Ru-Doped Single Walled Carbon Nanotubes as Sensors for SO2 and H2S Detection
Abstract
:1. Introduction
2. Computational Methods
3. Results
3.1. Encapsulation of SO2 and H2S within SWNT
3.2. Adsorption of SO2 and H2S on the Surface of SWNT
3.3. Ru-Doped SWNT
3.4. Encapsulation of SO2 and H2S within Ru-Doped SWNT
3.5. Adsorption of SO2 and H2S on the Surface of Ru-Doped SWNT
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rao, R.; Pint, C.L.; Islam, A.E.; Weatherup, R.S.; Hofmann, S.; Meshot, E.R.; Wu, F.; Zhou, C.; Dee, N.; Amama, P.B.; et al. Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS Nano 2018, 12, 11756–11784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popov, V.N. Carbon nanotubes: Properties and application. Mater. Sci. Eng. R Rep. 2004, 43, 61–102. [Google Scholar] [CrossRef]
- Gupta, N.; Gupta, S.M.; Sharma, S.K. Carbon nanotubes: Synthesis, properties and engineering applications. Carbon Lett. 2019, 29, 419–447. [Google Scholar] [CrossRef]
- Chen, Y.-R.; Weng, C.-I.; Sun, S.-J. Electronic properties of zigzag and armchair carbon nanotubes under uniaxial strain. J. Appl. Phys. 2008, 104, 114310. [Google Scholar] [CrossRef] [Green Version]
- Yazdani, H.; Hatami, K.; Eftekhari, M. Mechanical properties of single-walled carbon nanotubes: A comprehensive molecular dynamics study. Mater. Res. Express 2017, 4, 055015. [Google Scholar] [CrossRef]
- Calatayud, D.G.; Ge, H.; Kuganathan, N.; Mirabello, V.; Jacobs, R.M.J.; Rees, N.H.; Stoppiello, C.T.; Khlobystov, A.N.; Tyrrell, R.M.; Como, E.D.; et al. Encapsulation of Cadmium Selenide Nanocrystals in Biocompatible Nanotubes: DFT Calculations, X-ray Diffraction Investigations, and Confocal Fluorescence Imaging. ChemistryOpen 2018, 7, 144–158. [Google Scholar] [CrossRef] [Green Version]
- Hu, Z.; Pantoş, G.D.; Kuganathan, N.; Arrowsmith, R.L.; Jacobs, R.M.J.; Kociok-Köhn, G.; O’Byrne, J.; Jurkschat, K.; Burgos, P.; Tyrrell, R.M.; et al. Interactions Between Amino Acid-Tagged Naphthalenediimide and Single Walled Carbon Nanotubes for the Design and Construction of New Bioimaging Probes. Adv. Funct. Mater. 2012, 22, 503–518. [Google Scholar] [CrossRef]
- Mao, B.; Calatayud, D.G.; Mirabello, V.; Kuganathan, N.; Ge, H.; Jacobs, R.M.J.; Shepherd, A.M.; Martins, J.A.R.; De La Serna, J.B.; Hodges, B.J.; et al. Fluorescence-Lifetime Imaging and Super-Resolution Microscopies Shed Light on the Directed- and Self-Assembly of Functional Porphyrins onto Carbon Nanotubes and Flat Surfaces. Chemistry 2017, 23, 9772–9789. [Google Scholar] [CrossRef] [Green Version]
- Bekyarova, E.; Ni, Y.; Malarkey, E.B.; Montana, V.; McWilliams, J.L.; Haddon, R.C.; Parpura, V. Applications of Carbon Nanotubes in Biotechnology and Biomedicine. J. Biomed. Nanotechnol. 2005, 1, 3–17. [Google Scholar] [CrossRef] [Green Version]
- Hofferber, E.M.; Stapleton, J.A.; Iverson, N.M. Review—Single Walled Carbon Nanotubes as Optical Sensors for Biological Applications. J. Electrochem. Soc. 2020, 167, 037530. [Google Scholar] [CrossRef]
- Venkataraman, A.; Amadi, E.V.; Chen, Y.; Papadopoulos, C. Carbon Nanotube Assembly and Integration for Applications. Nanoscale Res. Lett. 2019, 14, 220. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Pham-Huy, L.A.; Dramou, P.; Xiao, D.; Zuo, P.; Pham-Huy, C. Carbon Nanotubes: Applications in Pharmacy and Medicine. Biomed Res. Int. 2013, 2013, 578290. [Google Scholar] [CrossRef] [Green Version]
- Dillon, A.C. Carbon Nanotubes for Photoconversion and Electrical Energy Storage. Chem. Rev. 2010, 110, 6856–6872. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wang, X.; Wang, Y.; Zhang, Q. Roles of carbon nanotubes in novel energy storage devices. Carbon 2017, 122, 462–474. [Google Scholar] [CrossRef]
- Wu, A.S.; Chou, T.-W. Carbon nanotube fibers for advanced composites. Mater. Today 2012, 15, 302–310. [Google Scholar] [CrossRef]
- Sharma, S.P.; Lakkad, S.C. Effect of CNTs growth on carbon fibers on the tensile strength of CNTs grown carbon fiber-reinforced polymer matrix composites. Composites Part A Appl. Sci. Manuf. 2011, 42, 8–15. [Google Scholar] [CrossRef]
- Yadav, M.D.; Dasgupta, K.; Patwardhan, A.W.; Joshi, J.B. High Performance Fibers from Carbon Nanotubes: Synthesis, Characterization, and Applications in Composites—A Review. Ind. Eng. Chem. Res. 2017, 56, 12407–12437. [Google Scholar] [CrossRef]
- Norizan, M.N.; Moklis, M.H.; Ngah Demon, S.Z.; Halim, N.A.; Samsuri, A.; Mohamad, I.S.; Knight, V.F.; Abdullah, N. Carbon nanotubes: Functionalisation and their application in chemical sensors. RSC Adv. 2020, 10, 43704–43732. [Google Scholar] [CrossRef]
- Manzetti, S.; Vasilache, D.; Francesco, E. Emerging carbon-based nanosensor devices: Structures, functions and applications. Adv. Manuf. 2015, 3, 63–72. [Google Scholar] [CrossRef]
- Dai, H.; Hafner, J.H.; Rinzler, A.G.; Colbert, D.T.; Smalley, R.E. Nanotubes as nanoprobes in scanning probe microscopy. Nature 1996, 384, 147–150. [Google Scholar] [CrossRef]
- Baughman, R.H.; Cui, C.; Zakhidov, A.A.; Iqbal, Z.; Barisci, J.N.; Spinks, G.M.; Wallace, G.G.; Mazzoldi, A.; De Rossi, D.; Rinzler, A.G.; et al. Carbon Nanotube Actuators. Science 1999, 284, 1340–1344. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, C.; Thostenson, E.T.; Chou, T.-W. Sensors and actuators based on carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2008, 68, 1227–1249. [Google Scholar] [CrossRef]
- Peng, L.-M.; Zhang, Z.; Wang, S. Carbon nanotube electronics: Recent advances. Mater. Today 2014, 17, 433–442. [Google Scholar] [CrossRef]
- Cao, Y.; Cong, S.; Cao, X.; Wu, F.; Liu, Q.; Amer, M.R.; Zhou, C. Review of Electronics Based on Single-Walled Carbon Nanotubes. Top. Curr. Chem. 2017, 375, 75. [Google Scholar] [CrossRef] [PubMed]
- Melchionna, M.; Marchesan, S.; Prato, M.; Fornasiero, P. Carbon nanotubes and catalysis: The many facets of a successful marriage. Catal. Sci. Tech. 2015, 5, 3859–3875. [Google Scholar] [CrossRef] [Green Version]
- Esteves, L.M.; Oliveira, H.A.; Passos, F.B. Carbon nanotubes as catalyst support in chemical vapor deposition reaction: A review. J. Ind. Eng. Chem. 2018, 65, 1–12. [Google Scholar] [CrossRef]
- Froudakis, G.E. Hydrogen storage in nanotubes and nanostructures. Mater. Today 2011, 14, 324–328. [Google Scholar] [CrossRef]
- Mohan, M.; Sharma, V.K.; Kumar, E.A.; Gayathri, V. Hydrogen storage in carbon materials—A review. Energy Storage 2019, 1, e35. [Google Scholar] [CrossRef]
- Zhang, W.-D.; Zhang, W.-H. Carbon Nanotubes as Active Components for Gas Sensors. J. Sens. 2009, 2009, 160698. [Google Scholar] [CrossRef] [Green Version]
- Brahim, S.; Colbern, S.; Gump, R.; Grigorian, L. Tailoring gas sensing properties of carbon nanotubes. J. Appl. Phys. 2008, 104, 024502. [Google Scholar] [CrossRef]
- Tang, R.; Shi, Y.; Hou, Z.; Wei, L. Carbon Nanotube-Based Chemiresistive Sensors. Sensors 2017, 17, 882. [Google Scholar] [CrossRef] [PubMed]
- Panes-Ruiz, L.A.; Shaygan, M.; Fu, Y.; Liu, Y.; Khavrus, V.; Oswald, S.; Gemming, T.; Baraban, L.; Bezugly, V.; Cuniberti, G. Toward Highly Sensitive and Energy Efficient Ammonia Gas Detection with Modified Single-Walled Carbon Nanotubes at Room Temperature. ACS Sensors 2018, 3, 79–86. [Google Scholar] [CrossRef] [Green Version]
- Ellison, M.D.; Crotty, M.J.; Koh, D.; Spray, R.L.; Tate, K.E. Adsorption of NH3 and NO2 on Single-Walled Carbon Nanotubes. J. Phys. Chem. B 2004, 108, 7938–7943. [Google Scholar] [CrossRef]
- Yang, Y.; Narayanan Nair, A.K.; Sun, S. Adsorption and Diffusion of Carbon Dioxide, Methane, and Their Mixture in Carbon Nanotubes in the Presence of Water. J. Phys. Chem. C 2020, 124, 16478–16487. [Google Scholar] [CrossRef]
- Bagherinia, M.A.; Shadman, M. Investigations of CO2, CH4 and N2 physisorption in single-walled silicon carbon nanotubes using GCMC simulation. Int. Nano Lett. 2014, 4, 95. [Google Scholar] [CrossRef] [Green Version]
- Yeung, C.S.; Liu, L.V.; Wang, Y.A. Adsorption of Small Gas Molecules onto Pt-Doped Single-Walled Carbon Nanotubes. J. Phys. Chem. C 2008, 112, 7401–7411. [Google Scholar] [CrossRef]
- Sharafeldin, I.M.; Allam, N.K. DFT insights into the electronic properties and adsorption of NO2 on metal-doped carbon nanotubes for gas sensing applications. New J. Chem. 2017, 41, 14936–14944. [Google Scholar] [CrossRef]
- Yeung, C.S.; Chen, Y.K.; Wang, Y.A. Theoretical Studies of Substitutionally Doped Single-Walled Nanotubes. J. Nanotechnol. 2010, 2010, 801789. [Google Scholar] [CrossRef] [Green Version]
- Abdullah, H.Y. Theoretical study of the binding energy of some gases on Al-doped carbon nanotube. Results Phys. 2016, 6, 1146–1151. [Google Scholar] [CrossRef] [Green Version]
- Azizi, K.; Karimpanah, M. Computational study of Al- or P-doped single-walled carbon nanotubes as NH3 and NO2 sensors. Appl. Surf. Sci. 2013, 285, 102–109. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, G.; Tian, J.; Ma, D.; Wang, Y. First-principles study on the gas sensing property of the Ge, As, and Br doped PtSe2. Mater. Res. Express 2018, 5, 035037. [Google Scholar] [CrossRef]
- Oftadeh, M.; Gholamian, M.; Abdallah, H.H. Sulfur Dioxide Internal and External Adsorption on the Single-Walled Carbon Nanotubes: DFT Study. Phys. Chem. Res. 2014, 2, 30–40. [Google Scholar]
- Oftadeh, M.; Gholamian, M.; Abdallah, H.H. Investigation of interaction hydrogen sulfide with (5,0) and (5,5) single-wall carbon nanotubes by density functional theory method. Int. Nano Lett. 2013, 3, 7. [Google Scholar] [CrossRef] [Green Version]
- Babaheydari, A.K.; Jafari, A.; Moghadam, G.; Tavakoli, K. Investigation and Study of Adsorption Properties of H2S on Carbon Nanotube (8, 0) (SWCNT) Using Density Functional Theory Calculation. Adv. Sci. Lett. 2013, 19, 3201–3205. [Google Scholar] [CrossRef]
- An, L.; Jia, X.; Liu, Y. Adsorption of SO2 molecules on Fe-doped carbon nanotubes: The first principles study. Adsorption 2019, 25, 217–224. [Google Scholar] [CrossRef]
- Guo, G.; Wang, F.; Sun, H.; Zhang, D. Reactivity of silicon-doped carbon nanotubes toward small gaseous molecules in the atmosphere. Int. J. Quantum Chem. 2008, 108, 203–209. [Google Scholar] [CrossRef]
- Zhang, X.; Dai, Z.; Chen, Q.; Tang, J. A DFT study of SO2 and H2S gas adsorption on Au-doped single-walled carbon nanotubes. Phys. Scr. 2014, 89, 065803. [Google Scholar] [CrossRef]
- Liao, T.; Kou, L.; Du, A.; Chen, L.; Cao, C.; Sun, Z. H2S Sensing and Splitting on Atom-Functionalized Carbon Nanotubes: A Theoretical Study. Adv. Theory Simul. 2018, 1, 1700033. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio totaCambridgel-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [Green Version]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bader, R.F.W. The zero-flux surface and the topological and quantum definitions of an atom in a molecule. Theor. Chem. Acc. 2001, 105, 276–283. [Google Scholar] [CrossRef]
- Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics, 86th ed.; CRC: Boca Raton, FL, USA, 2005. [Google Scholar]
System | Encapsulation Energy (eV) | Charge Transfer | Magnetic Moment |
---|---|---|---|
SWNT | --- | --- | 0.00 |
SO2@SWNT | −0.27 | 0.11 | 0.10 |
H2S@SWNT | −0.20 | 0.02 | 0.00 |
System | Adsorption Energy (eV) | Charge Transfer | Magnetic Moment |
---|---|---|---|
SWNT | --- | --- | 0.00 |
SO2_SWNT | −0.23 | 0.09 | 0.00 |
H2S_SWNT | −0.15 | 0.01 | 0.00 |
System | Encapsulation Energy (eV) | Charge Transfer | Magnetic Moment |
---|---|---|---|
SWNT | --- | --- | 0.00 |
SO2@Ru.SWNT | −0.29 | 0.11 | 0.30 |
H2[email protected] | −0.23 | 0.02 | 0.00 |
System | Adsorption Energy (eV) | Charge Transfer | Magnetic Moment |
---|---|---|---|
SWNT | --- | --- | 0.00 |
SO2_Ru.SWNT | −1.08 | 0.52 | 0.67 |
H2S_Ru.SWNT | −1.00 | 0.07 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuganathan, N.; Chroneos, A. Ru-Doped Single Walled Carbon Nanotubes as Sensors for SO2 and H2S Detection. Chemosensors 2021, 9, 120. https://doi.org/10.3390/chemosensors9060120
Kuganathan N, Chroneos A. Ru-Doped Single Walled Carbon Nanotubes as Sensors for SO2 and H2S Detection. Chemosensors. 2021; 9(6):120. https://doi.org/10.3390/chemosensors9060120
Chicago/Turabian StyleKuganathan, Navaratnarajah, and Alexander Chroneos. 2021. "Ru-Doped Single Walled Carbon Nanotubes as Sensors for SO2 and H2S Detection" Chemosensors 9, no. 6: 120. https://doi.org/10.3390/chemosensors9060120
APA StyleKuganathan, N., & Chroneos, A. (2021). Ru-Doped Single Walled Carbon Nanotubes as Sensors for SO2 and H2S Detection. Chemosensors, 9(6), 120. https://doi.org/10.3390/chemosensors9060120