Ru-Doped Single Walled Carbon Nanotubes as Sensors for SO2 and H2S Detection
Abstract
1. Introduction
2. Computational Methods
3. Results
3.1. Encapsulation of SO2 and H2S within SWNT
3.2. Adsorption of SO2 and H2S on the Surface of SWNT
3.3. Ru-Doped SWNT
3.4. Encapsulation of SO2 and H2S within Ru-Doped SWNT
3.5. Adsorption of SO2 and H2S on the Surface of Ru-Doped SWNT
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rao, R.; Pint, C.L.; Islam, A.E.; Weatherup, R.S.; Hofmann, S.; Meshot, E.R.; Wu, F.; Zhou, C.; Dee, N.; Amama, P.B.; et al. Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS Nano 2018, 12, 11756–11784. [Google Scholar] [CrossRef] [PubMed]
- Popov, V.N. Carbon nanotubes: Properties and application. Mater. Sci. Eng. R Rep. 2004, 43, 61–102. [Google Scholar] [CrossRef]
- Gupta, N.; Gupta, S.M.; Sharma, S.K. Carbon nanotubes: Synthesis, properties and engineering applications. Carbon Lett. 2019, 29, 419–447. [Google Scholar] [CrossRef]
- Chen, Y.-R.; Weng, C.-I.; Sun, S.-J. Electronic properties of zigzag and armchair carbon nanotubes under uniaxial strain. J. Appl. Phys. 2008, 104, 114310. [Google Scholar] [CrossRef]
- Yazdani, H.; Hatami, K.; Eftekhari, M. Mechanical properties of single-walled carbon nanotubes: A comprehensive molecular dynamics study. Mater. Res. Express 2017, 4, 055015. [Google Scholar] [CrossRef]
- Calatayud, D.G.; Ge, H.; Kuganathan, N.; Mirabello, V.; Jacobs, R.M.J.; Rees, N.H.; Stoppiello, C.T.; Khlobystov, A.N.; Tyrrell, R.M.; Como, E.D.; et al. Encapsulation of Cadmium Selenide Nanocrystals in Biocompatible Nanotubes: DFT Calculations, X-ray Diffraction Investigations, and Confocal Fluorescence Imaging. ChemistryOpen 2018, 7, 144–158. [Google Scholar] [CrossRef]
- Hu, Z.; Pantoş, G.D.; Kuganathan, N.; Arrowsmith, R.L.; Jacobs, R.M.J.; Kociok-Köhn, G.; O’Byrne, J.; Jurkschat, K.; Burgos, P.; Tyrrell, R.M.; et al. Interactions Between Amino Acid-Tagged Naphthalenediimide and Single Walled Carbon Nanotubes for the Design and Construction of New Bioimaging Probes. Adv. Funct. Mater. 2012, 22, 503–518. [Google Scholar] [CrossRef]
- Mao, B.; Calatayud, D.G.; Mirabello, V.; Kuganathan, N.; Ge, H.; Jacobs, R.M.J.; Shepherd, A.M.; Martins, J.A.R.; De La Serna, J.B.; Hodges, B.J.; et al. Fluorescence-Lifetime Imaging and Super-Resolution Microscopies Shed Light on the Directed- and Self-Assembly of Functional Porphyrins onto Carbon Nanotubes and Flat Surfaces. Chemistry 2017, 23, 9772–9789. [Google Scholar] [CrossRef]
- Bekyarova, E.; Ni, Y.; Malarkey, E.B.; Montana, V.; McWilliams, J.L.; Haddon, R.C.; Parpura, V. Applications of Carbon Nanotubes in Biotechnology and Biomedicine. J. Biomed. Nanotechnol. 2005, 1, 3–17. [Google Scholar] [CrossRef]
- Hofferber, E.M.; Stapleton, J.A.; Iverson, N.M. Review—Single Walled Carbon Nanotubes as Optical Sensors for Biological Applications. J. Electrochem. Soc. 2020, 167, 037530. [Google Scholar] [CrossRef]
- Venkataraman, A.; Amadi, E.V.; Chen, Y.; Papadopoulos, C. Carbon Nanotube Assembly and Integration for Applications. Nanoscale Res. Lett. 2019, 14, 220. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Pham-Huy, L.A.; Dramou, P.; Xiao, D.; Zuo, P.; Pham-Huy, C. Carbon Nanotubes: Applications in Pharmacy and Medicine. Biomed Res. Int. 2013, 2013, 578290. [Google Scholar] [CrossRef]
- Dillon, A.C. Carbon Nanotubes for Photoconversion and Electrical Energy Storage. Chem. Rev. 2010, 110, 6856–6872. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Wang, X.; Wang, Y.; Zhang, Q. Roles of carbon nanotubes in novel energy storage devices. Carbon 2017, 122, 462–474. [Google Scholar] [CrossRef]
- Wu, A.S.; Chou, T.-W. Carbon nanotube fibers for advanced composites. Mater. Today 2012, 15, 302–310. [Google Scholar] [CrossRef]
- Sharma, S.P.; Lakkad, S.C. Effect of CNTs growth on carbon fibers on the tensile strength of CNTs grown carbon fiber-reinforced polymer matrix composites. Composites Part A Appl. Sci. Manuf. 2011, 42, 8–15. [Google Scholar] [CrossRef]
- Yadav, M.D.; Dasgupta, K.; Patwardhan, A.W.; Joshi, J.B. High Performance Fibers from Carbon Nanotubes: Synthesis, Characterization, and Applications in Composites—A Review. Ind. Eng. Chem. Res. 2017, 56, 12407–12437. [Google Scholar] [CrossRef]
- Norizan, M.N.; Moklis, M.H.; Ngah Demon, S.Z.; Halim, N.A.; Samsuri, A.; Mohamad, I.S.; Knight, V.F.; Abdullah, N. Carbon nanotubes: Functionalisation and their application in chemical sensors. RSC Adv. 2020, 10, 43704–43732. [Google Scholar] [CrossRef]
- Manzetti, S.; Vasilache, D.; Francesco, E. Emerging carbon-based nanosensor devices: Structures, functions and applications. Adv. Manuf. 2015, 3, 63–72. [Google Scholar] [CrossRef]
- Dai, H.; Hafner, J.H.; Rinzler, A.G.; Colbert, D.T.; Smalley, R.E. Nanotubes as nanoprobes in scanning probe microscopy. Nature 1996, 384, 147–150. [Google Scholar] [CrossRef]
- Baughman, R.H.; Cui, C.; Zakhidov, A.A.; Iqbal, Z.; Barisci, J.N.; Spinks, G.M.; Wallace, G.G.; Mazzoldi, A.; De Rossi, D.; Rinzler, A.G.; et al. Carbon Nanotube Actuators. Science 1999, 284, 1340–1344. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Thostenson, E.T.; Chou, T.-W. Sensors and actuators based on carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2008, 68, 1227–1249. [Google Scholar] [CrossRef]
- Peng, L.-M.; Zhang, Z.; Wang, S. Carbon nanotube electronics: Recent advances. Mater. Today 2014, 17, 433–442. [Google Scholar] [CrossRef]
- Cao, Y.; Cong, S.; Cao, X.; Wu, F.; Liu, Q.; Amer, M.R.; Zhou, C. Review of Electronics Based on Single-Walled Carbon Nanotubes. Top. Curr. Chem. 2017, 375, 75. [Google Scholar] [CrossRef] [PubMed]
- Melchionna, M.; Marchesan, S.; Prato, M.; Fornasiero, P. Carbon nanotubes and catalysis: The many facets of a successful marriage. Catal. Sci. Tech. 2015, 5, 3859–3875. [Google Scholar] [CrossRef]
- Esteves, L.M.; Oliveira, H.A.; Passos, F.B. Carbon nanotubes as catalyst support in chemical vapor deposition reaction: A review. J. Ind. Eng. Chem. 2018, 65, 1–12. [Google Scholar] [CrossRef]
- Froudakis, G.E. Hydrogen storage in nanotubes and nanostructures. Mater. Today 2011, 14, 324–328. [Google Scholar] [CrossRef]
- Mohan, M.; Sharma, V.K.; Kumar, E.A.; Gayathri, V. Hydrogen storage in carbon materials—A review. Energy Storage 2019, 1, e35. [Google Scholar] [CrossRef]
- Zhang, W.-D.; Zhang, W.-H. Carbon Nanotubes as Active Components for Gas Sensors. J. Sens. 2009, 2009, 160698. [Google Scholar] [CrossRef]
- Brahim, S.; Colbern, S.; Gump, R.; Grigorian, L. Tailoring gas sensing properties of carbon nanotubes. J. Appl. Phys. 2008, 104, 024502. [Google Scholar] [CrossRef]
- Tang, R.; Shi, Y.; Hou, Z.; Wei, L. Carbon Nanotube-Based Chemiresistive Sensors. Sensors 2017, 17, 882. [Google Scholar] [CrossRef] [PubMed]
- Panes-Ruiz, L.A.; Shaygan, M.; Fu, Y.; Liu, Y.; Khavrus, V.; Oswald, S.; Gemming, T.; Baraban, L.; Bezugly, V.; Cuniberti, G. Toward Highly Sensitive and Energy Efficient Ammonia Gas Detection with Modified Single-Walled Carbon Nanotubes at Room Temperature. ACS Sensors 2018, 3, 79–86. [Google Scholar] [CrossRef]
- Ellison, M.D.; Crotty, M.J.; Koh, D.; Spray, R.L.; Tate, K.E. Adsorption of NH3 and NO2 on Single-Walled Carbon Nanotubes. J. Phys. Chem. B 2004, 108, 7938–7943. [Google Scholar] [CrossRef]
- Yang, Y.; Narayanan Nair, A.K.; Sun, S. Adsorption and Diffusion of Carbon Dioxide, Methane, and Their Mixture in Carbon Nanotubes in the Presence of Water. J. Phys. Chem. C 2020, 124, 16478–16487. [Google Scholar] [CrossRef]
- Bagherinia, M.A.; Shadman, M. Investigations of CO2, CH4 and N2 physisorption in single-walled silicon carbon nanotubes using GCMC simulation. Int. Nano Lett. 2014, 4, 95. [Google Scholar] [CrossRef]
- Yeung, C.S.; Liu, L.V.; Wang, Y.A. Adsorption of Small Gas Molecules onto Pt-Doped Single-Walled Carbon Nanotubes. J. Phys. Chem. C 2008, 112, 7401–7411. [Google Scholar] [CrossRef]
- Sharafeldin, I.M.; Allam, N.K. DFT insights into the electronic properties and adsorption of NO2 on metal-doped carbon nanotubes for gas sensing applications. New J. Chem. 2017, 41, 14936–14944. [Google Scholar] [CrossRef]
- Yeung, C.S.; Chen, Y.K.; Wang, Y.A. Theoretical Studies of Substitutionally Doped Single-Walled Nanotubes. J. Nanotechnol. 2010, 2010, 801789. [Google Scholar] [CrossRef]
- Abdullah, H.Y. Theoretical study of the binding energy of some gases on Al-doped carbon nanotube. Results Phys. 2016, 6, 1146–1151. [Google Scholar] [CrossRef][Green Version]
- Azizi, K.; Karimpanah, M. Computational study of Al- or P-doped single-walled carbon nanotubes as NH3 and NO2 sensors. Appl. Surf. Sci. 2013, 285, 102–109. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, G.; Tian, J.; Ma, D.; Wang, Y. First-principles study on the gas sensing property of the Ge, As, and Br doped PtSe2. Mater. Res. Express 2018, 5, 035037. [Google Scholar] [CrossRef]
- Oftadeh, M.; Gholamian, M.; Abdallah, H.H. Sulfur Dioxide Internal and External Adsorption on the Single-Walled Carbon Nanotubes: DFT Study. Phys. Chem. Res. 2014, 2, 30–40. [Google Scholar]
- Oftadeh, M.; Gholamian, M.; Abdallah, H.H. Investigation of interaction hydrogen sulfide with (5,0) and (5,5) single-wall carbon nanotubes by density functional theory method. Int. Nano Lett. 2013, 3, 7. [Google Scholar] [CrossRef]
- Babaheydari, A.K.; Jafari, A.; Moghadam, G.; Tavakoli, K. Investigation and Study of Adsorption Properties of H2S on Carbon Nanotube (8, 0) (SWCNT) Using Density Functional Theory Calculation. Adv. Sci. Lett. 2013, 19, 3201–3205. [Google Scholar] [CrossRef]
- An, L.; Jia, X.; Liu, Y. Adsorption of SO2 molecules on Fe-doped carbon nanotubes: The first principles study. Adsorption 2019, 25, 217–224. [Google Scholar] [CrossRef]
- Guo, G.; Wang, F.; Sun, H.; Zhang, D. Reactivity of silicon-doped carbon nanotubes toward small gaseous molecules in the atmosphere. Int. J. Quantum Chem. 2008, 108, 203–209. [Google Scholar] [CrossRef]
- Zhang, X.; Dai, Z.; Chen, Q.; Tang, J. A DFT study of SO2 and H2S gas adsorption on Au-doped single-walled carbon nanotubes. Phys. Scr. 2014, 89, 065803. [Google Scholar] [CrossRef]
- Liao, T.; Kou, L.; Du, A.; Chen, L.; Cao, C.; Sun, Z. H2S Sensing and Splitting on Atom-Functionalized Carbon Nanotubes: A Theoretical Study. Adv. Theory Simul. 2018, 1, 1700033. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio totaCambridgel-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in C: The Art of Scientific Computing, 2nd ed.; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [PubMed]
- Bader, R.F.W. The zero-flux surface and the topological and quantum definitions of an atom in a molecule. Theor. Chem. Acc. 2001, 105, 276–283. [Google Scholar] [CrossRef]
- Henkelman, G.; Arnaldsson, A.; Jónsson, H. A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 2006, 36, 354–360. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics, 86th ed.; CRC: Boca Raton, FL, USA, 2005. [Google Scholar]
System | Encapsulation Energy (eV) | Charge Transfer | Magnetic Moment |
---|---|---|---|
SWNT | --- | --- | 0.00 |
SO2@SWNT | −0.27 | 0.11 | 0.10 |
H2S@SWNT | −0.20 | 0.02 | 0.00 |
System | Adsorption Energy (eV) | Charge Transfer | Magnetic Moment |
---|---|---|---|
SWNT | --- | --- | 0.00 |
SO2_SWNT | −0.23 | 0.09 | 0.00 |
H2S_SWNT | −0.15 | 0.01 | 0.00 |
System | Encapsulation Energy (eV) | Charge Transfer | Magnetic Moment |
---|---|---|---|
SWNT | --- | --- | 0.00 |
SO2@Ru.SWNT | −0.29 | 0.11 | 0.30 |
H2S@Ru.SWNT | −0.23 | 0.02 | 0.00 |
System | Adsorption Energy (eV) | Charge Transfer | Magnetic Moment |
---|---|---|---|
SWNT | --- | --- | 0.00 |
SO2_Ru.SWNT | −1.08 | 0.52 | 0.67 |
H2S_Ru.SWNT | −1.00 | 0.07 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuganathan, N.; Chroneos, A. Ru-Doped Single Walled Carbon Nanotubes as Sensors for SO2 and H2S Detection. Chemosensors 2021, 9, 120. https://doi.org/10.3390/chemosensors9060120
Kuganathan N, Chroneos A. Ru-Doped Single Walled Carbon Nanotubes as Sensors for SO2 and H2S Detection. Chemosensors. 2021; 9(6):120. https://doi.org/10.3390/chemosensors9060120
Chicago/Turabian StyleKuganathan, Navaratnarajah, and Alexander Chroneos. 2021. "Ru-Doped Single Walled Carbon Nanotubes as Sensors for SO2 and H2S Detection" Chemosensors 9, no. 6: 120. https://doi.org/10.3390/chemosensors9060120
APA StyleKuganathan, N., & Chroneos, A. (2021). Ru-Doped Single Walled Carbon Nanotubes as Sensors for SO2 and H2S Detection. Chemosensors, 9(6), 120. https://doi.org/10.3390/chemosensors9060120