Fabrication of an All-Solid-State Ammonium Paper Electrode Using a Graphite-Polyvinyl Butyral Transducer Layer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation of a Conventional Internal Electrolyte Electrode
2.3. Preparation of Solid-Contact Ammonium-Selective Electrodes
2.4. Electrochemical Measuring System
2.5. Electron Microscopy Characterisation
3. Results
3.1. Effect of the Membrane Thickness
3.2. Cyclic Voltammetry and Impedance Studies
3.3. Potentiometric Response of Solid Contact Electrodes
3.3.1. Potentiometric Response under Steady Conditions
Graphite Disk Electrodes
Paper Electrode
Morphological Characterization of the Planar Electrode
Analytical Characterisation of the Planar Electrode
Effect of pH
Effect of Interference–Selectivity
3.3.2. Potentiometric Response under Flow Conditions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhu, Y.; Chen, J.F.; Yuan, D.X.; Yang, Z.; Shi, X.L.; Li, H.L.; Jin, H.Y.; Ran, L.H. Development of analytical methods for ammonium determination in seawater over the last two decades. Trac-Trends Anal. Chem. 2019, 119, 14. [Google Scholar] [CrossRef]
- Pedersen, J.W.; Larsen, L.H.; Thirsing, C.; Vezzaro, L. Reconstruction of corrupted datasets from ammonium-ISE sensors at WRRFs through merging with daily composite samples. Water Res. 2020, 185, 12. [Google Scholar] [CrossRef] [PubMed]
- Cecconi, F.; Reifsnyder, S.; Sobhani, R.; Cisquella-Serra, A.; Madou, M.; Rosso, D. Functional behaviour and microscopic analysis of ammonium sensors subject to fouling in activated sludge processes. Environ. Sci.-Wat. Res. Technol. 2020, 6, 2723–2733. [Google Scholar] [CrossRef]
- Heising, J.K.; Dekker, M.; Bartels, P.V.; van Boekel, M. A non-destructive ammonium detection method as indicator for freshness for packed fish: Application on cod. J. Food Eng. 2012, 110, 254–261. [Google Scholar] [CrossRef]
- Zamarayeva, A.M.; Yamamoto, N.A.D.; Toor, A.; Payne, M.E.; Woods, C.; Pister, V.I.; Khan, Y.; Evans, J.W.; Arias, A.C. Optimization of printed sensors to monitor sodium, ammonium, and lactate in sweat. APL Mater. 2020, 8, 10. [Google Scholar] [CrossRef]
- Shao, Y.Z.; Ying, Y.B.; Ping, J.F. Recent advances in solid-contact ion-selective electrodes: Functional materials, transduction mechanisms, and development trends. Chem. Soc. Rev. 2020, 49, 4405–4465. [Google Scholar] [CrossRef]
- Zdrachek, E.; Bakker, E. Potentiometric Sensing. Anal. Chem. 2019, 91, 2–26. [Google Scholar] [CrossRef] [Green Version]
- Rosenberg, R.; Bono, M.S.; Braganza, S.; Vaishnav, C.; Karnik, R.; Hart, A.J. In-field determination of soil ion content using a handheld device and screen-printed solid-state ion-selective electrodes. PLoS ONE 2018, 13, e0203862. [Google Scholar] [CrossRef] [Green Version]
- Alberti, G.; Zanoni, C.; Losi, V.; Magnaghi, L.R.; Biesuz, R. Current Trends in Polymer Based Sensors. Chemosensors 2021, 9, 108. [Google Scholar] [CrossRef]
- Yin, T.J.; Qin, W. Applications of nanomaterials in potentiometric sensors. Trac-Trends Anal. Chem. 2013, 51, 79–86. [Google Scholar] [CrossRef]
- Ding, L.; Ding, J.W.; Ding, B.J.; Qin, W. Solid-contact Potentiometric Sensor for the Determination of Total Ammonia Nitrogen in Seawater. Int. J. Electrochem. Sci. 2017, 12, 3296–3308. [Google Scholar] [CrossRef]
- Quan, D.P.; Quang, C.X.; Duan, L.T.; Viet, P.H. A conductive polypyrrole based ammonium ion selective electrode. Environ. Monit. Assess. 2001, 70, 153–165. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.F.; Li, J.; Yin, T.Y.; Jia, J.J.; Ding, Q.; Zheng, H.; Chen, C.T.A.; Ye, Y. A novel all-solid-state ammonium electrode with polyaniline and copolymer of aniline/2,5-dimethoxyaniline as transducers. J. Electroanal. Chem. 2015, 741, 87–92. [Google Scholar] [CrossRef]
- Jang, C.W.; Byun, Y.T.; Jhon, Y.M. Detection of 10 nM Ammonium Ions in 35 parts per thousand NaCl Solution by Carbon Nanotube Based Sensors. J. Nanosci. Nanotechnol. 2012, 12, 1765–1769. [Google Scholar] [CrossRef]
- Athavale, R.; Kokorite, I.; Dinkel, C.; Bakker, E.; Wehrli, B.; Crespo, G.A.; Brand, A. In Situ Ammonium Profiling Using Solid-Contact Ion-Selective Electrodes in Eutrophic Lakes. Anal. Chem. 2015, 87, 11990–11997. [Google Scholar] [CrossRef]
- Maksymiuk, K.; Stelmach, E.; Michalska, A. Unintended Changes of Ion-Selective Membranes Composition-Origin and Effect on Analytical Performance. Membranes 2020, 10, 266. [Google Scholar] [CrossRef]
- Cuartero, M.; Colozza, N.; Fernandez-Perez, B.M.; Crespo, G.A. Why ammonium detection is particularly challenging but insightful with ionophore-based potentiometric sensors—An overview of the progress in the last 20 years. Analyst 2020, 145, 3188–3210. [Google Scholar] [CrossRef] [Green Version]
- Chiang, T.Y.; Lin, C.H. A microfluidic chip for ammonium sensing incorporating ion-selective membranes formed by surface tension forces. RSC Adv. 2014, 4, 379–385. [Google Scholar] [CrossRef]
- Nunez, L.; Ceto, X.; Pividori, M.I.; Zanoni, M.V.B.; del Valle, M. Development and application of an electronic tongue for detection and monitoring of nitrate, nitrite and ammonium levels in waters. Microchem. J. 2013, 110, 273–279. [Google Scholar] [CrossRef]
- Guinovart, T.; Bandodkar, A.J.; Windmiller, J.R.; Andrade, F.J.; Wang, J. A potentiometric tattoo sensor for monitoring ammonium in sweat. Analyst 2013, 138, 7031–7038. [Google Scholar] [CrossRef]
- Brendgen, R.; Grassmann, C.; Grethe, T.; Mahltig, B.; Schwarz-Pfeiffer, A. Coatings with recycled polyvinyl butyral on polyester and polyamide mono- and multifilament yarns. J. Coat. Technol. Res. 2021, 18, 819–829. [Google Scholar] [CrossRef]
- Guinovart, T.; Crespo, G.A.; Rius, F.X.; Andrade, F.J. A reference electrode based on polyvinyl butyral (PVB) polymer for decentralized chemical measurements. Anal. Chim. Acta 2014, 821, 72–80. [Google Scholar] [CrossRef]
- Tobjörk, D.; Österbacka, R. Paper Electronics. Adv. Mater. 2011, 23, 1935–1961. [Google Scholar] [CrossRef]
- Ivanisevic, I.; Kassal, P.; Milinkovic, A.; Rogina, A.; Milardovic, S. Combined Chemical and Thermal Sintering for High Conductivity Inkjet-printed Silver Nanoink on Flexible Substrates. Chem. Biochem. Eng. Q. 2019, 33, 377–384. [Google Scholar] [CrossRef]
- Milardovic, S.; Ivanisevic, I.; Rogina, A.; Kassal, P. Synthesis and Electrochemical Characterization of AgNP Ink Suitable for Inkjet Printing. Int. J. Electrochem. Sci. 2018, 13, 11136–11149. [Google Scholar] [CrossRef]
- Cuartero, M.; Crespo, G.A. All-solid-state potentiometric sensors: A new wave for in situ aquatic research. Curr. Opin. Electrochem. 2018, 10, 98–106. [Google Scholar] [CrossRef]
- Michalska, A. All-Solid-State Ion Selective and All-Solid-State Reference Electrodes. Electroanalysis 2012, 24, 1253–1265. [Google Scholar] [CrossRef]
- McCreery, R.L. Advanced carbon electrode materials for molecular electrochemistry. Chem. Rev. 2008, 108, 2646–2687. [Google Scholar] [CrossRef]
- Wang, Z.Z.; Murphy, A.; O’Riordan, A.; O’Connell, I. Equivalent Impedance Models for Electrochemical Nanosensor-Based Integrated System Design. Sensors 2021, 21, 3259. [Google Scholar] [CrossRef]
- Ivanisevic, I.; Rukavina, V.; Kassal, P.; Milardovic, S. Impact of Weak Organic Acids on Precipitation of Poly (acrylic acid) Stabilized Silver Nanoparticles; an Electrochemical Approach. Croat. Chem. Acta 2018, 91, 491–499. [Google Scholar] [CrossRef]
- Ivanišević, I.; Milardović, S.; Kassal, P.; Zlatar, M. Electrochemical and spectroscopic characterization of AgNP suspension stability influenced by strong inorganic acids. Electrochim. Acta 2021, 377, 138126. [Google Scholar] [CrossRef]
- Banks, C.E.; Davies, T.J.; Wildgoose, G.G.; Compton, R.G. Electrocatalysis at graphite and carbon nanotube modified electrodes: Edge-plane sites and tube ends are the reactive sites. Chem. Commun. 2005, 7, 829–841. [Google Scholar] [CrossRef] [PubMed]
- Vyas, R.N.; Wang, B. Electrochemical Analysis of Conducting Polymer Thin Films. Int. J. Mol. Sci. 2010, 11, 1956–1972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lai, S.C.S.; Patel, A.N.; McKelvey, K.; Unwin, P.R. Definitive Evidence for Fast Electron Transfer at Pristine Basal Plane Graphite from High-Resolution Electrochemical Imaging. Angew. Chem. Int. Edit. 2012, 51, 5405–5408. [Google Scholar] [CrossRef]
- Jin, S.; Lee, J.S.; Kang, Y.; Heo, M.; Shin, J.H.; Cha, G.S.; Nam, H.; Lee, J.Y.; Helal, A.; Kim, H.S.; et al. Voltammetric ion-channel sensing of ammonium ion using self-assembled monolayers modified with ionophoric receptors. Sens. Actuator B Chem. 2015, 207, 1026–1034. [Google Scholar] [CrossRef]
- Abramova, N.; Bratov, A. Application of Photocured Polymer Ion Selective Membranes for Solid-State Chemical Sensors. Chemosensors 2015, 3, 190–199. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.M.; Nassar, J.M.; Hussain, M.M. Paper as a Substrate and an Active Material in Paper Electronics. ACS Appl. Electron. Mater. 2021, 3, 30–52. [Google Scholar] [CrossRef]
- Casadella, A.; Schaetzle, O.; Loos, K. Ammonium across a Selective Polymer Inclusion Membrane: Characterization, Transport, and Selectivity. Macromol. Rapid Commun. 2016, 37, 858–864. [Google Scholar] [CrossRef]
- Michalska, A.; Wojciechowski, M.; Bulska, E.; Maksymiuk, K. Experimental study on stability of different solid contact arrangements of ion-selective electrodes. Talanta 2010, 82, 151–157. [Google Scholar] [CrossRef]
- Isildak, O.; Ozbek, O. Application of Potentiometric Sensors in Real Samples. Crit. Rev. Anal. Chem. 2021, 51, 218–231. [Google Scholar] [CrossRef]
- Ghauri, M.S.; Thomas, J.D.R. Poly (vinyl chloride) type ammonium ion-selective electrodes based on nonactin: Solvent mediator effects. Anal. Commun. 1994, 31, 181–183. [Google Scholar] [CrossRef]
- Capella, J.V.; Bonastre, A.; Campelo, J.C.; Ors, R.; Peris, M. A New Ammonium Smart Sensor with Interference Rejection. Sensors 2020, 20, 7102. [Google Scholar] [CrossRef] [PubMed]
- Umezawa, Y.; Buhlmann, P.; Umezawa, K.; Tohda, K.; Amemiya, S. Potentiometric selectivity coefficients of ion-selective electrodes Part I. Inorganic cations—(Technical report). Pure Appl. Chem. 2000, 72, 1851–2082. [Google Scholar] [CrossRef]
- Ren, K. Selectivity problems of membrane ion-selective electrodes—A method alternative to the IUPAC recommendation and its application to the selectivity mechanism investigation. Fresenius J. Anal. Chem. 1999, 365, 389–397. [Google Scholar] [CrossRef]
- Bakker, E.; Pretsch, E.; Buhlmann, P. Selectivity of potentiometric ion sensors. Anal. Chem. 2000, 72, 1127–1133. [Google Scholar] [CrossRef]
- Novell, M.; Parrilla, M.; Crespo, G.A.; Rius, F.X.; Andrade, F.J. Paper-Based Ion-Selective Potentiometric Sensors. Anal. Chem. 2012, 84, 4695–4702. [Google Scholar] [CrossRef]
- Skeggs, L.T. An automatic method for colorimetric analysis. Am. J. Clin. Pathol. 1957, 28, 311–322. [Google Scholar] [CrossRef]
- Hansen, E.H.; Wang, J.H. The three generations of flow injection analysis. Anal. Lett. 2004, 37, 345–359. [Google Scholar] [CrossRef]
- Harris, D.C. Quantitative Chemical Analysis, 8th ed.; W. H. Freeman and Company: New York, NY, USA, 2010; pp. 103–105. [Google Scholar]
- Trojanowicz, M.; Kolacinska, K. Recent advances in flow injection analysis. Analyst 2016, 141, 2085–2139. [Google Scholar] [CrossRef]
- Du, Y.; Ma, T.; Deng, Y.; Shen, S.; Lu, Z. Sources and fate of high levels of ammonium in surface water and shallow groundwater of the Jianghan Plain, Central China. Environ. Sci. Process. Impacts 2017, 19, 161–172. [Google Scholar] [CrossRef]
Graphite wt % | Sensitivity/mVpNH4−1 | |
---|---|---|
Dry Conditions | Wet Conditions | |
50% | −45.93 ± 1.01 | −28.80 ± 1.65 |
55% | −48.77 ± 0.86 | −39.79 ± 0.95 |
60% | −43.46 ± 1.84 | −24.10 ± 1.63 |
65% | −54.98 ± 1.89 | −48.92 ± 2.38 |
Type of Electrode | |||||
---|---|---|---|---|---|
Li+ | Na+ | K+ | Mg2+ | Ca2+ | |
NH4+ paper ISE (SSM) (this work) | −2.12 | −1.83 | −0.86 | −3.21 | −3.18 |
NH4+ paper ISE (FIM) (this work) | −2.37 | −2.47 | −1.22 | −3.61 | −3.57 |
Conventional NH4+ ISE (SSM) [41] | −2.74 | −2.2 | −0.82 | − | −2.6 |
Solid-contact NH4+ ISE (SSM) [15] | − | −2.89 | −0.88 | −5.5 | −4.8 |
NH4+ paper ISE (FIM) [46] | −4.7 | −3.0 | −1.2 | −3.8 | −4.7 |
Modified Electrode | Substrate | Detection Method | Sensitivity/mV Decade−1 | LOD/M | Linear Range/–pNH4 | Ref. |
---|---|---|---|---|---|---|
PPy | GC | FIA | 56.3 | – | −1 to −5 | [12] |
PANI-CPANI | Ag wire | Potentiometry | 56.59 | – | −1 to −4 | [13] |
MWCNT-PVC | GC | Potentiometry | 57.2 ± 1.1 | 2.6 × 10−7 | −3 to −6 | [15] |
SWCNT | Paper | Potentiometry | 56.4 ± 0.8 | 7.2 × 10−6 | −1 to −5 | [46] |
Graphite-PVB | Paper | Flow analysis | 57.3 ± 1.09 | 4.8 × 10−6 | −1 to −5 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanišević, I.; Milardović, S.; Ressler, A.; Kassal, P. Fabrication of an All-Solid-State Ammonium Paper Electrode Using a Graphite-Polyvinyl Butyral Transducer Layer. Chemosensors 2021, 9, 333. https://doi.org/10.3390/chemosensors9120333
Ivanišević I, Milardović S, Ressler A, Kassal P. Fabrication of an All-Solid-State Ammonium Paper Electrode Using a Graphite-Polyvinyl Butyral Transducer Layer. Chemosensors. 2021; 9(12):333. https://doi.org/10.3390/chemosensors9120333
Chicago/Turabian StyleIvanišević, Irena, Stjepan Milardović, Antonia Ressler, and Petar Kassal. 2021. "Fabrication of an All-Solid-State Ammonium Paper Electrode Using a Graphite-Polyvinyl Butyral Transducer Layer" Chemosensors 9, no. 12: 333. https://doi.org/10.3390/chemosensors9120333
APA StyleIvanišević, I., Milardović, S., Ressler, A., & Kassal, P. (2021). Fabrication of an All-Solid-State Ammonium Paper Electrode Using a Graphite-Polyvinyl Butyral Transducer Layer. Chemosensors, 9(12), 333. https://doi.org/10.3390/chemosensors9120333