- Usha, S.P.; Mishra, S.K.; Gupta, B.D. Fiber optic hydrogen sulfide gas sensors utilizing ZnO thin film/ZnO nanoparticles: A comparison of surface plasmon resonance and lossy mode resonance. Sens. Actuators B Chem. 2015, 218, 196–204. [Google Scholar] [CrossRef]
- Tian, W.; Liu, X.; Yu, W. Research Progress of Gas Sensor Based on Graphene and Its Derivatives: A Review. Appl. Sci. 2018, 8, 1118. [Google Scholar] [CrossRef] [Green Version]
- Xia, Y.; Li, R.; Chen, R.; Wang, J.; Xiang, L. 3D Architectured Graphene/Metal Oxide Hybrids for Gas Sensors: A Review. Sensors 2018, 18, 1456. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Yang, X.; Feng, W. Hydrogen sulfide gas sensor based on copper/graphene oxide coated multi-node thin-core fiber interferometer. Appl. Opt. 2019, 58, 2152–2157. [Google Scholar] [CrossRef]
- Huang, G.; Li, Y.; Chen, C.; Yue, Z.; Zhai, W.; Li, M.; Yang, B. Hydrogen sulfide gas sensor based on titanium dioxide/amino-functionalized graphene quantum dots coated photonic crystal fiber. J. Phys. D Appl. Phys. 2020, 53, 325102. [Google Scholar] [CrossRef]
- Liu, Y.; Sharma, K.; Murthy, S.; Johnson, I.; Evans, T.; Yuan, Z. On-line monitoring of methane in sewer air. Sci. Rep. 2014, 4, 6637. [Google Scholar] [CrossRef]
- Liang, G.C.; Liu, H.H.; Kung, A. Photoacoustic Trace Detection of Methane Using Compact Solid-State Lasers†. J. Phys. Chem. A 2000, 104. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Zheng, C.; Liu, H.; He, Q.; Ye, W.; Zhang, Y.; Pan, J.; Wang, Y. Development and measurement of a near-infrared CH4 detection system using 1.654 μm wavelength-modulated diode laser and open reflective gas sensing probe. Sens. Actuators B Chem. 2016, 225, 188–198. [Google Scholar] [CrossRef]
- Ni, J.; Chang, J.; Liu, T.; Li, Y.; Zhao, Y.; Wang, Q. Fiber methane gas sensor and its application in methane outburst prediction in coal mine. In Proceedings of the 2008 1st Asia-Pacific Optical Fiber Sensors Conference, Chengdu, China, 7–9 November 2008; pp. 1–4. [Google Scholar] [CrossRef]
- Hoo, Y.; Liu, S.; Ho, H.L.; Jin, W. Fast response microstructured optical fiber methane sensor with multiple side-openings. IEEE Photonics Technol. Lett. 2010, 22, 296–298. [Google Scholar] [CrossRef]
- Jin, W.; Ho, H.; Cao, Y.; Ju, J.; Qi, L. Gas detection with micro-and nano-engineered optical fibers. Opt. Fiber Technol. 2013, 19, 741–759. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Jin, W.; Lin, Y.; Wang, C.; Ho, H.; Tan, Y. Hollow-Core Microstructured Optical Fiber Gas Sensors. J. Light. Technol. 2016, 35, 3413–3424. [Google Scholar] [CrossRef]
- Plusquellec, G.; Geiker, M.; Lindgård, J.; Duchesne, J.; Fournier, B.; De Weerdt, K. Determination of the pH and the free alkali metal content in the pore solution of concrete: Review and experimental comparison. Cem. Concr. Res. 2017, 96, 13–26. [Google Scholar] [CrossRef]
- Li, L.; Sagüés, A.A.; Poor, N. In situ leaching investigation of pH and nitrite concentration in concrete pore solution. Cem. Concr. Res. 1999, 29, 315–321. [Google Scholar] [CrossRef]
- Barneyback, R., Jr.; Diamond, S. Expression and analysis of pore fluids from hardened cement pastes and mortars. Cem. Concr. Res. 1981, 11, 279–285. [Google Scholar] [CrossRef]
- Duffo, G.; Farina, S.; Giordano, C. Characterization of solid embeddable reference electrodes for corrosion monitoring in reinforced concrete structures. Electrochim. Acta 2009, 54, 1010–1020. [Google Scholar] [CrossRef]
- Muralidharan, S.; Ha, T.H.; Bae, J.H.; Ha, Y.C.; Lee, H.G.; Park, K.W.; Kim, D.K. Electrochemical studies on the solid embeddable reference sensors for corrosion monitoring in concrete structure. Mater. Lett. 2006, 60, 651–655. [Google Scholar] [CrossRef]
- Gerlach, G.; Guenther, M.; Sorber, J.; Suchaneck, G.; Arndt, K.F.; Richter, A. Chemical and pH Sensors Based on the Swelling Behavior of Hydrogels. Sens. Actuators B Chem. 2005, 111–112, 555–561. [Google Scholar] [CrossRef]
- Mansfeld, F.; Shih, H.; Postyn, A.; Devinny, J.; Islander, R.; Chen, C. Corrosion Monitoring and Control in Concrete Sewer Pipes. Corrosion 1991, 47, 369–376. [Google Scholar] [CrossRef]
- Nguyen, T.; Venugopala, T.; Chen, S.; Sun, T.; Grattan, K.; Taylor, S.; Basheer, P.M.; Long, A. Fluorescence based fibre optic pH sensor for the pH 10–13 range suitable for corrosion monitoring in concrete structures. Sens. Actuators B Chem. 2014, 191, 498–507. [Google Scholar] [CrossRef]
- Chong, S.S. Fibre Optic Sensors for Selected Wastewater Characteristics. Sensors 2013, 13, 8640–8668. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, J. Recent development and applications of optical and fiber-optic pH sensors. TrAC Trends Anal. Chem. 2000, 19, 541–552. [Google Scholar] [CrossRef]
- Dantan, N.; Habel, W.R. Monitoring of corrosion protection: A concrete-embeddable pH optode. Betonw. Und-Fert. Tech. 2006, 72, 48–55. [Google Scholar]
- Khodadoust, S.; Kouri, N.C.; Talebiyanpoor, M.S.; Deris, J.; Pebdani, A.A. Design of an optically stable pH sensor based on immobilization of Giemsa on triacetylcellulose membrane. Mater. Sci. Eng. C 2015, 57, 304–308. [Google Scholar] [CrossRef] [PubMed]
- Ma, Q.J.; Li, H.P.; Yang, F.; Zhang, J.; Wu, X.F.; Bai, Y.; Li, X.F. A fluorescent sensor for low pH values based on a covalently immobilized rhodamine–napthalimide conjugate. Sens. Actuators B Chem. 2012, 166, 68–74. [Google Scholar] [CrossRef]
- Michie, W.; Culshaw, B.; McKenzie, I.; Konstantakis, M.; Graham, N.; Moran, C.; Santos, F.; Bergqvist, E.; Carlstrom, B. Distributed sensor for water and pH measurements using fiber optics and swellable polymeric systems. Opt. Lett. 1995, 20, 103–105. [Google Scholar] [CrossRef]
- Kocak, G.; Tuncer, C.; Bütün, V. pH-Responsive polymers. Polym. Chem. 2017, 8, 144–176. [Google Scholar] [CrossRef]
- Mau, J.C.; Lin, G.R.; Fu, M.Y.; Liu, W.F. A fiber optic sensor based on air-gap long period gratings for pH sensing application. Microw. Opt. Technol. Lett. 2013, 55, 855–857. [Google Scholar] [CrossRef]
- Khan, M.R.R.; Kang, S.W. Highly Sensitive and Wide-Dynamic-Range Multichannel Optical-Fiber pH Sensor Based on PWM Technique. Sensors 2016, 16, 1885. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, B.; Yin, M.; Zhang, A.; Qian, J.W.; He, S. Low-cost high-performance fiber-optic pH sensor based on thin-core fiber modal interferometer. Opt. Express 2009, 17, 22296–22302. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Yin, M.; Zhang, A.; Qian, J.; He, S. Biocompatible Fiber-Optic pH Sensor Based on Optical Fiber Modal Interferometer Self-Assembled With Sodium Alginate/Polyethylenimine Coating. IEEE Sens. J. 2012, 12, 1477–1482. [Google Scholar] [CrossRef]
- Zhao, Q.; Yin, M.; Zhang, A.; Prescher, S.; Antonietti, M.; Yuan, J. Hierarchically Structured Nanoporous Poly(Ionic Liquid) Membranes: Facile Preparation and Application in Fiber-Optic pH Sensing. J. Am. Chem. Soc. 2013, 135. [Google Scholar] [CrossRef]
- Li, J.; Albri, F.; Maier, R.; Shu, W.W.; Sun, J.; Hand, D.; Macpherson, W. A Micro-Machined Optical Fiber Cantilever as a Miniaturized pH Sensor. IEEE Sens. J. 2015, 15, 1. [Google Scholar] [CrossRef]
- Pathak, A.; Chaudhary, D.; Singh, V. Broad range and highly sensitive optical pH sensor based on Hierarchical ZnO microflowers over tapered silica fiber. Sens. Actuators A Phys. 2018, 280, 399–405. [Google Scholar] [CrossRef]
- Zamarreño, C.; Hernaez, M.; Del Villar, I.; Matias, I.; Arregui, F. Optical fiber pH sensor based on lossy-mode resonances by means of thin polymeric coatings. Sens. Actuators B Chem. 2011, 155, 290–297. [Google Scholar] [CrossRef]
- Rivero, P.; Goicoechea, J.; Hernaez, M.; Socorro Leránoz, A.; Matias, I.; Arregui, F. Optical fiber resonance-based pH sensors using gold nanoparticles into polymeric layer-by-layer coatings. Microsyst. Technol. 2016, 22. [Google Scholar] [CrossRef]
- Shao, L.Y.; Yin, M.; Tam, H.; Albert, J. Fiber Optic pH Sensor with Self-Assembled Polymer Multilayer Nanocoatings. Sensors 2013, 13, 1425–1434. [Google Scholar] [CrossRef]
- Hartings, M.; Castro, N.; Ahmed, Z. A Photonic pH Sensor Based on Photothermal Spectroscopy. Sens. Actuators B Chem. 2019, 301, 127076. [Google Scholar] [CrossRef]
- Janting, J.; Pedersen, J.; Woyessa, G.; Nielsen, K.; Bang, O. Small and Robust All-Polymer Fiber Bragg Grating Based pH Sensor. J. Light. Technol. 2019, 37, 4480–4486. [Google Scholar] [CrossRef] [Green Version]
- Jiang, G.; Keller, J.; Bond, P.L. Determining the long-term effects of H2S concentration, relative humidity and air temperature on concrete sewer corrosion. Water Res. 2014, 65, 157–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ams, M.; Ha, P.; Taheri, S.; Clark, S.; Withford, M.; Bustamante, H.; Gonzalez, J.; Vorreiter, L. Fibre optic temperature and humidity sensors for harsh wastewater environments. In Proceedings of the 2017 Eleventh International Conference on Sensing Technology (ICST), Sydney, NSW, Australia, 4–6 December 2017; pp. 1–3. [Google Scholar] [CrossRef]
- Bremer, K.; Wollweber (née Meinhardt), M.; Thiel, T.; Werner, G.; Sun, T.; Grattan, K.; Roth, B. Sewerage tunnel leakage detection using a fibre optic moisture-detecting sensor system. Sens. Actuators A Phys. 2014, 220, 62–68. [Google Scholar] [CrossRef]
- Gebru, H.; Padhy, B. Fiber Bragg Grating Temperature Sensor for Defence and Industrial Applications. In AIP Conference Proceedings; American Institute of Physics: New York, NY, USA, 2011; Volume 1391. [Google Scholar] [CrossRef]
- Cazo, R.; Barbosa, C.; Hattori, H.; Rabelo, R.; Ferreira, J. Fiber Bragg Grating Temperature Sensor; Citeseer: University Park, PA, USA, 2020. [Google Scholar]
- Torres, G.; Payá-Zaforteza, I.; Calderón, P.; SalesMaicas, S. New fiber optic sensor for monitoring temperatures in concrete structures during fires. Sens. Actuators A Phys. 2016, 254. [Google Scholar] [CrossRef]
- Kumari, C.R.U.; Samiappan, D.; Kumar, R.; Sudhakar, T. Development and experimental validation of a Nuttall apodized fiber Bragg Grating sensor with a hydrophobic polymer coating suitable for monitoring sea surface temperature. Opt. Fiber Technol. 2020, 56, 102176. [Google Scholar] [CrossRef]
- Schilperoort, R.; Clemens, F. Fibre-optic distributed temperature sensing in combined sewer systems. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2009, 60, 1127–1134. [Google Scholar] [CrossRef]
- Nienhuis, J.; De Haan, C.; Langeveld, J.; Klootwijk, M.; Clemens, F. Assessment of detection limits of fiber-optic distributed temperature sensing for detection of illicit connections. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2013, 67, 2712–2718. [Google Scholar] [CrossRef]
- Hoes, O.; Schilperoort, R.; Luxemburg, W.; Clemens, F.; van de Giesen, N. Locating Illicit Connections in Storm Water Sewers Using Fiber-Optic Distributed Temperature Sensing. Water Res. 2009, 43, 5187–5197. [Google Scholar] [CrossRef]
- Kuncha, S.; Balaji, C.; Ramachandran, H.; Srinivasan, B. Distributed High Temperature Sensing Using Fiber Bragg Gratings. Int. J. Optomechatronics 2008, 2, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Stajanca, P.; Hicke, K.; Krebber, K. Distributed Fiberoptic Sensor for Simultaneous Humidity and Temperature Monitoring Based on Polyimide-Coated Optical Fibers. Sensors 2019, 19, 5279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kessili, A.; Vollertsen, J.; Nielsen, A.H. Automated monitoring system for events detection in sewer network by distribution temperature sensing data measurement. Water Sci. Technol. 2018, 78, 1499–1508. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, L.; Sheng, L.; Yan, J.; Li, L.; Yuan, M.; Sun, F.; Nian, F.; Li, L.; Liu, J.; Zhou, S.; et al. Simultaneous Measurement of Distributed Temperature and Strain through Brillouin Frequency Shift Using a Common Communication Optical Fiber. Int. J. Opt. 2021, 2021, 1–6. [Google Scholar] [CrossRef]
- Zou, X.; Chao, A.; Tian, Y.; Wu, N.; Zhang, H.; Yu, T.; Wang, X. An experimental study on the concrete hydration process using Fabry–Perot fiber optic temperature sensors. Measurement 2012, 45, 1077–1082. [Google Scholar] [CrossRef]
- Taheri, S.; Ams, M.; Bustamante, H.; Vorreiter, L.; Withford, M.; Clark, S. A practical methodology to assess corrosion in concrete sewer pipes. MATEC Web Conf. 2018, 199, 06010. [Google Scholar] [CrossRef]
- Duraibabu, D.B.; Poeggel, S.; Omerdic, E.; Capocci, R.; Lewis, E.; Newe, T.; Leen, G.; Toal, D.; Dooly, G. An Optical Fibre Depth (Pressure) Sensor for Remote Operated Vehicles in Underwater Applications. Sensors 2017, 17, 406. [Google Scholar] [CrossRef] [Green Version]
- Rente, B.; Fabian, M.; Vidakovic, M.; Vorreiter, L.; Bustamante, H.; Sun, T.; Grattan, K.T.V. Extended Study of Fiber Optic-Based Humidity Sensing System Performance for Sewer Network Condition Monitoring. IEEE Sens. J. 2021, 21, 7665–7671. [Google Scholar] [CrossRef]
- Apperl, B.; Pressl, A.; Schulz, K. Feasibility of locating leakages in sewage pressure pipes using the distributed temperature sensing technology. Water Air Soil Pollut. 2017, 228, 82. [Google Scholar] [CrossRef] [Green Version]
- Kechavarzi, C.; Keenan, P.; Xu, X.; Rui, Y. Monitoring the Hydraulic Performance of Sewers Using Fibre Optic Distributed Temperature Sensing. Water 2020, 12, 2451. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, J. Capacitive humidity sensors based on the dielectrophoretically manipulated ZnO nanorods. Sens. Actuators A Phys. 2012, 178, 88–93. [Google Scholar] [CrossRef]
- Lim, D.I.; Cha, J.R.; Gong, M.S. Preparation of flexible resistive micro-humidity sensors and their humidity-sensing properties. Sens. Actuators B Chem. 2013, 183, 574–582. [Google Scholar] [CrossRef]
- Harun, N.; Ali, R.; Ali, A.; Yahy, M. Resistive-type humidity sensor based on CA-NH4BF4-PEG600 thin films. Phys. Procedia 2012, 25, 221–226. [Google Scholar] [CrossRef] [Green Version]
- Mahtab, S.; Joshi, P.; Arya, B.; Zaidi, M.; Siddiqui, T.I. Effect of Humidity on Electrical Conductivity of Graphite Nanocomposite Based Electrodes: A Review. Mater. Sci. Res. India 2020, 17, 08–15. [Google Scholar] [CrossRef]
- Ha, N.T.T.; An, D.K.; Phong, P.V.; Hoa, P.T.M. Study and performance of humidity sensor based on the mechanical–optoelectronic principle for the measurement and control of humidity in storehouses. Sens. Actuators B Chem. 2000, 66, 200–202. [Google Scholar] [CrossRef]
- Tichy, H.; Loftus, R. Hygroreceptors in Insects and a Spider: HumidityTransduction Models. Sci. Nat. 1996, 6, 255–263. [Google Scholar] [CrossRef]
- Mauz, M.; van Kesteren, B.; JUNkERMANN, W.; zum Berge, K.; SCHöN, M.; Platis, A.; Bange, J. Miniature high-frequency chilled-mirror hygrometer for atmospheric measurements aboard fixed wing UAS. In Meteorologische Zeitschrift: Schweizerbart’sche; Verlagsbuchhandlung: Stuttgart, Germany, 2020; pp. 439–449. [Google Scholar]
- Martínez, A.T. On the evaluation of the wet bulb temperature as a function of dry bulb temperature and relative humidity. Atmósfera 2009, 7, 179–184. [Google Scholar]
- Green, A.; Kohsiek, W. A fast response, open path, infrared hygrometer, using a semiconductor source. Bound. Layer Meteorol. 1995, 74, 353–370. [Google Scholar] [CrossRef]
- Lee, C.Y.; Lee, G.B. Humidity sensors: A review. Sens. Lett. 2005, 3, 1–15. [Google Scholar] [CrossRef]
- Luo, Y.; Chen, C.; Xia, K.; Peng, S.; Guan, H.; Tang, J.; Lu, H.; Yu, J.; Zhang, J.; Xiao, Y.; et al. Tungsten disulfide (WS 2) based all-fiber-optic humidity sensor. Opt. Express 2016, 24, 8956–8966. [Google Scholar] [CrossRef]
- Xiao, Y.; Zhang, J.; Cai, X.; Tan, S.; Yu, J.; Lu, H.; Luo, Y.; Liao, G.; Li, S.; Tang, J.; et al. Reduced graphene oxide for fiber-optic humidity sensing. Opt. Express 2014, 22, 31555–31567. [Google Scholar] [CrossRef]
- Huang, C.; Weijing, X.; Yang, M.; Dai, J.; Zhang, B. Optical Fiber Fabry—Perot Humidity Sensor Based on Porous Al2O3 Film. IEEE Photonics Technol. Lett. 2015, 27, 1. [Google Scholar] [CrossRef]
- Wang, C.; Zhou, B.; Jiang, H.; He, S. Agarose Filled Fabry-Perot Cavity for Temperature Self-Calibration Humidity Sensing. IEEE Photonics Technol. Lett. 2016, 28, 1. [Google Scholar] [CrossRef]
- Santos, J.; Raimundo, I., Jr.; Cordeiro, C.; Biazoli, C.; Gouveia, C.; Jorge, P. Characterisation of a Nafion film by optical fibre Fabry–Perot interferometry for humidity sensing. Sens. Actuators B Chem. 2014, 196, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zhang, T.; Rao, Y.; Gong, Y. Miniature interferometric humidity sensors based on silica/polymer microfiber knot resonators. Sens. Actuators B Chem. 2011, 155, 258–263. [Google Scholar] [CrossRef]
- Mallik, A.; Liu, D.; Kavungal, V.; Wu, Q.; Farrell, G.; Semenova, Y. Agarose coated spherical micro resonator for humidity measurements. Opt. Express 2016, 24, 24216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Correia, S.; Antunes, P.; Pecoraro, E.; Lima, P.; Varum, H.; Carlos, L.; Ferreira, R.; André, P. Optical Fiber Relative Humidity Sensor Based on a FBG with a Di-Ureasil Coating. Sensors 2012, 12, 8847–8860. [Google Scholar] [CrossRef] [Green Version]
- Rente, B.; Fabian, M.; Vidakovic, M.; Sunarho, J.; Bustamante, H.; Sun, T.; Grattan, K.T.V. A Fiber Bragg Grating (FBG)-Based Sensor System for Anaerobic Biodigester Humidity Monitoring. IEEE Sens. J. 2021, 21, 1540–1547. [Google Scholar] [CrossRef]
- Woyessa, G.; Nielsen, K.; Stefani, A.; Markos, C.; Bang, O. Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor. Opt. Express 2016, 24, 1206. [Google Scholar] [CrossRef] [Green Version]
- Ascorbe, J.; Corres, J.; Matias, I.; Arregui, F. High sensitivity humidity sensor based on cladding-etched optical fiber and lossy mode resonances. Sens. Actuators B Chem. 2016, 233. [Google Scholar] [CrossRef] [Green Version]
- Presti, D.; Massaroni, C.; Piemonte, V.; Saccomandi, P.; D’Amato, R.; Caponero, M.; Schena, E. Agar-coated fiber Bragg grating sensor for relative humidity measurements: Influence of coating thickness and polymer concentration nm. IEEE Sens. J. 2019, 19, 1. [Google Scholar] [CrossRef]
- Jiang, B.; Bi, Z.; Hao, Z.; Yuan, Q.; Feng, D.; Zhou, K.; Zhang, L.; Gan, X.; Peng, L. Graphene oxide-deposited tilted fiber grating for ultrafast humidity sensing and human breath monitoring. Sens. Actuators B Chem. 2019, 293. [Google Scholar] [CrossRef]
- Aneesh, R.; Khijwania, S.K. Zinc oxide nanoparticle based optical fiber humidity sensor having linear response throughout a large dynamic range. Appl. Opt. 2011, 50, 5310–5314. [Google Scholar] [CrossRef] [PubMed]
- Liehr, S.; Breithaupt, M.; Krebber, K. Distributed humidity sensing in PMMA optical fibers at 500 nm and 650 nm wavelengths. Sensors 2017, 17, 738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schreier, A. Comparision of solution approaches for distributed humidity sensing in PFGI-POF. Proc. SPIE Opt. Sens. 2019, 11028, 1102808. [Google Scholar] [CrossRef]
- Wang, B.; Tian, J.; Hu, L.; Yao, Y. High sensitivity humidity fiber-optic sensor based on all-agar Fabry–Perot interferometer. IEEE Sens. J. 2018, 18, 4879–4885. [Google Scholar] [CrossRef]
- Hu, P.; Dong, X.; Ni, K.; Chen, L.; Wong, W.C.; Chan, C. Sensitivity-enhanced Michelson interferometric humidity sensor with waist-enlarged fiber bitaper. Sens. Actuators B Chem. 2014, 194, 180–184. [Google Scholar] [CrossRef]
- Lopez-Torres, D.; Elosua, C.; Villatoro, J.; Zubia, J.; Rothhardt, M.; Schuster, K.; Arregui, F.J. Photonic crystal fiber interferometer coated with a PAH/PAA nanolayer as humidity sensor. Sens. Actuators B Chem. 2017, 242, 1065–1072. [Google Scholar] [CrossRef]
- Mathew, J.; Semenova, Y.; Farrell, G. Experimental demonstration of a high-sensitivity humidity sensor based on an Agarose-coated transmission-type photonic crystal fiber interferometer. Appl. Opt. 2013, 52, 3884–3890. [Google Scholar] [CrossRef]
- Mathew, J.; Semenova, Y.; Farrell, G. Effect of coating thickness on the sensitivity of a humidity sensor based on an Agarose coated photonic crystal fiber interferometer. Opt. Express 2013, 21, 6313–6320. [Google Scholar] [CrossRef]
- Li, T.; Dong, X.; Chan, C.; Ni, K.; Zhang, S.; Shum, P. Humidity Sensor With a PVA-Coated Photonic Crystal Fiber Interferometer. Sens. J. IEEE 2013, 13, 2214–2216. [Google Scholar] [CrossRef]
- Lin, Y.; Gong, Y.; Wu, Y.; Wu, H. Polyimide-coated fiber Bragg grating for relative humidity sensing. Photonic Sens. 2015, 5, 60–66. [Google Scholar] [CrossRef] [Green Version]
- Swanson, A.; Raymond, S.; Janssens, S.; Breukers, R.; Bhuiyan, M.; Lovell-Smith, J.; Waterland, M. Development of novel polymer coating for FBG based relative humidity sensing. Sens. Actuators A Phys. 2016, 249, 217–224. [Google Scholar] [CrossRef]
- Jang, J.; Kang, K.; Raeis-Hosseini, N.; Ismukhanova, A.; Jeong, H.; Jung, C.; Kim, B.; Lee, J.Y.; Park, I.; Rho, J. Self-Powered Humidity Sensor Using Chitosan-Based Plasmonic Metal–Hydrogel–Metal Filters. Adv. Opt. Mater. 2020, 8, 1901932. [Google Scholar] [CrossRef]
- Wang, J.; Liang, H.; Dong, X.; Jin, Y. A Temperature-Insensitive Relative Humidity Sensor by using Polarization Maintaining Fiber-Based Sagnac Interferometer. Microw. Opt. Technol. Lett. 2013, 55. [Google Scholar] [CrossRef]
- Sun, L.P.; Li, J.; Jin, L.; Ran, Y.; Guan, B.O. High-birefringence microfiber Sagnac interferometer based humidity sensor. Sens. Actuators B Chem. 2016, 231. [Google Scholar] [CrossRef] [Green Version]
- Mohamad Aris, A. Tapered Fiber Bragg Grating Sensor Coated with Zinc Oxide Nanostructures for Humidity Measurement. J. Telecommun. Electron. Comput. Eng. (JTEC) 2017, 9, 1–5. [Google Scholar]
Factors | Parameter | Contributions | References |
---|---|---|---|
Waste Water Characteristics | Sulfate content | Increased sulfate enables SRB to sulfide formation by reduction. | [36] |
Dissolved Oxygen (DO) |
| [33] | |
BOD | Increased BOD indicates the large sulfide generation. | [33,36] | |
pH | Large pH does not support (aq) thus limits the growth of (g). | [37] | |
Environmental conditions | RH | Increased RH empowers dampness buildup on sewer walls thus enables biofilms to develop in turn accelerates the formation. | [36,38] |
Surrounding temperature | High temperature also enhances the microbial activities increases the rate of corrosion. | [24] | |
Concrete attributes | Alkalinity | Large alkalinity furnish larger substances to respond with acids thus slow down the MIC rate. | [39] |
Aluminate Cements | Enhanced aluminate cements are better than portland cements for MIC reaction. | [40] | |
Concrete attributes | Geopolymer | Geopolymer withstand for acid attacks better than portland cements. | [41] |
Microorganisms | SRB | Large SRB increases the rate of (aq) formation leads to high MIC rates. | |
SOB | Larger SOB supports the oxidization of (g) results in increased sulfuric acid content. | [42] | |
Hydraulics design | Turbulence |
| [43] |
Retention time |
| [44] | |
Ventilation conditions |
| [44] |
Attributes | Electrochemical | Electromechanical | FOS |
---|---|---|---|
EMI | Sensitive | Sensitive | Insensitive [94] |
Sustainability | Low | Low | High [7] |
Degree of Selectivity | Low | Moderate | High [7] |
Response Time | Very Good | Good | Excellent [95] |
Accuracy | Moderate | Moderate | High [96] |
Resolution | Good | Good | Excellent [97] |
Cost | Low [98] | Moderate | High |
Real Time Deployment | Difficult [99] | Difficult | Easy |
Methodology | pH-Range | Sensitivity | Response Time | References |
---|---|---|---|---|
Signal’s pulse width of received signal changes with change in pH | 2–12 | 0.46 µs/pH | Not Reported | [137] |
RI of polymeric coatings which varies with pH is monitored with LMR | 3–6 | 0.027 pH units/nm | Not Reported | [143] |
RI changes in the hydrogel coated LPFG with respect to pH change causes shift in resonance wavelength | 2–12 | 0.66 nm/pH | less than 2 s | [85] |
Monitoring the pH using fluorescence based technique | 10–13 | NA | 50 min | [128] |
PDDA/PAA Film causes a change in RI, by monitoring the wavelength shift and transmission change of TFBG, pH is measured | 4.66–6.02 | 117 (a.u.)/pH | 10 s | [145] |
Monitoring the temperature change of pH-sensitive chromophores with Bragg shift | 2.5–10 | NA | NA | [146] |
Cladding modes in TFBG shifted with refractive index changes of the sensitive layer for pH | 2–12 | 46 pm/pH | NA | [86] |
FBG inscribed in polymer optical fiber is used, where cladding is etched to 80 mico meter to enhance the sensitivity | 5–7 | 73 pm/pH | less than 4.5 | [147] |
Optical Sensing Technology | Method | Sensitivity | Humidity-Range | Response Time | Inference | Reference |
---|---|---|---|---|---|---|
Interferometer | Porous oxide coated Fabry Perot fiber is used for humidity sensing | 0.7 nm/%RH | 3.3% to 63% | 18 min | Exhibits temperature cross-sensitivity of 0.1 nm/degree Celcius and it is suitable for low humidity range | [180] |
FP cavity is realized with a coating of Nafion film | 3.5 nm/%RH | 22% to 80% | 242 ms | Not chemically inert, suitable for the middle range of RH. Cross sensitivity with temperature is not analysed | [182] | |
FP cavity is created with two identical FBG and agarose is filled between two FBG | 22.5 pm/%RH | 16% to 85% | 5 s | FBG spectrum is used to solve the cross-sensitivity of temperature and the sensor fabrication is a little bit complex | [181] | |
PVA film is coated on partially etched PMF is used for humidity sensing and another part of PMF is used for temperature sensing | 111.5 pm/%RH | 20% to 80% | 6 s | Exhibits small temperature cross-sensitivity of 7.2 nm/C and requires Polarization Maintaining Fiber. | [203] | |
Humidity sensing is achieved through the interaction between the evanescent mode field of the Highly Birefrigence elliptic microfiber and external physical quantities | 201.25 pm/%RH | 30% to 90% | 60 ms | Fabrication of sensor is difficult. Separate coating for humidity is not required | [204] | |
Resonators | Compared the performance of Microfiber Knot resonator made of silica and polymer | 12 pm/10%RH (silica) and 88 pm/10%RH (polymer) | 15% to 60% for silica and 17% to 95% for polymer | Polymer < 0.5 s | The fabricated sensors are more fragile and not suitable for harsh environment. No separate coating material is required | [183] |
RH is monitored through RI and thickness change of agarcose coated on tapered fiber | 518 pm/%RH | 30% to 70% | Not Reported | Demonstrated at constant temperature | [184] | |
LMR | Tin oxide coated on cladding etched Fiber is used for humidity sensing with LMR | 1.9 nm/%RH | 20% to 90 % | 1.52 s | Fiber diameter influences the attenuation of LMR which make it difficult to find the peak | [188] |
Humidity sensitive agar is coated on FBG and the hygroscopic property of agar causes the strain on FBG through humidity is monitored | 0.051 nm/%RH | 40% to 100% | Not Reported | Thickness of agar was optimized to achieve better sensitivity is analyzed. | [189] | |
Tapered FBG is coated with ZnO to measure humidity | 2.51 pm/%RH | 55% to 80% | NA | The resolution of the sensor improved from 3.10% to 1.95% with the ZnO nanostructures. | [205] | |
Graphene is coated on Fiber having tilted FBG which explore cladding modes to interact with surrounding RH | 0.0185 nm/%RH | 30% to 80% | 0.042 s | Etching or tapering can be avoided which makes the fiber fragile | [190] | |
FBG | Organic silica hybrid material coated FBG is used to monitor humidity in concrete structures | 22.2 pm/%RH | 15% to 95% | Not Reported | Temperature compensation is achieved with additional FBG | [185] |
Polyimide coated FBG packed in PEEK material is used for monitoring humidity | 0.005 nm/%RH | 10% to 95% | Not Reported | Perforated PEEK material enhances the corrosion resistant property of FBG-based sensors | [186] | |
FBG inscribed in polymer optical fiber is coated with PMMA | 35 pm/%RH | 25% to 75% | 90 secs | Annealing of polymer optical fiber makes it temperature independent over certain humidity ranges | [187] | |
PAH/PAA coated on PCF sliced with SMF | 0.29 nm/%RH | 20% to 95% | 0.3 s | Linear response over the range of 20% to 75% | [196] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raju, B.; Kumar, R.; Dhanalakshmi, S.; Dooly, G.; Duraibabu, D.B. Review of Fiber Optical Sensors and Its Importance in Sewer Corrosion Factor Analysis. Chemosensors 2021, 9, 118. https://doi.org/10.3390/chemosensors9060118
Raju B, Kumar R, Dhanalakshmi S, Dooly G, Duraibabu DB. Review of Fiber Optical Sensors and Its Importance in Sewer Corrosion Factor Analysis. Chemosensors. 2021; 9(6):118. https://doi.org/10.3390/chemosensors9060118
Chicago/Turabian StyleRaju, Bharathi, R. Kumar, Samiappan Dhanalakshmi, Gerard Dooly, and Dinesh Babu Duraibabu. 2021. "Review of Fiber Optical Sensors and Its Importance in Sewer Corrosion Factor Analysis" Chemosensors 9, no. 6: 118. https://doi.org/10.3390/chemosensors9060118
APA StyleRaju, B., Kumar, R., Dhanalakshmi, S., Dooly, G., & Duraibabu, D. B. (2021). Review of Fiber Optical Sensors and Its Importance in Sewer Corrosion Factor Analysis. Chemosensors, 9(6), 118. https://doi.org/10.3390/chemosensors9060118